login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A303434
Numbers of the form x*(3*x-1)/2 + 3^y with x and y nonnegative integers.
24
1, 2, 3, 4, 6, 8, 9, 10, 13, 14, 15, 21, 23, 25, 27, 28, 31, 32, 36, 38, 39, 44, 49, 52, 54, 60, 62, 71, 73, 78, 79, 81, 82, 86, 93, 95, 97, 101, 103, 116, 118, 119, 120, 126, 132, 144, 146, 148, 151, 154, 172, 173, 177, 179, 185
OFFSET
1,2
COMMENTS
The author's conjecture in A303401 has the following equivalent version: Each integer n > 1 can be written as the sum of two terms of the current sequence.
This has been verified for all n = 2..7*10^6.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(1) = 1 with 1 = 0*(3*0-1)/2 + 3^0.
a(2) = 2 with 2 = 1*(3*1-1)/2 + 3^0.
a(5) = 6 with 6 = 2*(3*2-1)/2 + 3^0.
a(6) = 8 with 8 = 2*(3*2-1)/2 + 3^1.
MATHEMATICA
PenQ[n_]:=PenQ[n]=IntegerQ[Sqrt[24n+1]]&&(n==0||Mod[Sqrt[24n+1]+1, 6]==0);
tab={}; Do[Do[If[PenQ[m-3^k], n=n+1; tab=Append[tab, m]; Goto[aa]], {k, 0, Log[3, m]}]; Label[aa], {m, 1, 185}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 23 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy