login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A316673
Number of paths from (0,0,0) to (n,n,n) that always move closer to (n,n,n).
3
1, 13, 818, 64324, 5592968, 515092048, 49239783968, 4831678931008, 483371425775744, 49083260519243008, 5043379069021557248, 523221884090930480128, 54715789513061864081408, 5760456190025868833542144, 609948004367577499751948288, 64905519628343663567453569024
OFFSET
0,2
LINKS
FORMULA
Recurrence: see Maple program.
a(n) = A126086(n) * ceiling(2^(n-1)) = A126086(n) * A011782(n).
a(n) ~ sqrt((6 + 5*2^(1/3) + 4*2^(2/3))/6) * (24*2^(2/3) + 30*2^(1/3) + 38)^n / (4*Pi*n). - Vaclav Kotesovec, May 14 2020
G.f.: (1+hypergeom([1/3, 2/3],[1],108*x/(1-2*x)^3)/(1-2*x))/2. - Mark van Hoeij, Nov 28 2024
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 13, 818, 64324][n+1],
(2*(3*n-2)*(57*n^2-95*n+25)*a(n-1)-4*(9*n^3-30*n^2+29*n-6)*
a(n-2)+8*(3*n-1)*(n-2)^2*a(n-3))/(n^2*(3*n-4)))
end:
seq(a(n), n=0..20);
MATHEMATICA
a[n_] := a[n] = If[n < 4, {1, 13, 818, 64324}[[n+1]], (2(3n-2)(57n^2- 95n+25) a[n-1] - 4(9n^3-30n^2+29n-6) a[n-2] + 8(3n-1)(n-2)^2 a[n-3]) / (n^2 (3n-4))];
a /@ Range[0, 20] (* Jean-François Alcover, May 14 2020, after Maple *)
CROSSREFS
Column k=3 of A316674.
Sequence in context: A221934 A328033 A366559 * A319509 A189446 A296803
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 10 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy