login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317580
Number of unlabeled rooted identity trees with n nodes and a distinguished leaf.
3
1, 1, 1, 3, 5, 12, 28, 66, 153, 367, 880, 2121, 5127, 12441, 30248, 73746, 180077, 440571, 1079438, 2648511, 6506170, 16001256, 39393173, 97074140, 239419963, 590972968, 1459808862, 3608483107, 8925476591, 22090139751, 54702648393, 135533335933, 335967782916
OFFSET
1,4
COMMENTS
Total number of leaves in all rooted identity trees with n nodes. - Andrew Howroyd, Aug 28 2018
LINKS
FORMULA
a(n) = Sum_{k=1, n} k*A055327(n, k). - Andrew Howroyd, Aug 28 2018
EXAMPLE
The a(6) = 12 rooted identity trees with a distinguished leaf:
(((((O))))),
(((O(o)))), (((o(O)))),
((O((o)))), ((o((O)))),
(O(((o)))), (o(((O)))),
((O)((o))), ((o)((O))),
(O(o(o))), (o(O(o))), (o(o(O))).
MATHEMATICA
urit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[urit/@ptn]], UnsameQ@@#&], {ptn, IntegerPartitions[n-1]}];
Table[Sum[Length[Flatten[{t/.{}->1}]], {t, urit[n]}], {n, 10}]
PROG
(PARI) WeighMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, (-1)^(i-1)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i ))-1)}
seq(n)={my(v=[y]); for(n=2, n, v=concat([y], WeighMT(v))); apply(p -> subst(deriv(p), y, 1), v)} \\ Andrew Howroyd, Aug 28 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 31 2018
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Aug 28 2018
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy