login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of regions in a "frame" of size n X n (see Comments for definition).
14

%I #70 Aug 16 2021 14:09:02

%S 4,56,208,496,1016,1784,2984,4656,6968,9944,13976,18928,25360,33128,

%T 42488,53600,67232,82904,101744,123232,147896,175784,208296,244416,

%U 285600,331352,382608,439008,502776,571912,649480,734176,826880,927416,1037288,1155152,1284992

%N Number of regions in a "frame" of size n X n (see Comments for definition).

%C A "frame" of size n X n is formed from a grid of (n+1) X (n+1) points with the central grid of (n-3) X (n-3) points removed. If n is less than 3 then no points are removed, and a(n) = A255011(n). From now on we assume n >= 3.

%C If we focus on the squares rather than the points, the frame consists of an n X n array of squares with the central block of (n-2) X (n-2) squares removed.

%C The resulting structure has an outer perimeter with 4*n points and an inner perimeter with 4*n-8 points, for a total of 8*n-8 perimeter points. The frame itself is the strip of width 1 between the inner and outer perimeters.

%C Now join every pair of perimeter points, both inner and outer, by a line segment, provided the line remains inside the frame. The sequence gives the number of regions in the resulting figure.

%C Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004). Then, for n >= 2, a(n) = 4*z(n) + 16*n^2 - 20*n. - _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 06 2020

%H Jinyuan Wang, <a href="/A331776/b331776.txt">Table of n, a(n) for n = 1..1000</a>

%H Scott R. Shannon, <a href="/A331452/a331452_6.png">Colored illustration for a(1) = 4</a>

%H Scott R. Shannon, <a href="/A331452/a331452_12.png">Colored illustration for a(2) = 56</a>

%H Scott R. Shannon, <a href="/A331776/a331776.png">Colored illustration for a(3) = 208</a>

%H Scott R. Shannon, <a href="/A331776/a331776_1.png">Colored illustration for a(4) = 496</a>

%H Scott R. Shannon, <a href="/A331776/a331776_2.png">Colored illustration for a(5) = 1016</a>

%H Scott R. Shannon, <a href="/A331776/a331776_3.png">Colored illustration for a(6) = 1784</a>

%H Scott R. Shannon, <a href="/A331776/a331776_4.png">Colored illustration for a(7) = 2984</a>

%H Scott R. Shannon, <a href="/A331776/a331776_5.png">Colored illustration for a(8) = 4656</a>

%H Scott R. Shannon, <a href="/A331776/a331776_6.png">Colored illustration for a(8) = 4656</a> (Another version)

%H Zach Shannon, <a href="/A331776/a331776_7.png">Illustration for a(8) = 4656 used as a frame for the OEIS logo</a>

%H Zach Shannon, <a href="/A331776/a331776_8.png">Illustration for a(8) = 4656 used as a frame for the OEIS logo</a> (detail)

%H N. J. A. Sloane, <a href="/A331457/a331457.pdf">Illustration for a(3) = 208</a>

%F For n > 1, a(n) = 20*n*(n-1) + 4*Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - _Chai Wah Wu_, Aug 16 2021

%p # First define z(n) = A115004

%p z := proc(n)

%p local a, b, r ;

%p r := 0 ;

%p for a from 1 to n do

%p for b from 1 to n do

%p if igcd(a, b) = 1 then

%p r := r+(n+1-a)*(n+1-b);

%p end if;

%p end do:

%p end do:

%p r ;

%p end proc:

%p A331776 := n -> if n=1 then 4 else 4*z(n)+16*n^2 - 20*n; fi;

%p [seq(A331776(n),n=1..40)]; # _N. J. A. Sloane_, Mar 09 2020

%o (PARI) a(n) = 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) + 16*n^2 - 20*n + 4*(n==1); \\ _Jinyuan Wang_, Aug 07 2021

%o (Python)

%o from sympy import totient

%o def A331776(n): return 4 if n == 1 else 20*n*(n-1) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # _Chai Wah Wu_, Aug 16 2021

%Y This is the main diagonal of A331457. Equals 4 times A332594.

%Y Cf. A255011, A115004.

%Y The analogous sequence for an n X n block of squares (if the center block is not removed) is A331452.

%K nonn

%O 1,1

%A _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 08 2020

%E More terms from _N. J. A. Sloane_, Mar 09 2020

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy