login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A338280
Triangle T read by rows: T(n, k) = k*n^(n-k-1) with 0 < k < n.
0
1, 3, 2, 16, 8, 3, 125, 50, 15, 4, 1296, 432, 108, 24, 5, 16807, 4802, 1029, 196, 35, 6, 262144, 65536, 12288, 2048, 320, 48, 7, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 2357947691, 428717762, 58461513, 7086244, 805255, 87846, 9317, 968, 99, 10
OFFSET
2,2
COMMENTS
T(n, k) is the number of forests of n - k edges that connect every other labeled vertex to one of the k roots (see Section 3 in Wästlund).
REFERENCES
Alfred Rényi, Some remarks on the theory of trees. MTA Mat. Kut. Inst. Kozl. (Publ. math. Inst. Hungar. Acad. Sci) 4 (1959), 73-85.
LINKS
Arthur Cayley, A theorem on trees, Quart. J. Pure Appl. Math. 23: 376-378 (1889). Also in The collected mathematical papers of Arthur Cayley vol 13.
John Riordan, Forests of labeled trees, Journal of Combinatorial Theory 5 (1968), 93-103.
Lajos Takács, On Cayley’s Formula for Counting Forests, Journal of Combinatorial Theory Series A 53, 321-323 (1990). See Equation 1.
Johan Wästlund, Padlock Solitaire: A martingale trick for combinatorial enumeration, arXiv:2008.13017 [math.CO], 2020. See Section 3.
MATHEMATICA
Table[k*n^(n-k-1), {n, 2, 11}, {k, 1, n-1}]//Flatten
CROSSREFS
Cf. A000027 (diagonal), A000169, A000272 (1st column), A000312, A007334 (2nd column), A023811 (row sums), A034941, A072590, A075363, A210725.
Sequence in context: A292123 A084886 A275463 * A304989 A374756 A055864
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Oct 20 2020
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy