login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A339050
Triangle read by rows T(n, m) = F(2*m-1)*(n-m) + F(2*m), for 1 <= m <= n, where F = A000045 (Fibonacci).
0
1, 2, 3, 3, 5, 8, 4, 7, 13, 21, 5, 9, 18, 34, 55, 6, 11, 23, 47, 89, 144, 7, 13, 28, 60, 123, 233, 377, 8, 15, 33, 73, 157, 322, 610, 987, 9, 17, 38, 86, 191, 411, 843, 1597, 2584, 10, 19, 43, 99, 225, 500, 1076, 2207, 4181, 6765
OFFSET
1,2
COMMENTS
This is the partial sum triangle of triangle A143929.
The main diagonal is the INVERT transform of the first column (offset 1 in both sequences).
FORMULA
T(n, m) = Sum_{k=1..m} A143929(n, k), n >=1, m = 1, 2, ..., n, otherwise 0.
T(n, m) = A(m)*n + B(m), with A(m) = A(m-1) + F(2*(m-1)), for m >= 2 and A(1) = 1, and B(m) = B(m-1) + (m-1)*F(2*(m-1)), for m >= 2 and B(1) = 0, where F(2*m) =A001906(m) and F(2*m-1) = A001519(m).
T(n, 1) = n, for n >= 1; T(n, m) = F(2*(m-1))*(n-m+1), if m >= 2 and n >= m, and 0 otherwise.
G.f. of column m: G(m,x) = x^m*(x*F(2*m-1)/(1-x)^2 + F(2*m)/(1-x)), for m >= 1.
G.f. of row polynomials R(n, x) := Sum{m=1..n} T(n, m)*x^m, that is g.f. of the triangle: G(z,x) = (x*z)*(1 - x*z^2)/((1- 3*x*z + (x*z)^2)*(1 - z)^2).
G.f. of (sub)diagonal k: D(k,x) = x*((k-1)*(1-x) + 1)/(1 - 3*x + x^2), for k >= 1.
EXAMPLE
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 2 3
3: 3 5 8
4: 4 7 13 21
5: 5 9 18 34 55
6: 6 11 23 47 89 144
7: 7 13 28 60 123 233 377
8: 8 15 33 73 157 322 610 987
9: 9 17 38 86 191 411 843 1597 2584
10: 10 19 43 99 225 500 1076 2207 4181 6765
...
CROSSREFS
The first columns (without leading zeros) are A001477(n), A005408(n+1), A005408(n+1), for n >= 1.
The first (sub)diagonals are A001906(m), A001519(m+1), A005248(m), for m >= 1.
Sequence in context: A153643 A053218 A198335 * A296335 A296635 A295051
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy