login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A341063
a(n) = Sum_{i+j<=m+1} t_i * t_j, where t_1 < ... < t_m are the totatives of n.
1
1, 1, 5, 7, 35, 11, 126, 70, 177, 90, 715, 142, 1365, 357, 680, 876, 3876, 645, 5985, 1300, 2856, 2255, 12650, 1916, 11675, 4446, 11061, 5362, 31465, 3260, 40920, 12376, 18920, 13192, 30240, 9066, 82251, 20691, 37752, 19080, 123410, 13062, 148995, 34870, 52080, 44781, 211876, 27640, 186102, 45650
OFFSET
1,3
COMMENTS
The totatives of n are the numbers k <= n with gcd(k,n) = 1.
If p is prime, a(p) = (p+2)*(p+1)*p*(p-1)/24.
It appears that 12*a(n) is always a multiple of n.
Conjecture: if p and q are distinct primes, a(p*q) = (p^2-p)*(q^2-q)*(p^2*q^2-p^2*q-p*q^2+p*q+2*p+2*q)/24.
LINKS
EXAMPLE
The totatives of 8 are 1, 3, 5, 7, so a(8) = 1*(1+3+5+7)+3*(1+3+5)+5*(1+3)+7*1 = 70.
MAPLE
f:= proc(n) local C, i, S, t;
C:= select(t -> igcd(t, n)=1, [$1..n]);
S:= ListTools:-PartialSums(C);
add(S[-i]*C[i], i=1..nops(C))
end proc:
map(f, [$1..100]);
CROSSREFS
Cf. A038566.
Sequence in context: A007911 A066172 A175667 * A018353 A176958 A196203
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Feb 04 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy