login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A341396
Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.
6
1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
OFFSET
0,2
COMMENTS
Partial sums of A008451.
FORMULA
G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
end:
a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..35); # Alois P. Heinz, Feb 10 2021
MATHEMATICA
nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x]
Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
PROG
(PARI) my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 10 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy