login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A344565
Triangle read by rows, for 0 <= k <= n: T(n, k) = binomial(n, k) * binomial(binomial(n + 3, 2), 2).
3
3, 15, 15, 45, 90, 45, 105, 315, 315, 105, 210, 840, 1260, 840, 210, 378, 1890, 3780, 3780, 1890, 378, 630, 3780, 9450, 12600, 9450, 3780, 630, 990, 6930, 20790, 34650, 34650, 20790, 6930, 990, 1485, 11880, 41580, 83160, 103950, 83160, 41580, 11880, 1485
OFFSET
0,1
FORMULA
T(n, k) = (n + 4)! / (8 * k! * (n - k)!).
EXAMPLE
Triangle begins:
[0] 3;
[1] 15, 15;
[2] 45, 90, 45;
[3] 105, 315, 315, 105;
[4] 210, 840, 1260, 840, 210;
[5] 378, 1890, 3780, 3780, 1890, 378;
[6] 630, 3780, 9450, 12600, 9450, 3780, 630;
[7] 990, 6930, 20790, 34650, 34650, 20790, 6930, 990;
[8] 1485, 11880, 41580, 83160, 103950, 83160, 41580, 11880, 1485;
[9] 2145, 19305, 77220, 180180, 270270, 270270, 180180, 77220, 19305, 2145.
MAPLE
T := (n, k) -> (n + 4)! / (8 * k! * (n - k)!):
for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
MATHEMATICA
T[n_, k_] := (n + 4)!/(8*k!*(n - k)!); Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, May 28 2021 *)
CROSSREFS
Apparently a subtriangle of A344678. Row sums A344564.
Sequence in context: A279534 A181404 A096672 * A289374 A289103 A289403
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 28 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy