login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A346459
Triangle read by rows: T(n,k) = 0 if all positive integers can be colored with two colors without any positive integer x being the same color as n*x or k*x; otherwise, T(n,k) = 1 (for 2 <= k <= n).
2
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
2
COMMENTS
T(n,k) = 1 if and only if there exists at least one pair of positive integers (x, y) such that n^x = k^y and x+y is odd. Otherwise, T(n,k) = 0.
If n is an element of A007916, then T(n,k) = 1 if and only if k is a perfect power of n^2.
T(n,k) = 1 if and only if there exists a positive integer x for which A052410(n)^x = k and A007814(A052409(n)) != A007814(x).
FORMULA
T(d^(2x), d^(2y-1)) = 1 for all positive integers d > 1, x, y.
T(A000302(n), A004171(k)) = T(A001019(n), A013708(k)) = T(A001025(n), A013709(k)) = T(A009969(n), A013710(k)) = T(A009980(n), A013711(k)) = T(A087752(n), A013712(k)) = T(A089357(n), A013713(k)) = T(A089683(n), A013714(k)) = T(A098608(n), A013715(k)) = 1 for all n >= 1, k >= 0.
EXAMPLE
Triangle T(n,k) begins:
n\k 2 3 4 5 6 7 8 9 10 11 ...
2 0
3 0 0
4 1 0 0
5 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 1 0 0 0 0
9 0 1 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0
...
If we color all positive integers whose 2-adic order and 3-adic order add up to an even number in color A and the rest in color B, every positive integer will be a different color from its double and triple. Therefore, T(3, 2) = 0.
PROG
(Python)
def T(n, k):
parity_check = [False]
i = 0
while True:
while not n % k:
n /= k
parity_check[i] = not parity_check[i]
if k % n:
return 0
elif n == 1:
x, y = True, not parity_check[0]
for j in range(1, i + 1):
x, y = y, x ^ (y and parity_check[j])
return y + 0
else:
n, k = k, n
parity_check.append(False)
i += 1
print([T(n, k) for n in range(2, 14) for k in range(2, n + 1)])
(Python)
def T(n, k):
nk = n*k
is_odd = 0
while True:
while not n % k:
n /= k
if k % n:
return 0
elif n == 1:
while not nk % k:
nk /= k
is_odd = 0 if is_odd else 1
return is_odd
else:
n, k = k, n
print([T(n, k) for n in range(2, 14) for k in range(2, n + 1)])
KEYWORD
nonn,tabl
AUTHOR
M. Eren Kesim, Jul 19 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy