login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A348939
Odd numbers k for which A064989(sigma(k)) > A064989(k), and which are of the form p^(1+4k) * r^2, where p is prime of the form 1+4m, r > 1, and gcd(p,r) = 1.
2
45, 117, 325, 333, 405, 549, 605, 657, 925, 1053, 1413, 1445, 1525, 1737, 1825, 2205, 2493, 2817, 2825, 2925, 2997, 3033, 3573, 3645, 3789, 3825, 3925, 4113, 4825, 4869, 4941, 5445, 5517, 5733, 5913, 5949, 6057, 6425, 6525, 6597, 6813, 6925, 7025, 7497, 7605, 7825, 7893, 8125, 8325, 8425, 8973, 9225, 9477, 9837, 9925
OFFSET
1,1
COMMENTS
Obviously, any hypothetical odd perfect number would be neither in this sequence nor in A348938.
MATHEMATICA
q[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; odde = Select[e, OddQ]; Length[e] > 1 && Length[odde] == 1 && Divisible[odde[[1]] - 1, 4] && Divisible[p[[Position[e, odde[[1]]][[1, 1]]]] - 1, 4]]; f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[1, 10000, 2], q[#] && s[DivisorSigma[1, #]] > s[#] &] (* Amiram Eldar, Nov 04 2021 *)
PROG
(PARI)
A064989(n) = { my(f = factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f) };
isA228058(n) = if(!(n%2)||(omega(n)<2), 0, my(f=factor(n), y=0); for(i=1, #f~, if(1==(f[i, 2]%4), if((1==y)||(1!=(f[i, 1]%4)), return(0), y=1), if(f[i, 2]%2, return(0)))); (y));
isA348749(n) = ((n%2)&&(A064989(sigma(n)) > A064989(n)));
isA348939(n) = (isA228058(n)&&isA348749(n));
CROSSREFS
Intersection of A228058 and A348749.
Sequence in context: A228058 A351533 A074770 * A370914 A343209 A140369
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 04 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy