login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A351300
a(n) = n^5 * Product_{p|n, p prime} (1 + 1/p^5).
11
1, 33, 244, 1056, 3126, 8052, 16808, 33792, 59292, 103158, 161052, 257664, 371294, 554664, 762744, 1081344, 1419858, 1956636, 2476100, 3301056, 4101152, 5314716, 6436344, 8245248, 9768750, 12252702, 14407956, 17749248, 20511150, 25170552, 28629152, 34603008, 39296688
OFFSET
1,2
COMMENTS
Sum of the 5th powers of the divisor complements of the squarefree divisors of n.
LINKS
FORMULA
a(n) = Sum_{d|n} d^5 * mu(n/d)^2.
a(n) = n^5 * Sum_{d|n} mu(d)^2 / d^5.
Multiplicative with a(p^e) = p^(5*e) + p^(5*e-5). - Sebastian Karlsson, Feb 08 2022
From Vaclav Kotesovec, Feb 12 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-5)/zeta(2*s).
Sum_{k=1..n} a(k) ~ n^6 * zeta(6) / (6 * zeta(12)) = 225225 * n^6 / (1382 * Pi^6).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^5/(p^10-1)) = 1.03592823428850098309076014982275428113698561633329794485946580153004... (End)
a(n) = J_10(n) / J_5(n) = A069095(n) / A059378(n), where J_k is the k-th Jordan totient function. - Enrique Pérez Herrero, Nov 13 2022
MATHEMATICA
f[p_, e_] := p^(5*e) + p^(5*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Feb 08 2022 *)
PROG
(PARI) a(n)=sumdiv(n, d, moebius(n/d)^2*d^5);
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^5*X))[n], ", ")) \\ Vaclav Kotesovec, Feb 12 2022
CROSSREFS
Cf. A008683 (mu).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), this sequence (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).
Sequence in context: A088703 A321561 A034679 * A017673 A001160 A294300
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 06 2022
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy