login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A364127
The number of trailing 0's in the Stolarsky representation of n (A364121).
1
0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 4, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 1
OFFSET
2,8
COMMENTS
The first position of k = 2, 3, 4, ... is A055588(k+1).
The asymptotic density of the occurrences of k = 0, 1, 2, ... is (2-phi)^k/phi, where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is phi - 1 (A094214) and the asymptotic standard deviation is 1.
LINKS
FORMULA
a(n) = A122840(A364121(n)).
MATHEMATICA
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
a[n_] := IntegerExponent[FromDigits[stol[n]], 10]; Array[a, 100, 2]
PROG
(PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1]))); }
a(n) = valuation(fromdigits(stol(n)), 10);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jul 07 2023
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy