login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A369232
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^3)^3 ).
2
1, 0, 0, 3, 3, 3, 33, 72, 120, 583, 1731, 3888, 13759, 44775, 119793, 381220, 1250328, 3682284, 11455153, 37174428, 114947724, 359381467, 1157319135, 3663615552, 11581104121, 37220909916, 119192219799, 380580143110, 1225279436706, 3948906772872, 12705801908002
OFFSET
0,4
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(n-2*k-1,n-3*k).
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1-x+x^3)^3)/x)
(PARI) a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u-t+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A369081.
Sequence in context: A372019 A369081 A346909 * A369014 A025549 A124013
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 17 2024
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy