login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370882
Square array T(n,k) = 9*2^k - n read by ascending antidiagonals.
0
9, 8, 18, 7, 17, 36, 6, 16, 35, 72, 5, 15, 34, 71, 144, 4, 14, 33, 70, 143, 288, 3, 13, 32, 69, 142, 287, 576, 2, 12, 31, 68, 141, 286, 575, 1152, 1, 11, 30, 67, 140, 285, 574, 1151, 2304, 0, 10, 29, 66, 139, 284, 573, 1150, 2303, 4608, -1, 9, 28, 65, 138, 283, 572, 1149, 2302, 4607, 9216
OFFSET
0,1
COMMENTS
Just after A367559 and A368826.
FORMULA
T(0,k) = 9*2^k = A005010(k);
T(1,k) = 9*2^k - 1 = A052996(k+2);
T(2,k) = 9*2^k - 2 = A176449(k);
T(3,k) = 9*2^k - 3 = 3*A083329(k);
T(4,k) = 9*2^k - 4 = A053209(k);
T(5,k) = 9*2^k - 5 = A304383(k+3);
T(6,k) = 9*2^k - 6 = 3*A033484(k);
T(7,k) = 9*2^k - 7 = A154251(k+1);
T(8,k) = 9*2^k - 8 = A048491(k);
T(9,k) = 9*2^k - 9 = 3*A000225(k).
G.f.: (9 - 9*y + x*(11*y - 10))/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Mar 17 2024
EXAMPLE
Table begins:
k=0 1 2 3 4 5
n=0: 9 18 36 72 144 288 ...
n=1: 8 17 35 71 143 287 ...
n=2: 7 16 34 70 142 286 ...
n=3: 6 15 33 69 141 285 ...
n=4: 5 14 32 68 140 284 ...
n=5: 4 13 31 67 139 283 ...
Every line has the signature (3,-2). For n=1: 3*17 - 2*8 = 35.
Main diagonal's difference table:
9 17 34 69 140 283 570 1145 ... = b(n)
8 17 35 71 143 287 575 1151 ... = A052996(n+2)
9 18 36 72 144 288 576 1152 ... = A005010(n)
...
b(n+1) - 2*b(n) = A023443(n).
MATHEMATICA
T[n_, k_] := 9*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Mar 05 2024
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy