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 Many peoples’ mathematics education in elementary school emphasized procedures such 
as “carrying” while adding and “regrouping” while subtracting with little emphasis on genuinely 
understanding our number system and the power of a place value system for representing 
numbers.  Students blindly learn to follow rules they are given, assuming there is really no basis 
behind them, that this is just the way mathematics is done. With practice, these basic 
computations become easy, despite having no understanding as to why they work. I was one of 
these students. Fortunately, through experiences with Math Matters and Math in the Middle, I 
have learned a lot about the place value system we use – the base ten number system.   

To thoroughly understand our base ten system, we need to understand how a place value 
system works. Often, this is best done by examining how our base ten numbers would be 
represented using other bases.  Civilizations in the past have used place value systems using 
bases other than ten. For example, the Babylonians used base 60 and the Mayans used base 20. 
Today, computers use a binary (base two) or a hexadecimal (base sixteen) system. In this paper, 
we will explore how fractions are represented in different bases. 

Our customary base ten number system uses the idea that when counting, we can 
visualize “how many” by grouping objects into groups of ten. Thus, we have single digit 
representations for the numbers zero to nine, but we do not have a solitary digit to represent ten. 
Instead, we write 10, meaning 1 ten and 0 ones. We continue to make groups of ten, groups of 
groups of ten, etc. as we count, using place values based on powers of ten:  the ones, tens, 
hundreds . . . places. This works well since we have ten fingers to count with. Thus, we use 
place, and the value assigned to each place, to represent whole numbers as “polynomials in ten.” 
For example, 234 is a compact representation for 2(10)2 + 3(10)1 + 4, and 8400908 represents 
8(10)6 + 4(10)5 + 9(10)2 + 8. 

Our base ten place value system can be used, of course, to represent fractions. Because 
any positive fraction can be thought of as a “mixed number”, i.e. a whole number plus a fraction 
between zero and one and any decimal number can be thought of as a whole number plus a 
decimal between zero and one, we will focus our attention on fractions between zero and one. 
Extending the idea of powers of ten to negative powers, we can represent fractions as follows: 

21 10*510*225.0
4
1 −− +==  

...10*510*210*510*210*5102...252525.025.0
99
25 654321 ++++++∗=== −−−−−−  

...10*510*510*510*2
90
23...2555.052.0 4321 ++++=== −−−−  

These three fractions and their decimal representations provide examples of three types of 
decimal representations:  terminating, totally repeating, and partially repeating. A decimal 



(less than one) is terminating if it involves only a finite number of non-zero terms, totally 
repeating if there is a finite sequence of numbers which repeat and which begin immediately 
after the decimal point, and partially repeating if it has a positive but finite number of terms 
that precede the sequence of numbers that repeats.  

 A place value system that uses a different base follows the same grouping method as base 
ten, except that the grouping is done in powers of the base that is used. For example, in base five, 
we only have single digit representations for the numbers 0, 1, 2, 3 and 4. Thus, when we count 
one more than four, we run out of room in the units column as there is no single digit that can 
represent five in base five. Instead, we put a 0 in the units column and a 1 in the 5’s column. 
Thus, 5ten = 10five. We continue adding one each time, counting in base 5: 11, 12, 13, 14. Since 
there is no single digit to represent 5, we place a 0 in the units and add another 1 to the 5s 
column and count 20, i.e., two groups of five.  So, counting in base five looks like:  0, 1, 2, 3, 4, 
10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30,  . . .  

 While it is not too difficult to count in different bases, it can at first be tricky to convert 
whole numbers from one base to another. One method to change any number from base ten to 
another base is: 

1. List the powers of the base you are converting to.  
2. Subtract the largest power you can from the base ten number as many times as you can. 
3. Continue subtracting the next largest power from your result, keeping track of how many 

of each power you subtract. 
4. Write how many of each power you subtract in the corresponding base’s place value. 
 

For example, convert 847 from base ten to base five: 
 Step 1: 50 = 1 
   51 = 5 
   52 = 25 
   53 = 125 
   54 = 625 
 
 Step 2:    847 
                         - 625      Subtract one 54 
                           222 

 
 Step 3:   222 
     - 125   Subtract one 53 

                            97 
 
                            97 
                         -  75      Subtract three 52 
                            22 
 



 
      22 
    - 20   Subtract four 51 

                                  2 
 
       2 
                          -  2    Subtract two 50 

                             0 
  
 Step 4:  1  1  3  4  2 = 11342five 

                                   54 53 52 51 50 

 

 We can also convert numbers written in any other base to base ten by using the following 
process: 

1. Starting with the rightmost digit, we call this position 0.  We number the positions 1, 
2, 3, etc. as we move from left from one place to the next. 

2. We determine the value of each place by taking the base to the power of the number 
of the position. 

3. Multiply all of the digits in each place by the value of that place. 
4. Find the sum of the numbers that result from step 3. 

 
For example, convert 4110eight to base ten: 
 Step 1: 4   1   1   0 
                       83  82   81  80 

  
 Step 2: 4*83 + 1*82 + 1*81 + 0*80 

 

 Step 3: 2048 + 64 + 8 + 0 = 2120ten 
 
 We can also add, subtract, multiply and divide in different bases using standard 
algorithms and a single digit addition or multiplication table. We just need to remember what 
base we are working with and make sure we are considering place value. We can add 10111 + 
10101 in base two, for example, remembering that 1 + 1 = 10two because no place will have a 
digit for two or more. That is, the answer will never include a digit for two, as there is no single 
digit in base two that represents 2.  

 111 
10111two 

                                                                    + 10101two 

                     101100two 

 



 Subtracting in base six, we need to remember that when we “borrow” we are borrowing a 
six, not a ten. For example, when subtracting 455six from 3211six,we cannot subtract five from 
one in the units place without borrowing from the sixes’ column. When borrowing from the one, 
we are getting six, not ten, since we are in base six. Thus, six plus the one in the units column 
gives us seven and seven take away five is two. We continue this line of thinking, getting: 

              11 
2101 
 3211six 

 - 455six 
 2312six 

 
 When multiplying in other bases, it is easy to first think in base ten and then convert to 
the base you are working with. For example 4five * 3five is 12 base ten and in base five this will be 
22five.  Similarly, 52 is 25 in base ten and 25 in base five is 100five. It is interesting to see that 
independent of the base we choose, the correct representation of the base squared is 100. 
Keeping this in mind helps us when working with large numbers in other bases.  
 
 Finally, dividing in other bases is probably the most difficult since you not only must 
divide, but also multiply and subtract, all in a different base! For example, take 5430six ÷ 13six. 
First, note that 13 does not go into five. 13 goes into 54 three times since 13 * 3 in base six is 43. 
54 take away 43 is 11 and bringing down the 3 is 113. 13 goes into 113 five times in base six. 13 
times five in base six is 113.  Finally, 0 divided by 13 is 0.  5430six ÷ 13six = 350six. Visually, this 
is shown as: 

 
350

0    
113
113
43
543013  

 
 As indicated earlier, this paper explores representing fractions using different bases. 
Before continuing, a review of how to work with fractions and decimals in base ten is helpful. If 
one understands how to work with these numbers in base ten, then working with fractions in 
other bases becomes more straightforward. 
 

We know that a fraction is terminating if, when in lowest terms, its denominator is a 

product of only 2’s and 5’s.  For example, 
12
3  reduces to

4
1 , and the prime factorization of 4 is 



22. Thus, there are only 2’s in the denominator, and so 
12
3  will terminate. One can use long 

division to check this and see that 3 ÷ 12 is 0.25 or 2*10-1 + 5*10-2. Conversely, one can write 
any terminating decimal as a fraction by simply using a denominator made of 2s and 5s. For 
example, the decimal 0.83564125 can be written as a fraction whose denominator is 28*58 or 

100,000,000, giving us the fraction
000,000,100

125,564,83 . 

Another type of fraction is one that totally repeats. Looking at the fraction
3
1 , we notice 

that the denominator will not factor into a product of only 2’s and 5’s, meaning this fraction will 
not terminate when written in decimal form. We can use long division here to see that the result 
will be a decimal that repeats after only a few digits (0.33333. . .). The pigeonhole principle, 
combined with long division, can be used to explain why any fraction that does not terminate 
must repeat.  We can also put an upper bound on the length of the sequence of repeating digits. 
(The essence of the pigeonhole principle can be explained by this example: “if you have 43 
letters to distribute to 42 mailboxes, at least one mailbox will get two letters”). For example, the 

fraction 
43
27

 
has a denominator that is not a product of 2s and 5s. Thus, it will not have a 

terminating decimal representation. Using long division to find a decimal representation, we can 
make a list of the remainders.  Note that zero can never be a remainder, because the decimal does 
not terminate. Thus, since there are only 42 possible remainders (1,2,3, . . . ,42), by the time you 
have collected 43 remainders, there must be at least one repeat in the list. When this happens, the 
corresponding sequence of terms in the quotient will start repeating as well.  
 

On the other hand, if we want to convert a repeating decimal to a fraction, there is an 
algorithm for how to find the corresponding fraction. First, set the decimal equal to a variable 
and multiply both sides of the equation by the power of ten equal to the length of the repeating 
string. For example, we can write 0.237237237. . . as a fraction by setting it equal to x, then 
multiplying both sides by 1000 (since the length of the repeating string is 3) and solving by 
taking away x and the original decimal, leaving a whole number: 

 
1000x = 237.237237. . . 

        -           x =       .237237. . . 
                                                                   999x = 237 

 

x = 
999
237  

 
Note that for this totally repeating decimal, the denominator equals 103 – 1 = 999. 
 



We can work with a partially repeating decimal in the same manner.  For example, the 
decimal 0.4373737. . . begins with a 4 that is not part of the repeating term, and then has a 
repeating string of length two. Thus, we will multiply both sides by 100, then solve in the 
manner above: 

 
                                                            100x = 43.7373737. . . 
                  -   x =     .4373737. . . 
                                                              99x = 43.3 
 

        x = 
99

3.43  

 With one final step, we multiply the numerator and denominator by 10 to get rid of the 
decimal, leaving us with the fraction: 

x = 
990
433

 
  

This time, note that .4373737… = .4 + .0373737…= 
990
433

990
37

990
994

99
37

10
1

10
4

=+
•

=•+ .  

 
We also note that there are decimal numbers that do not repeat (i.e. irrational numbers such as 
0.12345678900112233445566778899000111222333. . . .)  
 
 Using methods similar to those discussed above, it is possible to represent fractions 
(typically written using base ten) using our place value system but with a different base. The 
word basimal is used instead of decimal when discussing “decimals” in a different base because 
the “dec” communicates the idea that we are using base ten. 
 
 Our first observation is that a fraction that has a terminating decimal representation may 
have a repeating basimal representation in a different base. This emphasizes the idea that the 
answer to “which fractions terminate” depends on the base being used. In the following work, 
when a number is written as a fraction, we are using base ten, unless specifically stated 
otherwise. 
 

1) 
2
1  = 0.111. . .three = 3-1 + 3-2

 + 3-3 + . . . 

 We convert from the basimal number back to a fraction using the same algorithm that is 
used above. Let a = 0.111. . .three. Here, the entry in the 3-1 spot is a repeating string of length one. 
Thus, multiply both sides by 10three and solve. Remember that 10three is 3 in base ten. 
 

10threea = 1.111. . .three 



       -        a =   .111. . .three 
          2a = 1 

a = 
2
1  

 

We emphasize that in base three, the fraction 
2
1 is a repeating basimal.  

We can also convert from the fraction 
2
1  to a base three basimal using long division, 

keeping in mind that we are dividing in base three. 
 

...
...111.

000.12  

            2 
         10 The remainder repeats. 
           2 
           1 

Thus, 
2
1  is equal to 0.111. . .three.   

 
2) What is the base three basimal representation for 5/12? 
  

We can convert from a fraction to a basimal using long division, remembering we are 
working in base three. First, convert 5/12 to a base three fraction, getting 12three/110three. 

 
021.0

000.12110  

           110 
           100 
               0 
           1000 
             220 
               10 (first remainder that repeats) 
 
We can check this answer by converting the basimal back to a fraction (remembering we are 
working in base three). 

a = 0.1020202. . . 
 

100threea = 10.2020202. . .  
                  -     a =     .1020202. . . 



                                                           22threea = 10.1three 

 

12
5

24
10

3232
13

220
101

10
10

22
1.10

22
1.10

2

2

==
•+•

+
==•==

three

three

three

three

three

three

three

threea  

  
Note that our answer was a partially repeating basimal in base three.    
 
3) What is the base eight basimal representation for 13/16? 

 

First, convert 13/16 to base eight, getting 15eight/20eight. Next, divide 15eight by 20eight in 
base eight. 

64.0
00.1520  

  140 
     100 
     100 
          0 

 
Thus, 13/16 equals 0.64eight. Check this by converting 0.64eight to a fraction. 
 

.64 = 6*
8
1 + 4* 28

1   

= 
8
6  + 

64
4   

= 
64
52   

= 
16
13  

 
4) Which fraction p/q, in base ten, is equal to 0.132four? 
 
  Working in base four, we can use a similar technique involving place value to write a 
fraction. In base four, the value of the first place after the basimal is not 10-1, but 4-1 or 1/4 and 
the second place after the basimal is 4-2 or 1/16 and so on. Thus, 0.132 in base four is: 

(1*
4
1 ) + (3*

16
1 ) + (2*

64
1 ) 

=  
4
1  + 

16
3  + 

64
2  

=  
64
16  + 

64
12  +

64
2  



= 
64
30   

= 
32
15  

Thus, 0.132four = 
32
15  

 
5)  Which fraction p/q, in base ten, is equal to 0.312 five? 
 
 Since we are now working with a partially repeating basimal, we can no longer use the 
basimal expansion method applied in number 4. However, we can use the method of getting rid 
of the repeating string like in numbers 1 and 2. First, let a = 0.312121212. . . . Next, multiply by 
100five since the repeating string is two digits long. Then subtract a = 0.3121212. . . remembering 
we are working in base five: 

100five a = 31.2121212. . . 
                                                          -         a =     .3121212. . . 
                                                            44fivea = 30.4five 
 

= 30.4five 

                                                                           44five 
Next, convert this fraction to base ten:  

30.4five = 15
5
4  and 44five = 24. 

Therefore, we get 
24

5/79 = 
120
79

ten. 

Thus, 0.312 five  = 
120
79

ten. 

 

6) Find b so that in base b, 
24
5 = 0.113b. 

 
Using the idea of expanded place value like in number 4, we can write 0.113b as: 

b
1 + 2

1
b

 + 3
3
b

 

 
Next, make a common denominator of b3: 
 

3

2

322

2 33)(1)(1
b
bb

bb
b

bb
b

b
++

=++  

 



 

Set this equal to 
24
5 , then cross multiply, set the equation equal to zero, and use the calculator to 

solve for b: 

3

2 3
24
5

b
bb ++

=  

 
5b3 = 24b2 + 24b + 72 

 
5b3 - 24b2 - 24b – 72 = 0 

 
b = 6 

 

Thus, in base six, 
24
5 = 0.113six. One can check this by seeing if 0.113six is 

24
5 : 

 

6
1 + 26

1  + 36
3  

 = 
216
36 + 

216
6  + 

216
3  

= 
216
45  

=
24
5  

 

7)  Find b so that in base b, 
60
37  = 0.213 b. 

 
This problem is very similar to number 6, just now working with a repeating decimal.  I 

can begin by working with the repeating decimal in the manner done in past problems.  Let a = 
0.2131313. . . then multiply both sides by 100b, since the repeating string is two digits long.  
Next, subtract a = 0.2131313. . . from the resulting equation.  Here, a problem arises when trying 
to subtract because we do not know what base we are subtracting in.  100a -1a can be re-written 
as (b2 -1)a because 100b in any base is b2. Therefore, when we subtract, we get: 

100a = 21.31313. . . 
-    a =     .21313. . . 

(b2 -1)a = 21.1b 
 

By writing 21.1 in expanded form (using b again for the base we are in), we now have 
 



(b2 -1)a = 2b + 1 + 
b
1  

 
Next, solve for a and simplify: 

a = 2b + 1 + 1/b 
b2 -1 

 
a = 2b2 + b + 1 

   b3 - b 
 

Finally, set a equal to 
60
37 , cross multiply then use the calculator to solve for b. 

37 =  2b2 + b + 1 
                                                                60         b3 – b 
 

37b3 – 37b = 120b2 + 60b + 60 
 

 37b3 –  120b2 - 97b – 60 = 0 
 

b = 4 

So, 
60
37  = 0.213 four, a partially repeating basimal. 

 
8)  Under what conditions will a fraction p/q between 0 and 1 will be terminating, totally 
repeating, or partially repeating base b basimal? 
 

Earlier we stated that in base ten, we know a fraction will terminate if, in lowest terms, 
the denominator has only factors of 2 and 5. It is similar with fractions of other bases, in that a 
fraction will terminate if, in lowest terms, the denominator is a product of prime factors of the 

base.  For example, in base three, 0.21221three = 
100000
21221  with 100,000three = 35. In base six, the 

denominator would factor to 2s and 3s, in base eight the denominator would factor to powers of 
2 and so on. 

As we defined earlier, a totally repeating basimal begins its repeating string right after the 
“basimal point”. For example, 0. 215  is a totally repeating decimal in base ten. Using methods 
described earlier, we can find 0. 215 in base ten :  

 
1000a = 215.215215. . . 
-       a =       .215215. . .  

       999a = 215 



a = 
999
215  

 
The denominator can be re-written as 103-1, where the coefficient is the base and the exponent is 
the number of repeating digits in the decimal. Let’s consider another base and find 0. 215 eight. 

Using our algorithm to convert this to a fraction, we get 
18

215
3 −

. In general, any totally repeating 

decimal can be written as 

1−mb
w  

 
where w is the whole number string that is being repeated, b is the base, and m is the number of 
repeating digits in the string. 
 A partially repeating decimal is one that does not begin repeating right after the decimal 
point.  4.65 217 , for example, is a partially repeating decimal in base ten. Partially repeating 
decimals have a part that terminates and a part that repeats. We have just shown, in general, how 
to represent a totally repeating decimal. Breaking down 4.65 217 in base ten, we get: 

                  4.65        +       .00 217  

                                                              Terminates    +     repeats 
We can move the decimal in the repeating part over two places and then rewrite the repeating 
string using the information found above, giving us: 

         4.65      +      210
1          *     

110
217

3 −
 

Terminating part  +   part to move the decimal  *  repeating part 
 

Using the same idea, we can represent partially repeating decimals in other bases in the same 
manner: 
 

3.24 321five  
= 3.24five + .00 321five 

=3.24five     +     25
1      *        

15
321
3 −

 

 
 In general, a fraction will be partially repeating if it is in the form of: 

 

Terminating Part + nb
1  *  

1−mb
w  

 



Where w is a whole number, b is the base, n is the number of places needed to move the decimal 
to get the repeating part next to the basimal point, and m is the number of repeating digits in the 
string. 
 Our work up to this point has demonstrated that if b is any whole number, we can use 
standard algorithms that we use with base ten to convert between fractions written using base ten 
and base b basimal numbers. For example, we showed that 13/16 in base ten is the same as 
0.64eight, where long division in base eight was the key. In part 2, the pigeonhole principal was 
the key to showing why every fraction must either terminate or repeat when written in a basimal 
representation, for any base b. Working in the opposite direction, we can convert any terminating 
basimal, such as 0.4356 in base eight, to a fraction in base ten as follows: 
 

0.4356eight = 4* 8-1 + 3*8-2 + 5*8-3 + 6*8-4 

                               = 4*
8
1 + 3*

64
1 + 5*

512
1 + 6*

4096
1   

                   = 
4096
2048 + 

4096
192 + 

4096
40 + 

4096
1  

                                                             = 
4096
2281  

 
 When converting a totally or partially repeating decimal from a base b into base ten, the 
method of setting up two equations and subtracting to get rid of the repeating string (as in 
number five), works well for all bases. In this method, we must first figure out how long the 
string of repeating digits is, then multiply by the base raised to a power equal to the length of the 
repeating string.  If the basimal is 0.2525. . ., the repeating string is 25, which has length 2, and if 
the basimal is 0.34567856785678. . . the repeating string is 5678, which has length 4. By 
multiplying by the base raised to the power which equals the length of the string, we are able to 
“move the decimal over.” Thus, when we subtract the initial equation from the second equation, 
we get rid of the repeating numbers. The most difficult part of this method, when working in 
other bases, is subtracting and converting fractions to other bases.  
 
Another example of this is converting 0.232323. ..four to a fraction: 
 

Let a = 0.232323. . . 
 

To eliminate the repeating part, multiply both sides by 42 = 100four , since the repeating string 
(23) is two digits long: 

100a = 23.2323. . . 
 

Next, subtract a = 0.232323. . . from the new equation: 
    



100a  = 23.2323. . . 
-       a =   0.2323. . . 

 
Since we are subtracting 100a and a in base four, we need to stop and think that this is not 99, 
but 33four.  23.2323. . .four – 0.2323. . .four is 23four. We got rid of the repeating numbers! Now, we 
can divide each side by 33four to solve for a. 
 
 

   100a  = 23.2323. . . 
-       a =   0.2323. . . 

33foura = 23four  
33four 

a = 23four 
      33four 

 

Finally, 23four is 11 in base ten and 33four is 15 in base ten, so our fraction is .
15
11  

 
 As a final example, we examine an observation about an alternate representation of 
decimal numbers and thus a comparable representation of basimal numbers in any base. Earlier, 
we noted that in base ten: 
 

21 10*510*225.0 −− += , 

...10*510*210*510*210*5102...252525.025.0
99
25 654321 ++++++∗=== −−−−−− , 

and ...10*510*510*510*2
90
23...2555.052.0 4321 ++++=== −−−−  

    
Similarly, in base b, 21 132231.0 −− •+•+= bbb and 

...132132231.0 654321 +•+•+•+•+•+•= −−−−−− bbbbbbb . More generally, any fraction p/q 
between 0 and 1 can be represented using negative powers of b. That is, it is possible to find 

whole numbers c1, c2, c3. . ., where each ci is less than b, such that 
q
p = c1b-1+ c2b-2+ c3b-3. . ., 

where the coefficients ci are all 0 past some point if the basimal terminates.  
 

 
In summary, readers may observe that representing fractions using other bases requires 

(1) a good handle on fractions and decimals in base ten, (2) confidence that basic place value 



algorithms will work in number systems with other bases, and (3) a good understanding of 

working with whole numbers in different bases.   With these ideas in place, it really is not that 

difficult to represent fractions using bases other than ten. 
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