Skip to main content
Genetics logoLink to Genetics
. 2001 Jan;157(1):425–432. doi: 10.1093/genetics/157.1.425

A quick method for computing approximate thresholds for quantitative trait loci detection.

H P Piepho 1
PMCID: PMC1461497  PMID: 11139522

Abstract

This article proposes a quick method for computing approximate threshold levels that control the genome-wise type I error rate of tests for quantitative trait locus (QTL) detection in interval mapping (IM) and composite interval mapping (CIM). The procedure is completely general, allowing any population structure to be handled, e.g., BC(1), advanced backcross, F(2), and advanced intercross lines. Its main advantage is applicability in complex situations where no closed form approximate thresholds are available. Extensive simulations demonstrate that the method works well over a range of situations. Moreover, the method is computationally inexpensive and may thus be used as an alternative to permutation procedures. For given values of the likelihood-ratio (LR)-profile, computations involve just a few seconds on a Pentium PC. Computations are simple to perform, requiring only the values of the LR statistics (or LOD scores) of a QTL scan across the genome as input. For CIM, the window size and the position of cofactors are also needed. For the approximation to work well, it is suggested that scans be performed with a relatively small step size between 1 and 2 cM.

Full Text

The Full Text of this article is available as a PDF (219.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dupuis J., Siegmund D. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics. 1999 Jan;151(1):373–386. doi: 10.1093/genetics/151.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feingold E., Brown P. O., Siegmund D. Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am J Hum Genet. 1993 Jul;53(1):234–251. [PMC free article] [PubMed] [Google Scholar]
  7. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  8. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Piepho H. P. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics. 2000 Dec;156(4):2043–2050. doi: 10.1093/genetics/156.4.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rebai A., Goffinet B., Mangin B. Comparing power of different methods for QTL detection. Biometrics. 1995 Mar;51(1):87–99. [PubMed] [Google Scholar]
  13. Rebaï A., Goffinet B., Mangin B. Approximate thresholds of interval mapping tests for QTL detection. Genetics. 1994 Sep;138(1):235–240. doi: 10.1093/genetics/138.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy