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ABSTRACT
The L-shaped distribution of estimated QTL effects (R 2) has long been reported. We recently showed

that a metabolic mechanism could account for this phenomenon. But other nonexclusive genetic or
nongenetic causes may contribute to generate such a distribution. Using analysis and simulations of an
additive genetic model, we show that linkage disequilibrium between QTL, low heritability, and small
population size may also be involved, regardless of the gene effect distribution. In addition, a comparison
of the additive and metabolic genetic models revealed that estimates of the QTL effects for traits propor-
tional to metabolic flux are far less robust than for additive traits. However, in both models the highest
R 2’s repeatedly correspond to the same set of QTL.

WITH the use of molecular markers, mapping of These L-shaped distributions of QTL effects could
partly be due to several statistical artifacts. Most of theloci involved in quantitative variation, i.e., quanti-
results cited above are compilations from several traitstative trait loci (QTL; Geldermann 1975), has progres-
and/or several populations/environments and result insively become a central method in quantitative genetics.
a mixture of possibly different distributions. Moreover,QTL detection is seen as a way to investigate the number
QTL effects expressed as fractions of phenotypic varia-of genes that control quantitative traits and the magni-
tion are proportional to the square of genetic effects,tude and the distribution of their effects. In maize, to-
and thus even a normal distribution of true geneticmato, rice, Drosophila, or mouse, where numerous QTL
effects would appear skewed toward the smallest valueshave been detected for a large number of traits, compila-
at the R 2 level. Finally, the experimental distributionstions consistently reveal extremely skewed distributions
of QTL effects only concern detected QTL and mayof QTL effects, with few QTL having large effects, more
be misleading. First, the distribution of estimated R 2 isQTL having moderate effects, and possibly a lot having
typically L-shaped when truncated at a given thresholdsmall effects, resulting in a typical L-shaped distribution.
significance value. Second, undetected QTL can inflateFor example, in Drosophila, many loci have small effects
the effect of linked detected QTL, as shown very earlyon abdominal and sternopleural bristle number, but
by McMillan and Robertson (1974). Third, Carbo-few loci cause most of the genetic variation (Mackay
nell et al. (1992, 1993) and Beavis (1998) have shown1996). Edwards et al. (1987) searched for associations
by simulations that the population sizes classically stud-between z20 marker loci and 82 traits in two F2 popula-
ied (250 individuals for Carbonell et al., 100 for Beavis)tions of maize, each of about 1900 individuals. With a
lead to both lack of detection of QTL with small effectstype I error of 5%, they found 2460 significant associa-
and possible overestimation of the effects of the de-tions, with a very L-shaped distribution of the fractions
tected QTL.of phenotypic variance explained by the detected QTL

However, a survey of the literature shows that for vari-(R 2). The maximum R 2 value was 16.3%, and 94.5%
ous traits the same major QTL can be found in differentof the associations exhibited R 2 values ,5%, with a
populations or environments, which seems quite un-minimum at 0.3%. Other examples can be found in the
likely in case of erroneous estimates of the QTL effects.literature (e.g., Sing and Boerwinkle 1987; Shrimpton
For example, in two different F2 populations derivedand Robertson 1988; Paterson et al. 1991; Zehr et al.
from crosses between maize and teosinte, Doebley and1992; Schön et al. 1994; Grandillo and Tanksley
Stec (1993) found similar suites of QTL for architec-1996; Lee et al. 1996; see also Kearsey and Farquhar
tural traits, with the same order of QTL effects for sev-1998 for a review in plants).
eral of them. In three tomato populations derived from
the same parents (one F2 and two F2/3) and grown in
different environments, Paterson et al. (1991) detected
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detected in different species of Poaceae (Lin et al. 1995; i. The “additive allelic effect” (aq) is half the difference
between the genetic values of “high” and “low” ho-Paterson et al. 1995), Fabaceae (Fatokun et al. 1992;

Maughan et al. 1996; Timmerman-Vaughan et al. 1996), mozygous genotypes at locus q (we assumed no epis-
tasis).or in distant breeds of animals (Georges and Anders-

ii. The “true QTL effect” (r 2
q) is the fraction of pheno-son 1996).

typic variance explained by the QTL in the modelFrom the biological point of view, there is no reason
used to decompose the effects,for a discontinuity between all-or-null (wild-type/mu-

tant) variation and quantitative variation: a continuity
between high-effect QTL and low-effect QTL is rather r 2

q 5 h2
b

s2
q

s2
G

,
expected. Intermediate cases are found: for example,
in pea, a major gene for Ascochyta blight resistance was

where h2
b is the broad sense heritability of the trait,mapped on chromosome 4 using both a QTL detection

s2
G is the total genetic variance of the trait in theapproach and a Mendelian analysis after partitioning

population, and s2
q is the genetic variance contrib-the distribution of the resistance in the progeny into

uted by QTL q in the model.two classes (Dirlewanger et al. 1994). Also, the actual
iii. The “estimated QTL effect” (R 2

q) is the statistic thatcontinuous distributions of true genetic effects in a pop-
estimates r 2

q in the experimentulation result from different evolutionary constraints.
Theoretical studies (Barton and Turelli 1987; Orr R 2

q 5 SSq/SST,
1999) suggest that L-shaped distributions might be a

where SSq is the sum of squares corresponding tonatural consequence of adaptation toward a fixed op-
the QTL q and SST is the total sum of squares.timum.

The issue of this article is to determine whether an Model: We consider a cross between two inbred lines
apparent L-shaped distribution of estimated QTL effects and the F2 population obtained by selfing their F1 hybrid.
allows us to make inferences about the true underlying In this population, 50 polymorphic QTL determine the
distribution of gene effects, or not. In a recent article, we value of a quantitative trait, with two alleles, “high” or
showed that for any trait proportional to a flux through a “low,” for each QTL, no dominance, and no epistasis.
linear metabolic pathway at the steady state, the The genetic value, &qi, of individual i at locus q in the
L-shaped distribution is expected as a consequence of F2 population is
the summation property of the control coefficients

&qi 5 mq 1 (uqi 2 1)aq , (1)(Bost et al. 1999). In the present article, we study by
simulation and analytically other factors likely to influ- where mq is the midhomozygote value at locus q, uqi is
ence the distribution of the estimated effects of a set of the number of high alleles (0, 1, or 2) of individual i
known QTL controlling an additive trait in a segregating at locus q, and aq is the additive allelic effect at locus q.
population: the distribution of the additive allelic effects The genetic value of individual i for the trait is computed
of the underlying genes, linkage disequilibrium, paren- under an additive model (ADD) as
tal gametic phase, environmental effects, and popula-
tion size. We assumed for simplicity that the genotypes GAi 5 o

50

q51

&qi, (2)
and positions of the loci controlling the quantitative
traits are known without error, and restricted our analy- or under a metabolic model (MET) where the quantita-
sis to the estimation of the effects of those genes in an tive trait is proportional to a flux through a linear meta-
experimental segregating population. The reproduc- bolic pathway at the steady state, as
ibility of QTL effect estimates was also analyzed. For all
the studied factors, we compared the additive model GMi 5

K
R50

q51[1/&qi]
, (3)

with the metabolic model used by Bost et al. (1999).

where K is a constant that characterizes the metabolic
pathway (Bost et al. 1999). In such a model, the locusMETHODS
q controls the activity of enzyme q, and &qi depends on

Definitions: Strictly speaking, the “effect” of a locus the maximal velocity and on the Michaelis constant of
is classically described by the difference between genetic enzyme q in individual i (Kacser and Burns 1973).
values of alleles in a population (additive effect). Never- We compared four distributions of additive allelic
theless, the “QTL effect” is often referred to in the effects (aq) among the loci: (i) constant distribution
literature as the fraction of phenotypic variance ex- with all the aq having the same value; (ii) normal distribu-
plained by the QTL (e.g., Edwards et al. 1987; Kearsey tion; (iii) exponential distribution with the mode of
and Farquhar 1998). To keep with this widely used the distribution corresponding to high aq values [the
terminology and be as rigorous as possible, we define probability density function is f(x) 5 1/s exp [2(x 2

amax)/s], where s is the standard deviation of the distri-here three kinds of effects for a given locus q :
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bution and amax is the maximal aq value]; and (iv) uni- at the other QTL, as well as the random environmental
deviation. It is well known that, in this case,form distribution, where aq can take any value between

amin and amax with the same probability. Whatever the
distribution, the mq are kept constant and identical R 2

q 5
(k 2 1)F

(N 2 k) 1 (k 2 1)F
, (6)

across loci. To compare the additive and metabolic mod-
els, mq values, as well as the parameters of the aq distribu- where N is the population size, k is the number of
tions, are fitted in the additive model to get approxi- genotypic classes at QTL q (in an F2 population, k 5
mately the same genetic coefficient of variation as in 3), and F is the test statistics for the effect of QTL q. F
the metabolic model (Table 1). For each distribution, follows a noncentral Fisher distribution ^(k 2 1, N 2
a fixed sample of 50 aq values was used in all simulations. k, φq), with
The distributions of aq values in those samples are pre-
sented in the first column of Figure 1. φq 5 (N 2 1)

r 2
q

1 2 r 2
qThe phenotypic value zi of each F2 individual was

computed by adding an environmental effect (εi) to the
being the noncentrality parameter (Sheffé 1959). Notegenetic value
that the QTL effect (R 2) estimation is biased and overes-
timates the true QTL effect (r 2) in small samples (Char-zi 5 Gi 1 εi, (4)
cosset and Gallais 1996). R 2 was preferred here rather

where εi is randomly drawn from a normal distribution than the unbiased “adjusted R square” because it has a
with mean zero and variance s2

E. s2
E is computed from lower sampling variance (Cramer 1987).

the broad sense heritability of the trait (h2
b) and the total When several QTL are taken simultaneously into ac-

genetic variance in the F2 population (s2
G): count via multiple regression, a relationship similar to

the one in Equation 6 is found between the global R
s 2

E 5
1 2 h2

b

h2
b

s2
G. (5) square of the model and the corresponding F-statistics.

However, the partial sum of squares for QTL q (SS*q )
takes into account all the other QTL of the model, andAs defined previously, R 2

q 5 SSq/SST, where SSq is the
the SST is not equal to the sum of all SS*q plus thesum of squares corresponding to the QTL q, and SST
residual sum of squares (SSR*; see appendix a for de-is the total sum of squares of the model. With ANOVA,
tails). Hence, there is no simple relationship betweenSSq is computed straightforwardly, and the residuals of
F and R 2

q, and the theoretical distribution of R 2
q valuesthe model contain all the variation due to segregation

is unknown.
Genetic maps and parental genotypes: Linkage dis-

equilibrium between QTL depends on both the geneticTABLE 1
map and the genotype of the parental inbred lines. We

Genetic parameters used in the simulations considered four different genetic structures for the pairs
of parental inbred lines. The pair RandomU had inde-

Distribution
Model

pendent QTL and random gametic phase: the genotypelaw for the
of one parent at each locus was drawn at random, soadditive Genetic Parameters

allelic effects parametersa of the law ADDb METc that the parental gametic phase (succession of high and
low alleles along the genome) was random; the otherConstant mq (∀q) 0.1017 20.00
parent had the complementary succession of high andaq (∀q) 0.0512 10.00
low alleles, since all the loci are polymorphic. The pairNormal mq (∀q) 0.1000 20.00

aq m 0.0512 10.00 RandomL had linked QTL and random parental gametic
s 0.0126 2.50 phase. The pair CouplingL had linked QTL that were in

Exponentiald mq (∀q) 0.1000 20.00 coupling, with one parent having the low alleles at all
aq amax 0.0918 16.20 loci and the other parent having the high alleles at all

s 0.0126 2.50
loci. The pair RepulsionL had linked QTL that were inNormal mq (∀q) 0.1000 20.00
repulsion, with an alternation of high and low allelesaq amin 0.0136 2.50
along the chromosomes in each parent. The same ge-amax 0.0950 17.50
netic map (set of QTL locations on chromosomes) wasa mq, the midhomozygote value at locus q ; aq , the additive
used for all the simulations involving linked QTL, whereallelic effect at locus q.
QTL locations were randomly spread over 10 chromo-b Additive model.

c Metabolic model. somes of 200 cM each.
d The probability density function for the exponential distri- Simulations: For each situation, we performed Monte

bution is Carlo simulations to obtain 100 replicates of the F2 popu-
lation. Each replicate consisted of the following se-f(aq 5 x) 5

1
s

exp32x 2 amax

s 4. quence:
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TABLE 2

Statistics describing the simulated distributions of the R 2

Allelic Population PCT S HPF
Linkage Parents h2

b effects size (%) Skew (%) W N2 (%)

Independent QTL, h2
b 5 1.0

No RandomU 1.0 Constant 200 100 0.51 64.3 0.438 23 4
No RandomU 1.0 Constant 1000 74 0.10 96.3 ns 49 6
No RandomU 1.0 Constant 5000 57 0.06 99.6 ns 48 5
No RandomU 1.0 Normal 200 76 0.79 76.5 0.964 5 33
No RandomU 1.0 Normal 1000 59 0.64 95.2 0.995 3 100
No RandomU 1.0 Exponential 1000 46 20.69 96.3 0.985 10 42
No RandomU 1.0 Uniform 1000 58 0.53 95.7 0.999 4 80

Linked QTL, h2
b 5 1.0

No RandomL 1.0 Constant 200 96 0.70 44.0 0.954 9 35
No RandomL 1.0 Constant 500 88 0.61 51.5 0.978 5 42
No RandomL 1.0 Constant 1000 85 0.59 54.4 0.987 4 43
No RandomL 1.0 Constant 5000 83 0.57 56.4 0.995 4 57
No RandomL 1.0 Normal 1000 88 1.15 50.3 0.993 2 96
No RandomL 1.0 Exponential 1000 86 0.67 52.7 0.0994 3 99
No RandomL 1.0 Uniform 1000 88 0.87 43.5 0.994 2 98
No CouplingL 1.0 Constant 1000 100 0.59 14.0 0.987 4 45
No RepulsionL 1.0 Constant 1000 53 0.58 125.5 0.987 4 45

Independent or linked QTL, h2
b , 1.0

No RandomU 0.2 Constant 200 91 0.73 36.3 ns 49 2
No RandomU 0.2 Constant 1000 100 0.47 23.3 ns 48 5
No RandomU 0.5 Constant 200 86 1.47 50.2 ns 49 2
No RandomU 0.5 Constant 1000 97 0.69 50.0 ns 48 6
No RandomU 0.2 Normal 1000 99 1.39 23.3 0.195 42 3
No RandomU 0.5 Normal 1000 92 0.95 50.8 0.506 20 7
Yes RandomL 0.2 Constant 1000 100 0.30 14.9 0.203 38 9
Yes RandomL 0.5 Constant 1000 99 1.20 29.8 0.540 24 14

The R 2 distributions were computed for a 50-locus additive trait, in 100 F2 populations, and with four
distributions of allelic effects (aq): (i) Constant (same aq for all the QTL), (ii) Normal, (iii) Exponential, and
(iv) Uniform. The QTL were independent or linked, with various parental gametic phases. h2

b is the broad sense
heritability of the trait. See methods for the details on parameters PCT, Skew, S, W, N2, and HPF.

N F2 individuals were drawn at random by selfing the were used to characterize the distribution of estimated
QTL effects. The shape of the distributions was firstF1 hybrid (N 5 200, 500, 1000, 5000), assuming recom-
characterized by their skewness, Skew (Sokal andbinations with no interference (Hospital and Chev-
Rohlf 1995). With 50 underlying genes having the samealet 1993).
additive allelic effect in an infinite population, and noThe genetic values GAi or GMi of all the F2 individuals
environmental variation (h2

b 5 1), each QTL should ex-were computed. The total genetic variance (s2
G) was

plain 1/50 5 2% of the total variation. Thus we alsothen computed, allowing us to compute the environ-
computed PCT, which is the cumulative frequency ofmental variance (s2

E) from the given broad sense heri-
the distribution corresponding to R 2 5 2%.tability (h2

b), following Equation 5. Then the random
As each QTL is known in our model, we should ex-environmental deviations were added to get pheno-

plain 100% of the phenotypic variation by adding thetypic values of the F2 individuals.
effects of each QTL. Thus we computed the proportionFinally, multiple regression of the phenotypic values was
of the phenotypic variation explained by the model,directly performed on the genotype at each of the
averaged over the 100 replicates (S):50 QTL. The fraction of the phenotypic variation

explained by the qth QTL in the kth sample of a given
S 5

1
100 o

100

k51
3o

50

q51

R 2
qk4.F2 population was estimated as R 2

qk 5 SSqk/SSTk. Sums
of squares were computed with SAS GLM procedures

Finally, to measure the repeatability of the ranking of(SAS Institute 1988).
the estimated QTL effects among the replicates, we

Distribution of estimated QTL effects (R 2
q): The 50 3 ranked the 50 QTL in each replicate according to their

R 2 values and computed three parameters: (i) Kendall’s100 5 5000 R 2
qk values obtained for each genetic model
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TABLE 3

Comparison between additive and metabolic models

Simulation parameters Skew W N2 HPF (%)

h2
b Population size Allelic effects ADDa METb ADD MET ADD MET ADD MET

Independent QTL (RandomU)
h2

b 5 1.0 N 5 1000 Constant 0.10 0.29 NS NS 49 49 6 6
h2

b 5 1.0 N 5 1000 Normal 0.64 3.09 0.995 0.905 3 4 100 100

Linked QTL (RandomL)
h2

b 5 1.0 N 5 5000 Constant 0.57 0.63 0.995 0.944 4 11 57 31
h2

b 5 1.0 N 5 1000 Constant 0.59 0.84 0.987 0.773 4 18 43 27
h2

b 5 1.0 N 5 200 Constant 0.70 1.38 0.954 0.334 9 28 35 18
h2

b 5 0.5 N 5 1000 Constant 1.20 1.33 0.540 0.409 24 27 14 10
h2

b 5 0.2 N 5 1000 Constant 1.88 1.85 0.203 0.145 38 40 9 11
h2

b 5 1.0 N 5 1000 Normal 1.15 2.10 0.993 0.817 2 6 96 52

The R 2 distributions were computed for a 50-locus additive or metabolic trait, in 100 F2 populations, and
with two distributions of additive allelic effects (aq): Constant (same aq for all the QTL) and Normal. The QTL
were independent or linked, with random parental gametic phase. h2

b is the broad sense heritability of the
trait. See methods for the details on parameters Skew, W, N2, and HPF. NS, not significant.

a Additive model.
b Metabolic model.

concordance coefficient, W (Kendall 1955), between is the sampling of individuals in the population, which
replicates; (ii) the number, N2, of different QTL that leads to some deviations of R 2 around the true QTL
appeared in at least one replicate among the two QTL effect r 2. At each QTL, the observed proportions of the
displaying the highest R 2 values; and (iii) HPF is defined three different genotypes randomly deviate from the
so that the QTL, which was the most often first ranked, theoretical (1:2:1) proportions. It is easy to show, using
was first ranked in HPF% of the replicates. A W value the notations introduced in appendix b, that this sam-
close to 1 indicates that the ranking of the QTL is similar pling of individuals leads to an underestimation of the
over the replicates. In this case, N2 would be equal to variance contributed by the QTL,
2, and HPF would be equal to 100%. The maximum

ŝ 2
q 5 s 2

q 2 2( f̂0 2 f̂2)2a2
q ,value of N2 is 50, the total number of QTL. These three

parameters are different ways to measure the repeatabil-
where f̂0 and f̂2 are the observed frequencies of the homo-ity of the ranking of the QTL: W takes into account all
zygote genotypes, and s2

q is the genetic variance contrib-the 50 QTL, N2 corresponds only to the two highest
uted by QTL q in the infinite F2 population. As shownQTL in each replicate, whereas HPF is concerned only
in Table 2, a consequence is that the average sum ofwith the highest QTL. The values obtained for those
R 2 (S) is always ,100%, even with a population of 1000parameters under the different situations are given in
individuals (between 95.2 and 96.3%, Table 2). S in-Tables 2 and 3.
creases when population size increases and tends toward
100% for a population of 5000 individuals.

RESULTS When underlying genes have identical additive allelic
effects, the true effect (r 2) is obviously the same for allDistribution of estimated QTL effects: We used simula-
the QTL. As shown in Figure 1 (Constant, RandomU),tions to study the factors likely to influence the distribution
the random deviations of R 2 around r 2 are moderateof the estimated effects (R 2) of a set of 50 known QTL
with N 5 1000 individuals. When underlying genes havecontrolling an additive trait in an F2 population: distribu-
nonidentical effects, the distribution of R 2 valuestion of the additive allelic effects (aq) of the underlying
roughly corresponds to the distribution of true QTLgenes, linkage disequilibrium, parental gametic phase
effects (Figure 1, RandomU).(coupling or repulsion), environmental effects, and popu-

Linked QTL, without environmental variation: When thelation size. In addition to the simulations, we performed
QTL are randomly located over the genome, linkageanalytical calculations, taking into account simpler situa-
between QTL occurs, which consistently results intions, to explain the mechanisms that are involved for
L-shaped distributions of R 2 values, regardless of thethe differents factors. The details of these analytical
distribution of additive allelic effects (Figure 1, Ran-calculations are given in appendices a and b.
domL). The data in Table 2 confirm this tendency: theIndependent QTL, without environmental variation: In

that case, the only source of variation for a given QTL values of skewness (Skew) are high and positive, and
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Figure 1.—Distribution of additive allelic effects (aq, first column), true QTL effects, (r2
q, second column), and corresponding

distributions of estimated QTL effects (R 2
q, third and fourth columns) obtained in the simulations with the additive model and

with two different parental inbred lines: RandomU, independent QTL; RandomL, linked QTL with random gametic phase. The
broad sense heritability of the trait was h2

b 5 1, and the size of the F2 population was N 5 1000. The parameters used for the
distributions of the allelic additive effects are given in Table 1. The corresponding r 2

q values were obtained for independent QTL
in an infinite F2 population.

PCT values are showing that most (between 53 and D13) between QTL Q 1, Q 2, and Q 3 in the F2 population.
100%) of the R 2 values are ,2%. The total genetic variance in the F2 population (s2

G) is
To explain these observations, we calculated the val-

ues of true QTL effects (r 2) in the simple case of three s2
G 5

1
2
(a2

Q 1
1 a2

Q 2
1 a2

Q 3
) 1 4D12 aQ 1

aQ 2
linked QTL (Q 1, Q 2, and Q 3; see appendix b for details).
Whether the detection method is one-way ANOVA or 1 4D23 aQ 2

aQ 3
1 4D13 aQ 1

aQ 3
(7)

multiple regression as used in our simulations, the r 2

values appear to depend on both additive allelic effects (appendix b). Thus, for given values of the additive
allelic effects, the total genetic variance increases with(aQ 1

, aQ 2
, and aQ 3

) and linkage disequilibria (D12, D23, and
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coupling (D . 0) and decreases with repulsion (D , 0). In our simulations, we investigated the relationship
between R 2 and the squared linkage disequilibriumWith ANOVA, we have
value between each QTL and its two nearest neighbors,
in the F2 population resulting from the cross betweenr 2

Q 1
5

1⁄2(aQ 1
1 4D12 aQ 2

1 4D13 aQ 3
)2

s2
G

(8)
RandomL parental inbred lines, and with identical addi-
tive allelic effects for all the 50 QTL. A nonlinear multi-
ple regression of R 2 values on squared linkage disequi-r 2

Q 2
5

1⁄2(aQ 2
1 4D12 aQ 1

1 4D23 aQ 3
)2

s2
G

(9)
libria was performed on these data to check Equation
12. The regression showed that the simulation results

r 2
Q 3

5
1⁄2(aQ 3

1 4D23 aQ 2
1 4D13 aQ 1

)2

s2
G

(10) perfectly fit the analytical results: the determination co-
efficient of the regression is 99.9%, and the parameter
estimates are very close to the theoretical coefficients

(appendix b). Thus, the genetic variances contributed in Equation 12. This result is illustrated in Figure 2.
This observation confirms that the r 2 value of a givenby linked QTL (numerators of Equations 8, 9, and 10

increase with coupling and decrease with repulsion. QTL depends only on pairwise linkage disequilibria be-
tween the QTL and its nearest neighbors. Hence, un-With multiple regression, we have
equal map distances between QTL, which result in an
L-shaped distribution of squared linkage disequilibriar 2

Q 1
5

1⁄2a2
Q 1

s2
G

(1 2 16D 2
12) (11)

between QTL, should contribute to the L-shaped distri-
bution of the estimated QTL effects. On the other hand,
as QTL effects are confounded with the genetic dis-r 2

Q 2
5

1⁄2a2
Q 2

s2
G

3(1 2 16D 2
12)(1 2 16D 2

23)
1 2 256D 2

12D 2
23

4 (12)
tances between the QTL and its two neighbors, equally
spaced QTL should result in two different R 2 values:

r 2
Q 3

5
1⁄2a2

Q 3

s2
G

(1 2 16D 2
23) (13) one for QTL flanked by two other QTL and one for

QTL at the beginning or the end of the chromosomes.
Simulations with equally distributed distances between

(appendix b). Thus, in the multiple regression model, QTL showed indeed that all the QTL have the same
R 2 values, once the QTL located at the ends of thewhatever the gametic phase (coupling or repulsion),

linkage disequilibrium decreases the genetic variance chromosomes were excluded (not shown). In the gen-
eral case, the true QTL effects also depend on the addi-contributed by linked QTL (numerators of Equations

11, 12, and 13). In this case, if all the additive allelic tive allelic effects of each QTL. Relying on Equations
11–13, we expect QTL with the highest r 2 in a giveneffects are identical, the QTL with the highest r 2 are

the independent ones (D 5 0). However, the sum of population to be either independent QTL or QTL with
high additive allelic effect. This point was confirmedindividual r 2 still depends on the gametic phase. From

Equations 7 and 11–13, it is expected to be ,100% in by checking the R 2 values of individual QTL in the
simulations (not shown).case of coupling (D . 0) and .100% in case of repulsion

(D , 0). This is consistent with our simulations when Environmental variation and reduced population size:
When there is environmental variation on the traitwe compare the sum, S, of the estimated QTL effects
(h2

b , 1), or small sample size, the distribution of R 2 is(R 2) between CouplingL and RepulsionL parental inbred
again L-shaped, whatever the distribution of additivelines (Table 2). With equal additive allelic effects (con-
allelic effects, and whether there is linkage or not: allstant), the CouplingL gives S 5 14.0%, while the Repul-
Skew values are significant and positive, and PCT valuessionL gives S 5 125.5%. The sum is intermediate (S .
are between 86 and 100% (Table 2).50.0%) with RandomL parental inbred lines.

To explain this phenomenon, we considered the sim-In general, the genetic variance of a QTL q should
plest case of one-QTL analysis of variance (appendixalso depend on linkage disequilibria between QTL q
a). Using Equation 6, we performed numerical compu-and all the QTL linked to q, or linkage disequilibria of
tations of the distribution of R 2 from the distributionhigher order. However, if the genetic variance contrib-
of F. We consider Q independent QTL with the sameuted by the QTL q is computed by multiple regression,
additive allelic effect on an additive trait. The total ge-we showed that it depends only on the first order linkage
netic variance is s2

G 5 Qs2
q, and the percentage of phe-disequilibria between QTL q and its nearest neighbors,

notypic variance explained by each QTL is r 2
q 5 h2

b/Q.the QTL q 2 1 and q 1 1 (Equations 11 and 13), in
Thus the noncentrality parameter for the distributionthe case of an F2 population. Thus, the flanking QTL
of F istend to absorb the effects of all nearby QTL. Stam

(1991) showed a similar property of multiple regression
φ 5 (N 2 1)

h2
b

Q 2 h2
b

.when applied to QTL detection in backcross popula-
tions: the two flanking markers of a QTL tend to absorb
the effects of all nearby QTL. For each R 2 value, the probability P(X # R 2) 5 P(Y #
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Figure 2.—Relationship between estimated QTL effects (R 2) and pairwise linkage disequilibria. For each QTL q, R 2
q values

were averaged over the 100 simulation replicates. Linkage disequilibria Dq21,q and Dq,q11 between QTL q and its two flanking
neighbors (D 5 0 for QTL located at the end or at the beginning of a chromosome) were computed from the genetic distances
between the QTL. We considered the case where the 50 QTL were randomly linked (RandomL) and had the same additive allelic
effect (Constant), with h2

b 5 1.0 and N 5 1000. (1 2 16D 2
q21,q)(1 2 16D 2

q,q11)/(1 2 256D 2
q21,q D 2

q,q11) is the theoretical linkage
disequilibrium coefficient of r 2

q in the three-QTL model (Equation 12).

F) was computed to get the theoretical distribution of ments reinforce the differences between genotypic
classes and lead, for some QTL, to R 2 values .r 2. TheANOVA R 2 values (open bars in Figure 3) for various

heritabilities (h2
b 5 0.2, 0.5, 1.0) and various population higher the r 2, the lower the chance of such event. With

ANOVA, the L-shaped distribution occurs in small popu-sizes (N 5 200 and 1000). The resulting distributions
were compared to those obtained by simulation with lations (N 5 200), even with h2

b 5 1, because of the
segregation at the other QTL. For this reason, the distri-multiple regression (solid bars in Figure 3), taking the

same values for the heritability (h2
b) and population size bution is very sensitive to the population size. With mul-

tiple regression all known QTL are taken into account(N). With ANOVA, the sampling distribution of R 2 de-
pends on both parameters, N and h2

b (Cramer 1987). in the model and the L-shaped distribution of R 2 mainly
occurs because of environmental noise. Thus, theAs h2

b decreases, φ decreases as well as r 2 and the average
R 2, but the sampling variance of R 2 increases. On the L-shaped distribution is not observed with multiple re-

gression in small populations when h2
b 5 1. As the herita-contrary, the population size does not influence r 2, but

as N decreases, the sampling mean and sampling vari- bility of the trait decreases, the differences between
ANOVA and multiple regression decrease (Figure 3).ance of R 2 increase.

The higher the sampling variance of R 2, the more Comparing ranking order of QTL effects in different
samples of a population: Given that the distribution ofpronounced the L-shaped distribution of QTL R 2 values.

An intuitive explanation for such a distribution shape estimated QTL effects (R 2
q) may be quite different from

the distribution of the corresponding additive allelicis that, with random errors, the most likely event is that
the intraclass variability hides the difference between effects (aq), the question of the reproducibility of the

ranking order of the R 2
q in independent experimentsgenotypic classes at one QTL, leading to R 2 values low

or close to zero. However, it may occur, by chance, that performed from a given population arises.
Independent QTL without environmental variation: Therandom samples of individuals (genotypes) or environ-
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Figure 3.—Effect of environmental variation and population size on estimated QTL effects (R 2) distributions. We compared
theoretical R 2 distributions obtained for one-QTL analysis of variance (open bars) and R 2 distributions obtained in simulations
with multiple regression (solid bars). The ANOVA distributions were obtained using the relationship between R 2 and the test
statistics F of the QTL effect (Equation 6 in methods). We considered the case where the 50 QTL were independent (RandomU)
and had the same additive allelic effect (Constant), with different environmental variances (h2

b 5 1.0, 0.5, 0.2) and population
sizes (N 5 1000 and 200).
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parental inbred lines are RandomU and the heritability MET (Kacser and Burns 1981). However, with MET,
the highest R 2 repeatedly corresponded to the same setis h2

b 5 1. When genes have identical allelic effects, there
is of course no correlation between replicates (Table of QTL, as shown by N2 and HPF values (Table 3). Even

when HPF is z50%, we checked that only two or three2). On the contrary, when genes have unequal effects,
the distributions of r 2 and R 2 reflect the distribution of QTL are ranked first in the 100 replicates. The rank

correlation between replicates also decreases with theadditive allelic effects. Hence, the ranking of the QTL
is well conserved between replicates: W values between heritability of the trait, though the correlation is always

slightly lower than the heritability. But, with MET, the0.985 and 0.999 for populations of 1000 individuals, N2
is between 3 and 10, and HPF is between 42 and 100% robustness of estimated QTL effect is approximately

equally sensitive to heritability and population size.(Table 2).
Linked QTL, without environmental variation: The pa-

rental inbred lines are RandomL, CouplingL, or Repul-
DISCUSSION

sionL and the heritability is h2
b 5 1. In this case, the

distributions of r 2 and R 2 reflect both the additive allelic We analyzed different factors likely to influence the
estimates of the effects of a finite set of QTL, whoseeffects and linkage disequilibria between QTL. Hence,

the ranking of the QTL is again well conserved between “real” individual effects and positions are known. Even
though in experimental situations the number of detectedreplicates because of unequal linkage disequilibrium dis-

tribution (Table 2). However, a gene with a large allelic QTL is not very high for a given trait (usually ,10
with common sizes of population), the numbers of QTLeffect may repeatedly be found as a QTL with a small

R 2 if this gene is close to other genes (Equation 9). really contributing to the variation of complex traits are
expected to be much higher. Accordingly, a set of 50Environmental variation and reduced population size: QTL

are independent (RandomU) or linked (RandomL). As QTL was chosen for the simulations. The question of
mapping these QTL by the use of molecular markersexpected, whatever the distribution of r 2, the correlation

between the rankings of the R 2’s decreases when herita- was not considered, because it is analyzed in length in
other articles, and because we focused on the influencebility decreases. This correlation is close to the heritabil-

ity of the trait, since heritability describes the quality of of particular genetic and nongenetic factors on the dis-
tribution of estimated QTL effects.the prediction of genetic values by phenotypic values.

For a given heritability, the rank correlation decreases QTL effects are generally estimated by the statistic
R 2, which measures the fraction of phenotypic variationwith the population size.

Comparison between additive and metabolic models: explained by the variation at the QTL. Our simulations
have shown that the distribution of the estimated QTLIn a previous article, we studied the distribution of r 2

for a trait related to a metabolic flux (Bost et al. 1999). effects (R 2) reflects the distribution of additive allelic
effects only if several conditions are combined: no link-An L-shaped distribution was consistently found with

unequal additive allelic effects, due to unequal flux con- age disequilibrium, linear relationship between gene
effects and trait values (additive model), no environ-trol coefficients between the parents. However, the dis-

tribution of the estimated R 2 under MET is quite similar mental variance, and large population size. Otherwise
the R 2 distributions are clearly L-shaped, even with anto the one obtained with ADD when other factors such

as linkage disequilibrium, low heritability, or low popu- additive model and J-shaped distributions of additive
allelic effects (exponential). We showed here that thelation size influence the estimation. A comparison be-

tween the two genetic models is given in Table 3. distribution of R 2 depends on both genetic and nonge-
netic factors. Genetic factors such as the distribution ofWhen all genes have the same additive allelic effect,

the distribution of R 2 is slightly more skewed with MET additive allelic effects, the model (additive or meta-
bolic), the linkage disequilibrium between QTL, or thethan with ADD. The differences are greater when the

population size is smaller. Even with unequal additive parental gametic phase determine the distribution of
r 2, the “true” QTL effects. Then, for each QTL, the R 2allelic effects, the differences between MET and ADD

are reduced when QTL are linked, as compared to inde- value is a random variable, which depends of course on
r 2, but also on the amount of residual noise that confusespendent QTL.

Actually, the main feature of MET is that correlation the estimation of r 2.
Among the factors likely to increase the residualbetween the rankings of the QTL in different replicates

is lower than for ADD, in particular for small population noise, the heritability of the trait and the population
size do not play the same role. The heritability of thesizes (Table 3): at least 5000 individuals are needed

with MET to obtain rank correlations similar to those trait buffers the relationship between phenotypic and
genetic values. It is of course always possible to enhanceobserved for ADD with only 200 individuals. In fact, the

variances of each R 2
q over replicates are always z10 times the heritability of a trait by using refined experimental

designs involving progeny tests or cloning. The popula-larger with MET than with ADD (not shown). Such
low correlations between replicates can be explained by tion size determines the amount of sampling variation

for the genotypic composition of the experimental pop-dominance and epistatic effects, which are inherent to



1783Bases for QTL Effects Distribution

ulation. In a given genotypic class at a given QTL, the these methods, we can predict neither the distribution
of the true effects of the QTL (r 2) nor the distributionlatter mainly affects the segregation at the other QTL.

The resulting overestimation of detected QTL effects of additive allelic effects from the estimated effects (R 2).
But here the question of which parameter is the mostand lack of repeatability with small population sizes have

already been documented by Carbonnel et al. (1992, relevant to describe the effect of a gene arises—its true
effect or its additive allelic effect?1993) and Beavis (1998). When all QTL are known, as

was assumed in our simulations, these sampling effects Besides the statistical tools, different methods may
be used to confirm the presence of a QTL in a givendue to environmental noise and reduced population

size could be partly minimized via multiple regression. chromosomal region. First, QTL detection may be done
in different genetic backgrounds, i.e., with different ga-The only case where population size really becomes

prejudicial is when the genetic effect of the QTL de- metic phases. Second, the fine mapping methods, using
near isogenic lines or introgression lines (Paterson etpends on the genetic background, i.e., with epistasis, as

in the metabolic model. However, it is worth noting al. 1990; Eshed and Zamir 1995), highly recombinant
inbred lines (Liu et al. 1996), or populations possiblythat the highest R 2 values repeatedly correspond to the

same small set of QTL, even if the ranks could be modi- panmictic and genetically isolated (e.g., Weeks and
Lathrop 1995, for a review) will make it possible notfied within this group.

Another cause for the L-shaped distribution of the only to map QTL within intervals of 1–2 cM or less but
also to estimate their effects with minimal influence ofR 2 values is the L-shaped distribution of r 2 values them-

selves. Unequal linkage disequilibrium between QTL the nearby QTL thanks to minimal linkage disequilib-
rium. Such approaches are sine qua non to have accessappears to be a cause for the L-shaped distribution of

the r 2 values. We showed analytically that when using to actual distributions of QTL controlling quantitative
traits and to determine the generality of the L-shapedone-QTL analysis of variance for estimating the QTL

effects, coupling in the parents increases the r 2 values, distribution expected for the traits proportional to meta-
bolic flux, i.e., putatively numerous quantitative traits.while repulsion decreases them. When using multiple

regression, analytical developments as well as simula- We are very grateful to A. Leonardi for helpful discussions and
tions showed that linkage disequilibrium decreases the reading the manuscript, and also to P. Keightley and anonymous

referees for helpful comments on the manuscript. B. Bost was sup-r 2 values, as a function of the squared linkage disequilib-
ported by a Ph.D. grant from the French Ministry of National Educa-ria, whatever the gametic phase and the additive effects
tion, Research, and Technology (MENRT).of the nearby QTL. Beyond the estimation methods, it

is clear that the R 2 values reflect not only the additive
allelic effects but also the relative position of the QTL
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TABLE A2

Decomposition of the phenotypic variation with multiple regression

Source of variation SS d.f. E(MS)

QTL 1 SS*1 k 2 1 s2
R 1 ñ s2

1*
A A A A
QTL Q SS*Q k 2 1 s2

R 1 ñ s2
Q*

Residual SSR* N 2 k 2 (Q 2 1)(k 2 1) s2
R*

Total SST N 2 1 s2
P

q, taking into account the other QTL, s2
R* is the residual hybrid with allele a, b, and c at QTL Q 1, Q 2, and Q 3,

variance, and the other parameters are the same as in respectively. The eight gametic frequencies are
Table A1. The test statistic of the effect of the locus q
is F 5 MS*q /MSR*, and follows a noncentral Fisher dis- p000 5 p111 5 E, p001 5 p110 5 F

p100 5 p011 5 G, p010 5 p101 5 H6 with E 1 F 1 G 1 H 5
1
2

.
tribution, with k 2 1 and N 2 k 2 (Q 2 1)(k 2 1) as
degrees of freedom, and a noncentrality parameter φ*q : There are four cases for the parental gametic phase

(coupling or repulsion) between QTL Q 1 and Q 2, and
φ*q 5 (N 2 1)

s2
q*

s2
R*

. Q 2 and Q 3 (Table B1), and the corresponding gametic
frequencies E, F, G, and H are given in Table B2.

In the F2 population, the linkage disequilibria betweenAs SST ? RQ
q51 SS*q 1 SSR*, there is no simple rela-

Q1 and Q2 (D12), Q2 and Q3 (D23), and Q1 and Q3 (D13)tionship between F and the R 2
q estimated with the multi-

areple regression. However, we can note that Cramer
(1987) established the distribution of the global R
square for the multiple linear regression with fixed re- D12 5 E 1 F 2

1
4

5
1
2
(E 1 F 2 G 2 H)

gressors, as a function of the sample size. But as we are
interested in partial R 2 it was not possible to use Cram-

D23 5 E 1 G 2
1
4

5
1
2
(E 1 G 2 F 2 H)er’s results.

D13 5 E 1 H 2
1
4

5
1
2
(E 1 H 2 F 2 G).

APPENDIX B: Effect of linkage disequilibrium on the
percentage of phenotypic variation explained by a QTL, It is worth noting that
estimated by ANOVA or multiple regression

D13 5 4D12 D23.
We consider here the simple case of a trait controlled

by three QTL (Q 1, Q 2, Q 3) being located on the same The genotype frequencies ( fjkl) can be deduced from
chromosome. The phenotypic value of the individual i gametic frequencies. For example, f011 5 2p000p011 1
of an F2 population is 2p010p001 5 2EF 1 2GH.

In this model, the mean phenotypic value of the popu-
zi 5 &jkl 1 εi, (B1) lation is

where j, k, l are indices for the number of high alleles
(0, 1, or 2) at QTL Q 1, Q 2, Q 3, respectively; &jkl is the

TABLE B1genetic value of individual i; and εi is the random envi-
ronmental deviation. &jkl is determined according to an Possible parental gametic phases with three QTL
additive model,

Q 1 2 Q 2 Q 2 2 Q 3 Parental genotypes
&jkl 5 } 1 ( j 2 1)aQ 1

1 (k 2 1)aQ 2
1 (l 2 1)aQ 3

,
Coupling Coupling

000
000

,
111
111(B2)

Repulsion Repulsion
010
010

,
101
101where } is a constant, and aQ 1, aQ 2, and aQ 3 are the allelic

additive effects of QTL Q 1, Q 2, and Q 3, respectively. Repulsion Coupling
011
011

,
100
100Let t12, t23, t13 be the recombination rates between

Coupling Repulsion
001
001

,
110
110

QTL Q 1 and Q 2, Q 2 and Q 3, and Q 1 and Q 3, respectively.
pabc is the frequency of the gamete produced by the F1
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TABLE B2

Gametic frequencies at three QTL in a F2 population

Q 1 2 Q 2/Q 2 2 Q 3 E F G H

Coupling/coupling
(1 2 t12)(1 2 t23)

2
(1 2 t12) t23

2
t12 (1 2 t23)

2
t12 t23

2

Repulsion/repulsion
t12 t23

2
t12 (1 2 t23)

2
(1 2 t12) t23

2
(1 2 t12)(1 2 t23)

2

Repulsion/coupling
t12 (1 2 t23)

2
t12 t23

2
(1 2 t12)(1 2 t23)

2
(1 2 t12) t23

2

Coupling/repulsion
(1 2 t12) t23

2
(1 2 t12)(1 2 t23)

2
t12 t23

2
t12 (1 2 t23)

2

m 5 o
j
o

k
o

l
fjkl&jkl 5 } mQ 20

5 } 2 aQ 2
2 4D12 aQ 1

2 4D23 aQ 3

and the total genetic variance is mQ 21
5 }

s2
G 5 o

j
o

k
o

l
fjkl (&jkl 2 m)2

mQ 22
5 } 1 aQ2

1 4D12 aQ 1
1 4D23 aQ 3

.

Thus, we can calculate the contribution of each QTL:
5

1
2
(a2

Q 1
1 a2

Q 2
1 a2

Q 3
) 1 4D12 aQ 1

aQ 2

s2
Q 1

5
1
2
(aQ 1

1 4D12 aQ 2
1 4D13 aQ 3

)2 (B5)
1 4D23 aQ 2

aQ 3
1 4D13 aQ 1

aQ 3
. (B3)

s2
Q 2

5
1
2
(aQ 2

1 4D12 aQ 1
1 4D13 aQ 3

)2 (B6)One-QTL analysis of variance: With one-QTL AN-
OVA, the statistical model for the phenotypic value of
an individual i, with the genotype j at the QTL consid- s2

Q 3
5

1
2
(aQ 3

1 4D23 aQ 2
1 4D13 aQ 1

)2. (B7)
ered, is

Hence, the sum of the individual contributions ofzij 5 Gj 1 gij 1 εij, (B4)
each QTL is not equal to the total genetic variance (B3)

where Gj is the effect of genotype j at the QTL, gij is a when QTL are linked (D ? 0).
genetic component due to segregation at the two other Multiple regression: With multiple regression, we take
QTL, and εij is the random environmental deviation. into account all the QTL, and the statistical model for the
The mean phenotypic value for genotype j at the QTL phenotypic value of an individual i, with the genotypes j,
is k, and l at the QTL Q1, Q2, and Q3, respectively, is

mj 5 Ei(zij) 5 Gj 1 Ei(gij), zijkl 5 Gj 1 Gk 1 Gl 1 εijkl , (B8)

where εijkl is the random environmental deviation. Thewhich is the conditional expectation for the phenotype,
genetic variances contributed by each QTL are com-given the genotype at the QTL. We show below that, in
puted conditionally on the other QTL declared in thethis simple case, Ei(gij) ? 0 if there is linkage between
model,the QTL considered and the other ones.

For example, for the QTL Q 2, the mean phenotypic
s2

Q 1
5 s2

G 2 s2
Q 23

, s2
Q 2

5 s2
G 2 s2

Q 13
, s2

Q 3
5 s2

G 2 s2
Q 12

,
value depends on genotype frequencies fjkl at the three
QTL, as well as on genetic values &jkl, (B9)

where
mQ 2k

5 o
2

j50
o
2

l50

fjkl

fk

&jkl ,

s2
Q 12

5 o
2

j50
o
2

k50

fjk (mjk 2 m)2

and the variance contributed by QTL Q 2 is

s2
Q 13

5 o
2

j50
o
2

l50

fjl (mjl 2 m)2
s2

Q 2Q 2
5 o

2

k50

fk(mQ 2k
2 m)2.

s2
Q 23

5 o
2

k50
o
2

l50

fkl (mkl 2 m)2In the infinite F2 population that we consider, there
are three different genotypes at one QTL, with geno-
typic frequencies f0 5 1⁄4, f1 5 1⁄2, and f2 5 1⁄4. As an are the genetic variances contributed by the other QTL,

andexample, for the QTL Q 2, we then have
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mjk 5 o
2

l50

fjkl

fjk

&jkl , mjk 5 o
2

k50

fjkl

fjl

&jkl , mkl 5 o
2
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fjkl

fkl

&jkl s2
Q 2

5
1
2

a2
Q 2 3(1 2 16D2

12)(1 2 16D2
23)

1 2 256D 2
12 D 2

23
4 (B11)

are, respectively, the mean phenotypic values for geno-
s2

Q 3
5

1
2

a2
Q 3

(1 2 16D 2
23), (B12)type jk at QTL Q 1 and Q 2, jl at QTL Q 1 and Q 3, and kl

at QTL Q 2 and Q 3. Using the genetic model defined in
(B2), we find

and the sum of the individual contributions of each
s2

Q 12
5 s2

G 2
1
2

a2
Q 3 31 2 16 (D 2

12 1 D 2
13 1 D 2

23) 1 128 D12 D13 D23

1 2 16 D 2
12

4 QTL is

1
2
(a2

Q 1
1 a2

Q 2
1 a2

Q 3
) 2 83a2

Q 1
D 2

12 1 a2
Q 2

D 2
12 1 D 2

23 2 32 D 2
12 D 2

23

1 2 256D 2
12 D 2

23

1 a2
Q 3
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234s2

Q 13
5 s2
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Q 2 31 2 16 (D 2
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4

s2
Q 23

5 s2
G 2

1
2

a2
Q 1 31 2 16 (D 2

12 1 D 2
13 1 D 2

23) 1 128 D12 D13 D23

1 2 16 D 2
23

4. and is not equal to the total genetic variance (B3) when
QTL are linked (D ? 0).

Thus, following (B9), the variances contributed by Note that, in an F2 population, with multiple regres-
each QTL are sion, the effect of a QTL q does not involve the effects

of the QTL that are linked to q, but only the linkage
s2

Q 1
5

1
2

a2
Q 1

(1 2 16D2
12) (B10) disequilibria between these QTL and QTL q.


