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Temporal Filtering of Reward Signals in the Dorsal Anterior
Cingulate Cortex during a Mixed-Strategy Game

Hyojung Seo and Daeyeol Lee
Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510

The process of decision making in humans and other animals is adaptive and can be tuned through experience so as to optimize the
outcomes of their choices in a dynamic environment. Previous studies have demonstrated that the anterior cingulate cortex plays an
important role in updating the animal’s behavioral strategies when the action outcome contingencies change. Moreover, neurons in the
anterior cingulate cortex often encode the signals related to expected or actual reward. We investigated whether reward-related activity
in the anterior cingulate cortex is affected by the animal’s previous reward history. This was tested in rhesus monkeys trained to make
binary choices in a computer-simulated competitive zero-sum game. The animal’s choice behavior was relatively close to the optimal
strategy but also revealed small systematic biases that are consistent with the use of a reinforcement learning algorithm. In addition, the
activity of neurons in the dorsal anterior cingulate cortex that was related to the reward received by the animal in a given trial often was
modulated by the rewards in the previous trials. Some of these neurons encoded the rate of rewards in previous trials, whereas others
displayed activity modulations more closely related to the reward prediction errors. In contrast, signals related to the animal’s choices
were represented only weakly in this cortical area. These results suggest that neurons in the dorsal anterior cingulate cortex might be

involved in the subjective evaluation of choice outcomes based on the animal’s reward history.
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Introduction
An action or a sequence of actions that maximizes the desirability
or utility of the expected outcome is considered optimal, and in
most cases this has to be learned empirically. In reinforcement
learning the problem of finding an optimal sequence of actions is
formulated by using a set of value functions that express the sum
of future rewards expected from a particular state or action (Sut-
ton and Barto, 1998). Specific reinforcement learning algorithms
then describe how value functions can be adjusted empirically
based on the reward prediction error, namely the discrepancy
between the reward predicted from the value functions and the
actual reward. Once value functions are estimated accurately,
optimal decision-making strategies can be found simply by
choosing the actions that maximize the value functions.
Reinforcement learning algorithms can account for the choice
behavior of humans and animals during various decision-making
tasks (Erev and Roth, 1998; Lee et al., 2004, 2005; Sugrue et al.,
2004; Lau and Glimcher, 2005; Samejima et al., 2005; Yechiam
and Busemeyer, 2005; Daw et al., 2006; Haruno and Kawato,
2006). In addition, neural activity related to the key variables in
reinforcement learning algorithms, such as value functions and
reward prediction errors, has been identified in many different
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cortical and subcortical areas (Daw and Doya, 2006; Lee, 2006;
Schultz, 2006). However, the neural mechanisms responsible for
computing value functions and reward prediction errors are still
poorly understood. For example, signals related to the overall reward
rate might be useful for evaluating the overall success of the learning
process and therefore can guide the process of so-called meta learn-
ing (Aston-Jones and Cohen, 2005; Soltani et al., 2006), but it is not
known how such signals are computed in the brain.

In the present study we investigated the role of the dorsal
anterior cingulate cortex (ACCd) in evaluating the outcomes of
the animal’s choices during a simulated competitive zero-sum
game (Barraclough et al., 2004; Lee et al., 2004). The results from
the behavioral analysis suggested that the animals searched for
the optimal strategy during this task, using a reinforcement learn-
ing algorithm. We also found that many neurons in the ACCd
displayed modulations in their activity related to the rewards in
previous trials. These signals displayed diverse time courses and
therefore might provide the signals necessary to compute various
aspects of rewards resulting from previous actions of the animal. In
particular, the reward-related signals in the ACCd might be useful
for computing the overall reward rate and how much the actual
reward in a given trial deviates from the animal’s expectation. These
signals then might influence the process of updating the value func-
tions and hence the animal’s decision-making strategy.

Materials and Methods

Animal preparations

Two male rhesus monkeys (D and E; body weight, 8—12 kg) were used.
Their eye movements were monitored at a sampling rate of 250 Hz with
a high-speed eye tracker (ET49; Thomas Recording, Giessen, Germany).
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Figure1. Taskand recordingsites. A, Oculomotor free choice task. Gray and white rectangles
at the bottom correspond to a series of 0.5 s windows used to analyze the neural data that are
aligned to the target onset and feedback onset, respectively. FP, Fore period; FB, feedback
period. B, An MR image (coronal; anteroposterior, 31 mm; monkey D) showing the recording
sites in the ACCd.

All of the procedures used in this study were approved by the University
of Rochester Committee on Animal Research and conformed to the Pub-
lic Health Service Policy on Humane Care and Use of Laboratory Animals
and the Guide for the Care and Use of Laboratory Animals.

Behavioral task
Monkeys were trained to perform an oculomotor free-choice task mod-
eled after a two-player zero-sum game, known as the matching pennies
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(Fig. 1A) (Barraclough et al., 2004; Lee et al., 2004). During a 0.5 s fore
period they fixated on a small yellow square [0.9 X 0.9°; Commission
Internationale de I’Eclairage (CIE): x = 0.432; y = 0.494; Y = 62.9 cd/
m?] in the center of a computer screen, and then two identical green
disks (radius, 0.6% CIE: x = 0.286; y = 0.606; Y = 43.2 cd/m?) were
presented 5° away in diametrically opposed locations along the horizon-
tal meridian. The central target was extinguished after a 0.5 s delay pe-
riod, and the animal was required to shift its gaze to one of the targets
within 1 s. After the animal maintained the fixation on its chosen periph-
eral target for 0.5 s, a red ring (radius, 1° CIE: x = 0.632; y = 0.341; Y =
17.6 cd/m?) appeared around the target selected by the computer. If the
animal selected the same target as the computer opponent, it was re-
warded after maintaining its fixation of the chosen target for 0.5 s from
the onset of the red ring. If the animal’s choice was different from that of
the computer opponent, it was no longer required to maintain the fixa-
tion of the chosen target. The central fixation target for the new trial was
presented 1 s from the end of the previous trial.

The computer was programmed to exploit statistical biases in the an-
imal’s choice behavior. Before each trial the computer made a prediction
for the animal’s choice by applying the following set of statistical tests to
the animal’s entire choice and reward history during a given recording
session [corresponding to algorithm 2 in Lee et al. (2004)]. First, the
conditional probabilities for the animal to choose each target given its
choices in the preceding # trials (n = 0—4) were estimated (e.g., for n =
1, the probability that the animal would choose the rightward target given
that it chose the left target in the previous trial). Second, the conditional
probabilities for the animal to choose each target given its choices and
rewards in the preceding # trials (n = 1-4) also were estimated (e.g., for
n = 1, the probability that the animal would choose the rightward target
given that the animal was rewarded for choosing the leftward target in the
previous trial). Next, each of these nine conditional probabilities was
tested against the hypothesis that the animal had chosen both targets with
equal probabilities. When none of these hypotheses was rejected (bino-
mial test; p < 0.05), the computer selected each target randomly with
50% probability. Otherwise, the computer biased its selection according
to the conditional probability with the largest deviation from 0.5 that was
statistically significant. For example, if the animal chose the rightward
target with 80% probability according to this criterion, the computer
selected the leftward target with the same probability. To maximize the
total reward, therefore, the animal needed to choose both targets equally
often and make its choice independently from previous choices and their
outcomes. As reported previously (Lee et al., 2004), the choice behavior
of monkeys during this matching pennies task was highly stochastic. This
is beneficial for the regression analysis of neural data in which the effects
of the animal’s choices in multiple trials are evaluated simultaneously
(see below).

Neurophysiological recording

Single-unit activity was recorded from the neurons in the dorsal anterior
cingulate cortex of two monkeys (monkeys D and E), using a five-
channel multi-electrode recording system (Thomas Recording). The
placement of the recording chamber was guided by magnetic resonance
(MR) images (Fig. 1 B), and this was confirmed by metal pins inserted in
known anatomical locations at the end of the experiment. In both ani-
mals the supplementary eye field (SEF) was localized, based on eye move-
ments evoked by electrical stimulations with currents <50 nA (100 pA
for some sites) during active fixation of a visual target (Goldberg et al.,
1986). All neurons were recorded in the dorsal bank of the cingulate
sulcus (area 24c) ventral to the SEF (Matelli et al., 1991; Luppino et al.,
2003).

Reinforcement learning model

We applied a reinforcement learning model (Sutton and Barto, 1998) to
analyze how the animal’s choice was influenced by the outcomes of its
previous choices in the matching pennies task. In this model the value
function for choosing target x, (R or L for rightward and leftward choices,
respectively) in trial #, Q, (x,), was updated according to the reward
prediction error, as follows:

Qus1(x) = Qlx) + ofr, — Qx)], (1)
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where r, denotes the reward received by the animal in trial ¢ (0 and 1 for
unrewarded and rewarded trials, respectively), and o denotes the learn-
ing rate. The reward prediction error, [r, — Q, (x,)], corresponds to the
discrepancy between the actual reward and the expected reward. The
probability that the animal would choose the rightward target in trial ¢,
P,(R), was determined by the SoftMax transformation as follows:

P(R) = expBQ(R)HexpBQ(L) + expBQ,(R)}, (2)

where 3, referred to as the inverse temperature, determines the random-
ness of the animal’s choices. Model parameters were estimated separately
for each recording session by using a maximum likelihood procedure
(Pawitan, 2001; Lee et al., 2004). For each session the best parameters
were selected from 100 independent searches performed with the initial
parameters randomly chosen in the interval of [0 1]. The maximum
likelihood procedure was implemented by using the fminsearch function
in MatLab 7.0 (MathWorks, Natick, MA). For >90% of the sessions the
parameters with the maximum likelihood were found consistently in at
least 10% of the searches.

As described in Results, the animals displayed a significant tendency to
make their choices according to the so-called win—stay—lose—switch strat-
egy (Lee etal., 2004). In other words, they were more likely to choose the
same target rewarded in the previous trial and switched to the other target
otherwise. If the animal selected its targets based on a fixed probability of
adopting the win—stay—lose—switch strategy, p\vqs> the likelihood that
the animal would choose the target x would be P, (x) = pyys.s» when the
animal was rewarded for choosing x or unrewarded for choosing the
other target in the previous trial, and P(x) = (1 — pyyg.s) otherwise.

If we denote the animal’s choice in trial as ¢, (= R or L), the likelihood
for the animal’s choices in a given session is given by the following:

L =II,P(c) = P, (¢)) Py(c)- - -Pn(cw)s (3)

where N denotes the number of trials. Whether the animal’s choice be-
havior in a given session was better accounted for by the reinforcement
learning model or by the win—stay—lose—switch strategy was determined
by the Bayesian information criterion (BIC) (Burnham and Anderson,
2002):

BIC = — logL + klogN, (4)

where k is the number of model parameters (1 for the win-stay—lose—
switch strategy model and 2 for the reinforcement learning model).

Analysis of neural data

Time course of overall activity. To examine how the overall excitability of
neurons in the ACCd changed throughout the course of a trial, we cal-
culated the rate of spikes during the three 0.5 s windows corresponding to
the delay period, the fixation period for the chosen target, and the feed-
back period in each trial. In addition, the rate of spikes during the 0.2 s
window before the onset of saccade directed to the chosen target also was
calculated. It then was determined whether the activity in each of these
epochs significantly increased or decreased as compared with the activity
during the 0.5 s fore period (paired Student’s ¢ test; p < 0.05).

Analysis of activity related to reward and choice. For each neuron we
used a Student’s ¢ test to test whether its activity during the 0.5 s feedback
period differed for the rewarded and unrewarded trials. Animals often
broke their fixation during the feedback period in unrewarded trials
because this was not penalized. Therefore, to determine whether neural
activity related to eye movements was mistaken for reward-related activ-
ity, we applied the following regression model to test the effects of reward
and eye movements separately:

yi=ag t+ ayr tass, (5)

where r, is a dummy variable indicating whether the animal is rewarded
in trial £ or not, and s, is the saccade latency in trial ¢ defined as the time
between the feedback onset and saccade onset. Another multiple linear
regression model then was applied to determine whether the activity of a
given neuron was influenced by the animal’s choices, the computer op-
ponent’s choices, and the animal’s rewards in the current and previous
trials. This analysis was applied separately to the number of spikes
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counted for a series of nine non-overlapping 0.5 s bins defined relative to
the time of target onset or feedback onset, including five time bins begin-
ning 1 s before the target onset (i.e., 0.5 s before the fixation of the central
target) (Fig. 1 A, bottom, gray horizontal bars) and four time bins starting
from the fixation of a peripheral target (i.e., 0.5 s before feedback onset)
(Fig. 1A, bottom, white horizontal bars). For the spike counts in a par-
ticular bin of trial t, y,, this corresponded to the following:

Y= B[1 ey i3] + e (6)

where u, is a row vector consisting of three binary variables correspond-
ing to the animal’s choice (0 and 1 for leftward and rightward choices,
respectively), the computer choice (coded in the same way as the animal’s
choice), and the reward (0 and 1 for unrewarded and rewarded trials,
respectively) in trial #, B is a vector of 13 regression coefficients, and e, is
the error term. The statistical significance for each regression coefficient
was determined with a Student’s t test ( p < 0.05). As shown in Results,
the activity of ACCd neurons was influenced more strongly by the ani-
mal’s reward history than by its choice history or the previous choices of
the computer opponent. In addition, the time course of reward-related
signals identified by the regression analysis varied substantially across
different neurons. To examine the heterogeneity in the time course of
reward-related signals, we applied the k-means cluster analysis to the
normalized regression coefficients related to reward (Hastie et al., 2001;
Lee etal., 2001). The purpose of this analysis was not to demonstrate that
the neurons in ACCd form distinct clusters based on the time course of
reward-related signals but to determine how the time course of such
signals varied across different neurons. We performed this analysis with
the number of clusters (or centroids) ranging from 2 to 10. We also tested
whether the activity of neurons in the ACCd was influenced by the inter-
action among the rewards in successive trials by applying a three-way
ANOVA, with the rewards in the current trial and the two previous trials
as main factors. For the purpose of illustrations we also estimated the
spike density functions by using a Gaussian filter (o = 50 ms) separately
for various subsets of trials as necessary (see Fig. 4). Average values are
shown in Results as the mean * SEM.

Analysis of activity related to value functions and reward prediction er-
rors. We tested whether the activity of ACCd neurons encoded signals
related to the value functions and the reward prediction error by applying
the following regression model:

Ve = dy+d{Q(R) + Q(L)} + {Q(R) — Q(L)} + ds{r, — Q)]
(7)

where Q,(x) denotes the value function for the target x, r, the reward in
trial t, ¢, the animal’s choice in trial , and d,~d, the regression coeffi-
cients. We chose to include the sum of the value functions for the two
alternative targets and their difference in this regression model rather
than the two value functions separately. As described in Results, this was
based on the observation that many more neurons in ACCd encoded
signals related to the reward in previous trials that would affect the value
functions of both targets indiscriminately. We also hypothesized that the
neurons might encode the sum of the value functions by sustaining the
signals related to the rewards received by the animal across multiple
trials. To test this hypothesis, we calculated the correlation coefficient
between the regression coefficient for the sum of value function, d,, and
those related to the reward-related terms in the regression model (Eq. 6).
Similarly, ACCd neurons might contribute to the computation of reward
prediction errors by encoding the difference between the signals related
to the reward in a given trial and those related to the rewards in previous
trials. This was tested by calculating the correlation coefficient between
the regression coefficient related to the reward prediction error, d;, in the
regression model (Eq. 7) and the reward-related terms in the regression
model (Eq. 6).

Results

Reinforcement learning and choice behavior

Behavioral data were collected from a total of 53,308 trials
(26,579 and 26,729 trials for monkeys D and E, respectively) in 77
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Figure2. Learningrateand inverse temperature of reinforcement learning model applied to
the choice behavior in the matching pennies task. The results from the three sessions in which
the inverse temperature was extremely large (/3 > 1000) are not shown.

recording sessions (40 and 37 sessions for monkeys D and E,
respectively) while the animals performed the matching pennies
task. During this task the animal was required to choose the two
alternative targets with equal probabilities and independently
across successive trials to maximize the overall reward. The ani-
mal’s performance was relatively close to this optimal strategy.
For example, the probability that the animal selected the right-
ward target was 0.504 = 0.003, and this was not significantly
different from 0.5 (Student’s t test; p = 0.16). In addition, the
hypothesis that the animal chose the two targets with equal prob-
abilities was rejected in only 15.6% of the sessions. Nevertheless,
there was a small but systematic bias, as reflected in the overall
reward rate (0.494 = 0.003) that was significantly lower than 0.5
(p <0.05). For example, the animal displayed a small but statis-
tically significant tendency to choose the same target chosen by
the computer in the previous trial. This so-called win—stay—lose—
switch strategy was found in 51.0 = 0.3% of the trials; this was
significantly higher than 50% ( p < 0.05), and the animal used
this strategy significantly more frequently than 50% in 23.4% of
the sessions. We also found that the standard reinforcement
learning model accounted for the animal’s choice behavior better
than the win—stay—lose—switch strategy in 72.7% of the sessions
(56 0f 77). The average BIC for the reinforcement learning model
and the model based on the win—stay—lose—switch strategy was
952.5 and 960.7, respectively, and this difference was statistically
significant (paired Student’s ¢ test; p < 10 ~°). The average learn-
ing rate in the reinforcement learning model was relatively small

Table 1. Number (percentage) of ACCd neurons that displayed significant changes
in their activity during various epochs compared to the activity in the fore period

Delay Pre-saccade Target fixation Feedback
Decrease 69 (44.8) 66 (42.9) 52 (33.8) 76 (49.4)
Increase 45(29.2) 45(29.2) 56 (36.4) 46 (29.9)
Sum 114 (74.0) 111(72.1) 108 (70.1) 122(79.2)

Paired Student's t test; p << 0.05; n = 154 neurons.
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Figure 3.  Relationship between the difference in spike rates during the feedback period of
rewarded and unrewarded trials (abscissa) and its estimate obtained from a regression model
that controlled for the variability in saccade latency (ordinate). Black symbols correspond to the
neurons with significant effects of reward in a Student’s t test (p << 0.05). Gray symbols
correspond to the neurons (n = 12) for which the activity was significantly related to the
saccade latency ( p << 0.05), but not to the reward in the regression model.

(0.24) (Fig. 2), indicating that the value functions were updated
slowly. This suggests that the animal’s choice in a given trial was
influenced by the choice outcomes in multiple previous trials.

Encoding of reward-related signals in the ACCd
Activity was recorded from 154 neurons in the ACCd (Fig. 1 B) in
two rhesus monkeys (77 neurons from each animal). Compared
with the activity during the fore period, the majority of neurons
displayed significant changes in their activity during the delay
period after target onset, before and after eye movements toward
the animal’s chosen target, and during the feedback period (Table
1). In addition, most of these neurons (126 neurons; 81.8%)
modulated their activity during the feedback period according to
whether the animal’s choice in the same trial would be rewarded
or not (two-tailed Student’s ¢ test, p < 0.05) (Fig. 3). Some neu-
rons increased their activity during the feedback period of re-
warded trials, namely immediately after the computer indicated
that the animal would be rewarded, as compared with the activity
in unrewarded trials (Fig. 4, bottom). Others decreased their ac-
tivity when the computer indicated that the animal would be
rewarded (Fig. 5, bottom). Overall, the neurons that showed sig-
nificantly higher activity during the feedback period in rewarded
trials than in unrewarded trials (60 neurons) were almost as prev-
alent as those that showed significantly lower activity in rewarded
trials (66 neurons). In addition, the mean ¢ value for the reward-
related modulation in the neural activity was 0.522, and this was
not significantly different from zero (Student’s t test; p = 0.634).
During the matching pennies task the animals were required
to maintain their fixation throughout the 0.5 s feedback period in
rewarded trials. However, the animals often broke their fixation
during the feedback period in unrewarded trials, because this was
not penalized. The average interval between the feedback onset
and the saccade onset was 746.1 * 0.3 and 352.5 * 0.7 ms for
rewarded and unrewarded trials, respectively. To determine
whether the difference in neural activity during the feedback pe-
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Many neurons in the ACCd continued to
modulate their activity according to the out-
come of the animal’s choice in a given trial
during the intertrial interval that followed
and even during the next trial (Figs. 4, 5). We
used a multiple linear regression analysis to
determine whether and how the reward in a
given trial influenced the activity of the
ACCd neurons in the trials that followed.
This model also included the animal’s choice
and the choice of the computer opponent
(see Materials and Methods). During the
0.5 s period during the intertrial interval im-
mediately before the fore period, 65.6% (101

Figure 4.

Trial Lag=0

0 1 0 1 0 1
time from target onset (s)

Activity of an example neuron in the ACCd during the matching pennies task. Each pair of small panels displays the
spike density functions estimated relative to the time of target onset (left panels) or feedback onset (right panels). They were
estimated separately according to the animal’s choice (top), the computer choice (middle), or reward (bottom) in the current trial
(Trial Lag = 0) or according to the corresponding variables in three previous trials (Trial Lag = 1, 2, or 3). Purple (black) lines
correspond to the activity associated with rightward (leftward) choices (top and middle) or rewarded (unrewarded) trials (bot-
tom). Circles show the regression coefficients from a multiple linear regression model, which was performed separately for each
time bin. Filled circles indicate the coefficients significantly different from zero (Student’s ¢ test, p << 0.05). The dotted vertical
lines in the left panels correspond to the onset of the fore period, and the gray background corresponds to the delay (left panels)
or feedback (right panels) period.
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according to the reward received by the animal in the current trial
and the previous two trials, respectively. Similar to the results based
on the fraction of neurons, the magnitude of neural signals related to
the reward in the previous trials was reduced gradually as compared
with the signals related to the reward in the current trial (Fig. 6,
bottom, gray symbols). Therefore, the changes in neural activity re-
lated to the reception of reward dissipated over the course of two or
three trials in the ACCd.

0 1 0 1
time from target onset (s)

Activity of another example neuron in the ACCd. This is the same format as in Figure 4.

Time course of reward-related signals in the ACCd neurons

The time course of reward-related signals varied substantially
across different neurons in the ACCd. For example, the neuron
shown in Figure 4 increased its activity during the feedback pe-
riod in rewarded trials as compared with the activity in unre-
warded trials, and this increased activity continued until the feed-
back period in the next trial (Fig. 4, bottom). In contrast, for
some neurons in the ACCd the changes in the activity related to



Seo and Lee  Reward Signals in Anterior Cingulate Cortex

Trial Lag=0 Trial Lag=1 Trial Lag=2 Trial Lag=3
time from feedback onset (s)
0 1 0 1 0 1 0 1

0.8 L3

MONKEY | [
. F1 @
b 3| |mg s | @
0000 2 — efies| oles| [oiERy PEell %
g L 1 L L Il L L 1 %
2 038 Fa; o2
2 L €
[} 2} @
e 2 8
COMPUTER ‘5 , | LT €
s | 18
@ 0.0 siage? Aﬂi Eeebe| [toug| |sipges| lests| |pomgs| lgeAs[ 0§
L L T T . L - (" - ) o 0 E
©
0.8 -3 §
' .. o

-2

REWARD L
044 L3 L i
_ Eagl s e Lt -1
5 o [o®lR| 2Tte |eegegl oLl
0.0 L T A T 0
1 0 1 0 1 0 1
time from target onset (s)

Figure 6.  Time course of activity related to the animal’s choice (top), the choice of the computer opponent (middle), and

reward (bottom) in the population of ACCd neurons. Black symbols (left axis) indicate the percentage of neurons that displayed
significant modulations in their activity according to each variable (Student’s ¢ test; p < 0.05). Gray symbols (right axis) indicate
the average magnitude of the regression coefficients related to each variable. These values were estimated separately for different
time bins, using a series of multiple linear regression models. Large black symbols indicate that the percentage of neurons was
significantly higher than the significance level used in the regression analysis (binomial test, p << 0.05). The dotted vertical lines
in the left panels correspond to the onset of the fore period, and the gray background corresponds to the delay (left panels) or
feedback (right panels) period.
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Figure 7.  Heterogeneity in the time course of reward-related signals in the ACCd. Normalized regression coefficients were

averaged for each of four clusters (centroids) identified with the k-means cluster analysis. Shaded region corresponds to the area
bounded by the mean = SEM. The dotted vertical lines in the left panels correspond to the onset of the fore period, and the gray
background corresponds to the delay (left panels) or feedback (right panels) period.

the reward in a given trial reversed their polarity during the next
several trials. For example, the neuron illustrated in Figure 5
decreased its activity during the feedback period in rewarded
trials. The activity of this neuron then remained significantly
lower throughout the fore period in the trial that followed if the
animal was rewarded in a given trial (Fig. 5, bottom, Trial Lag =
1). However, this neuron tended to increase its activity during the
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feedback period when the animal was re-
warded in the previous trial. There was
also a small but significant tendency to in-
crease activity if the animal was rewarded
two trials before the current trial (Fig. 5,
bottom, Trial Lag = 2). Therefore, com-
pared with when the animal was not re-
warded, this neuron responded to the
reward-predicting feedback stimulus pre-
sented in a given trial (trial ¢) first by de-
creasing its activity immediately and then
by increasing its activity toward the end of
the next trial (trial # + 1) and maintaining
this increased activity during the subse-
quent trial (trial  + 2).

If the neural activity is increased or
decreased consistently by the rewards in
two successive trials and if these effects
are combined additively, these neurons
would encode signals related to the tem-
poral sum of the rewards. In contrast, if
the activity is increased by the reward in
a given trial but diminished by the re-
ward in the previous trial or vice versa,
this activity would be related to the tem-
poral difference of the rewards in the two
trials. To determine whether the activity
related to the rewards in multiple trials
was related more closely to their tempo-
ral sum or difference, we examined the
regression coefficients related to the re-
ward variables in the regression model.
For the spike counts during the feedback
period there were 53 neurons in which
the regression coefficients for the re-
wards in the current and previous trials
were both significantly different from
zero. For 24 of these neurons both re-
gression coefficients had the same sign,
whereas their signs were opposite for the
remaining 29 neurons. This difference
was not significantly larger than ex-
pected from the binomial distribution
with the equal probabilities ( p = 0.205).
Similarly, there were 27 neurons in
which the regression coefficients for the
reward in the current trial and the re-
ward two trials before the current trial
were both significantly different from
zero. For 11 neurons the regression co-
efficients had the same sign, whereas the
signs were different for 16 neurons.
Again, this difference was not statisti-
cally significant (binomial test; p =
0.124). Moreover, the regression coeffi-
cients for the reward in the current trial

were not significantly correlated with the coefficients for the
reward in the previous trial (r = —0.033; p = 0.682) or two
trials before (r = —145; p = 0.073). Thus, overall, the regression
coefficients associated with rewards in successive trials were not cor-
related strongly, indicating that there was no systematic bias for the
neurons in the ACCd to encode the temporal sum or difference of
rewards across multiple trials.
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We used a series of k-means cluster analyses to examine the
diversity in the time course of reward-related signals identified
with the regression analysis. Although the results varied some-
what according to the number of clusters included in the analysis,
two important features were observed consistently. First, neu-
rons were divided into different clusters according to the polarity
of reward-related activity during the feedback period. For in-
stance, in the example shown in Figure 7, the neurons in clusters
1 and 2 responded more strongly in rewarded trials than in un-
rewarded trials, whereas the opposite was true in clusters 3 and 4.
Second, for neurons in some clusters, activity increased (cluster 1,
n = 43 neurons) or decreased (cluster 3, n = 42 neurons) (Fig. 7)
at the end of rewarded trials, and this differential activity was
reduced gradually without reversing its sign. In other clusters, in
contrast, activity increased (cluster 2, n = 33 neurons) or de-
creased (cluster 4, n = 36 neurons) (Fig. 7) transiently at the end
of rewarded trials, but the effect of reward soon was reversed.

Signals related to value functions and reward

prediction errors

To investigate whether and how the reward-related signals en-
coded by the neurons in the ACCd contribute to the computation
of value functions and reward prediction errors implicated in the
reinforcement learning models, we tested a regression model in
which the activity of individual ACCd neurons was given by a
linear combination of value functions and reward prediction er-
ror (Eq. 7). Consistent with the observation that the activity in
ACCd often was modulated consistently by the rewards in previ-
ous trials, many neurons significantly modulated their activity
according to the sum of the value functions for the two alternative
targets. For example, during the fore period and delay period 34.4
and 35.7% of the neurons, respectively, displayed significant
modulations in their activity according to the sum of the value
functions (Fig. 8, top). In contrast, the fraction of neurons in
the ACCd that significantly modulated their activity according
to the difference in the value functions was relatively low. During
the fore period and delay period, for example, 15.6 and 18.8%
of the neurons, respectively, showed such modulations. This in-
dicates that the ACCd might play a relatively minor role in en-
coding the relative desirability of alternative actions during deci-
sion making.

In reinforcement learning the value functions represent how
much reward is expected from each of alternative actions, and
they are updated based on the animal’s experience. During the
matching pennies task, therefore, the sum of the value functions
indicates the overall rate of reward estimated from the outcomes
in previous trials. This implies that the neurons encoding the sum
of the value functions might change their activity similarly in
response to the rewards in previous trials. For example, the neu-
ron illustrated in Figure 4 increased its activity at the end of the
rewarded trial and also when the animal was rewarded in the
previous trial (Fig. 4, bottom). Accordingly, the activity of this
neuron was significantly correlated with the sum of the value
functions throughout the trial as well as the reward prediction
error (Fig. 8 B, top). Overall, the regression coefficients associated
with the sum of the value functions during and immediately after
the feedback period tend to be significantly correlated with the
regression coefficients associated with the reward received by the
animal during the previous trials (Fig. 9, top).

Whereas the sum of value functions can be estimated by sim-
ply integrating the signals related to the animal’s previous re-
wards, the reward prediction error can be computed by subtract-
ing the signals related to the previous rewards from the signals
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Figure 8.  Neural signals related to value functions and reward prediction errors in ACCd. 4,

Fraction of neurons that significantly modulated their activity according to the sum of the value
functions (left), the difference between them (middle), and the reward prediction error during
the successive 0.5 s windows used in the regression analysis. Large symbols indicate that the
percentage of neurons was significantly higher than the significance level used in the regression
analysis (binomial test, p << 0.05). B, The regression coefficients associated with the sum of the
value functions (left), the difference between them (middle), and the reward prediction error
for the same two example neurons shown in Figures 4 (top) and 5 (bottom). Filled symbols
indicate that the regression coefficients were significantly different from zero (Student’s ¢ test,
p < 0.05). The dotted vertical lines in the left panels correspond to the onset of the fore period,
and the gray background corresponds to the delay (left panels) or feedback (right panels)
period.

related to the current reward. Therefore, the activity of neurons
encoding the reward prediction error might be influenced antag-
onistically by the reward in the current trial and those in the
previous trials. For example, the neuron illustrated in Figure 5
decreased its activity in response to the reward in the current trial
but increased its activity if the animal was rewarded in the previ-
ous trials (Fig. 5, bottom). Accordingly, the same neuron modu-
lated its activity during and immediately after the feedback pe-
riod according to the reward prediction error, whereas the
activity of the same neuron was affected only weakly by the sum
of the value functions or their difference (Fig. 8 B, bottom). Sim-
ilarly, across the population of ACCd neurons the regression co-
efficients related to the reward prediction error were correlated
positively with the coefficients related to the reward in the current
trial but tended to be correlated negatively with the coefficients
related to the rewards in previous trials. This was true for the
activity both during the feedback period (Fig. 9, bottom, gray
symbols) and immediately after the feedback period (Fig. 9, bot-
tom, black symbols).
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corresponds to the delay (left panels) or feedback (right panels) period.

Nonlinear effects of reward on neural activity in the ACCd

The results from the regression analysis are based on the assump-
tion that the effects of rewards in successive trials are combined
linearly. Therefore, they would provide only approximate de-
scriptions to the real data if there are significant interactions be-
tween the rewards in multiple trials. Therefore, the assumption of
additivity was tested with a three-way ANOVA in which the main
factors included the rewards in two previous trials in addition to
the reward in the current trial. As in the regression analysis de-
scribed above, this ANOVA was applied to a series of 0.5 s bins
relative to the target onset or feedback onset. The results from this
analysis showed that some neurons displayed significant interac-
tions among the rewards in multiple trials. For example, the neu-
ron illustrated in Figure 4 displayed a significant two-way inter-
action between the rewards in the current and previous trials
(p < 0.001). For this neuron the activity was lower during the
feedback period in unrewarded trials when compared with the
activity in rewarded trials (Figs. 4, 10). In addition, the effect of
the reward in the previous trial on neural activity was reduced in
unrewarded trials (Fig. 10). Despite this interaction effect, how-
ever, the activity during the feedback period in rewarded trials
was higher if the animal also was rewarded in the previous trial,
suggesting that this neuron encoded the temporal sum of the
rewards reliably in rewarded trials. A similar interaction effect
was found for the neuron illustrated in Figure 5 ( p < 0.0001).
This neuron became almost completely silent during the feed-
back period of rewarded trials regardless of the outcomes in the
two previous trials (Fig. 11, right column), whereas the effect of
reward in the previous trial was apparent in unrewarded trials
(Fig. 11, left column). As a result, this neuron encoded the tem-

Correlation between the regression coefficients associated with the variables in the reinforcement learning model
and those associated with the animal’s rewards in the current and previous trials. Gray symbols correspond to the correlation
coefficient for the sum of the value functions (top), the difference between the value functions (middle), and the reward prediction
error (RPE; bottom) estimated for the activity during the feedback period. Black symbols show the results for the activity during the
second 0.5 s window after feedback onset. Large symbolsindicate that the correlation was statistically significant (Student's t test;
p < 0.05). The dotted vertical lines in the left panels correspond to the onset of the fore period, and the gray background

0 1 As illustrated by the example neurons
described above, significant interactions
between the reward in the current trial and
that in the previous trial tended to occur
mainly because the strength of signals re-
lated to the reward in the previous trial
tended to decrease when the overall neural
activity was reduced by the outcome of the
animal’s choice in a given trial. This was
quantified by calculating the f value for the
effect of reward in the previous trial sepa-
rately according to whether the animal was
rewarded or not in the current trial. Overall, the f values for the
rewarded and unrewarded trials were significantly correlated re-
gardless of whether the neurons decreased (n = 80; 7 = 0.382; p <
0.001) or increased (n = 74; r = 0.501; p < 0.0001) their activity
in rewarded trials (Fig. 13). Thus the effect of reward in the pre-
vious trial tended to influence the activity similarly in rewarded
and unrewarded trials. In addition, for the neurons that did not
show any significant interactions between the rewards in the cur-
rent and previous trials, the average magnitude of these t values
did not differ significantly for rewarded and unrewarded trials
(paired Student’s ¢ test; p > 0.4) (Fig. 13, unfilled circles). How-
ever, for the neurons with significant interactions the magnitude
of these t values differed significantly for rewarded and unre-
warded trials according to whether the neurons increased their
activity in rewarded trials or not. For neurons that decreased their
activity during the feedback period in rewarded trials, the average
magnitude of these f values was significantly smaller when the
animal was rewarded (paired Student’s ¢ test, p < 0.001) (Fig. 13,
left). Similarly, the average magnitude of these f values was sig-
nificantly larger when the animal was rewarded if the activity was
higher in rewarded trials ( p < 0.005) (Fig. 13, right). Thus when
a neuron displayed a significant interaction between the reward
in the current trial and that in the previous trial, the signals re-
lated to the reward in the previous trial were conveyed more
reliably by the neurons that increased their activity according to
the outcome of the current trial. This was true regardless of
whether the reward in the previous trial influenced the activity of
aneuron in the same direction as the reward in the current trial or
not (Fig. 13).
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Encoding of choice-related signals in

unrewarded trials
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rewarded trials

the ACCd

Compared with the activity changes re-
lated to the reward, signals in the activity of
ACCd neurons that are related to the ani-
mal’s choice or the choice of the computer
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opponent were observed less frequently.
For example, the neurons illustrated in
Figures 4 and 5 displayed statistically sig-
nificant changes in their activity related to
the animal’s choice during the first 0.5 s

after the delay period, indicating that both
neurons displayed direction-selective eye
movement-related activity. The neuron
shown in Figure 4 increased its activity
more when the animal chose the left-hand
target, whereas the neuron in Figure 5
showed the opposite pattern. In both cases,
however, this effect was relatively small
compared with the effect of reward and
was not sustained beyond the feedback pe-
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ACCd showing significant changes in their

activity according to the animal’s choice Figure10.  Rasterplotsand spike density functions for the same neuron shown in Figure 4 sorted by the reward in the current trial (left,

and the choice of the computer opponent
was higher than expected by chance. For
example, during the delay period 17.5% of
the ACCd neurons significantly modu-
lated their activity according to the target
chosen by the animal in the same trial (Fig.
6, top), and this percentage increased to
41.6% during the period in which the animal maintained its fixation
on the chosen target. During the delay period the percentage of the
neurons that displayed significant modulations in their activity ac-
cording to the animal’s choice in the previous trial was 18.2%. Al-
though the fraction of neurons with activity significantly related to
the computer choice was above the chance level, this remained rela-
tively low for the time bins included in this analysis. Its maximum
value was 22.7%, and this occurred during the feedback period when
the computer choice was revealed (Fig. 6, middle).

Discussion

Reinforcement learning and stochastic decision making
Economists traditionally have applied the principle of utility
maximization to account for the choice behavior of human deci-
sion makers. However, this begs the question of how the utilities
of various objects and behaviors can be estimated properly in the
first place. Reinforcement learning theory provides a solution to
this problem (Sutton and Barto, 1998). Algorithms in this frame-
work maintain a set of value functions to estimate the desirability
of a particular state or a particular action in a given environment.
Value functions are adjusted according to the reward prediction
error, namely, discrepancy between the reward predicted by the
current set of value functions and the actual reward received.

unrewarded; right, rewarded) and those in the two previous trials. A three-letter code shown on the left of the raster plots indicates the
trials in which the animal was rewarded. For example, RRU indicates that the animal was rewarded in both of the previous two trials, but
notinthe currenttrial. Colors of the spike density functionsin the bottom panels correspond to those of small bars associated with the raster
plots for different reward sequences, except that gray lines in the left (right) column correspond to the average spike density functions for
rewarded (unrewarded) trials. The dotted vertical lines in the left panels correspond to the onset of the fore period, and the gray back-
ground corresponds to the delay (left panels) or feedback (right panels) period.

Finally, actions are chosen to maximize the value functions, but
this often is done probabilistically so that even the actions with
smaller value functions sometimes are chosen. This facilitates
exploration and allows the decision maker to discover the conse-
quences of previously unexplored actions (Daw et al., 2006).

During the matching pennies task used in the present study
the optimal strategy is to select the two targets with equal proba-
bilities and independently across trials. Nevertheless, the animals
in the present study displayed small but systematic deviations
from this optimal strategy. First, the probability of using the so-
called win—stay—lose—switch strategy sometimes exceeded the
chance level significantly. Second, the learning rate in the rein-
forcement learning model used in this study was relatively small,
indicating that the animals tended to apply the win—stay—lose—
switch strategy across multiple trials. Thus if the animal was re-
warded for choosing a particular target in a given trial, the animal
was more likely to choose the same target not only in the next trial
but also in subsequent trials. This behavioral finding implies that
signals related to the animal’s previous choices and their out-
comes must be integrated temporally in the brain (Barraclough et
al., 2004; Sugrue et al., 2004; Kennerley et al., 2006; Seo et al.,
2007).
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unrewarded trials rewarded trials work of brain areas, including the dorso-
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lateral prefrontal cortex (DLPFC) (Wa-
tanabe, 1996; Leon and Shadlen, 1999),
SEF (Ito et al., 2003; Roesch and Olson,
2003), ACCd (Shidara and Richmond,
2002), and the basal ganglia (Hollerman et
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al., 1998; Kawagoe et al., 1998). Neuroim-
aging studies in human subjects have iden-
tified activity related to expected reward in
similar brain areas (O’Doherty et al., 2002;
Knutson et al., 2005). Studies in which

monkeys made free choices also have
shown that the activity in many brain areas
modulated activity according to value
functions (Platt and Glimcher, 1999; Bar-
raclough et al., 2004; Sugrue et al., 2004;
McCoy and Platt, 2005; Samejima et al.,
2005).

Previous studies have found that the
DLPFC might provide several different
types of signals necessary for updating the

value functions during the matching pen-
nies task used in the present study (Barra-
clough et al., 2004; Seo et al., 2007). First,
many DLPFC neurons display signals re-
lated to the animal’s previous choices. This
might correspond to eligibility trace,
which is necessary to link a particular out-
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= to estimate the average rate of reward (Seo
2 0.4- et al., 2007).
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1 ward (Niki and Watanabe, 1979; Ito et al.,
2003; Amiez et al., 2005). Many neurons in
the ACCd also modulated their activity ac-

Figure 12.  Fraction of neurons showing the significant main effect (left), two-way interactions (middle), and three-way cording to the animal’s reward history. In
interaction in a three-way ANOVA that included the rewards received by the animal in the current trial, R(#), and the two previous  most cases reward-related activity in the
trials, R(t — 1) and R(t — 2). The dotted vertical lines in the left panels correspond to the onset of the fore period, and the gray  ACCd could be approximated well by a

background corresponds to the delay (left panels) or feedback (right panels) period.

Reinforcement learning and anterior cingulate cortex

Reinforcement learning models provide a useful framework to
investigate the neural mechanisms of decision making. For exam-
ple, the activity of midbrain dopamine neurons has been linked
to reward prediction error (Schultz, 1998). In addition, signals
resembling value functions have been identified in a broad net-

linear function of rewards received by the

animal in successive trials. Some neurons
in the ACCd displayed signals related to the animal’s previous
choices, but this was observed less frequently when compared
with the DLPFC. Similarly, the fraction of ACCd neurons encod-
ing the difference in the value functions for the two alternative
choices was relatively small, suggesting that the ACCd may play
only a minor role in computing and representing the relative
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desirability of alternative actions. Previous

neurons with negative reward effect
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choice, and this might account for the pau- unrewarded frials (t-value) unrewarded trials (t-value)
city of neurons in the ACCd that encode Figure13.  Interaction between the reward in the previous trial and thatin the current trial. The effect of reward in the previous

movement parameters in the present
study.

trial on neural activity was quantified by using at value separately for rewarded (abscissa) and unrewarded (ordinate) trials. Then
the results were plotted separately, depending on whether a given neuron decreased (left, negative reward effect) or increased

(right, positive reward effect) its activity during the feedback period of rewarded trials as compared with the activity in unre-

Reward history and reward prediction
error in anterior cingulate cortex

The time course of reward-related signals
in the ACCd was quite heterogeneous, and
it might reflect different types of temporal
filtering or transformation applied to the animal’s reward his-
tory. More specifically, the activity of some neurons was influ-
enced consistently by the reward in the current and previous
trials, suggesting that they might encode the rate of reward nec-
essary to compute the expected reward. In contrast, some neu-
rons modulated their activity antagonistically according to the
reward in the current and previous trials, as expected for the
neurons encoding reward prediction errors (Amiez et al., 2005;
Matsumoto et al., 2007). The reward-related activity observed in
the present study often was maintained continuously even during
intertrial intervals, whereas signals related to reward prediction
errors in the dopamine neurons were transient (Schultz, 1998;
Bayer and Glimcher, 2005). This suggests that reward-related
signals in the ACCd might provide the information necessary to
compute reward prediction errors in dopamine neurons.

In both humans and other animals a particular outcome can
produce different emotional reactions and influence subsequent
choices differently, depending on whether it is perceived as a gain
or loss relative to a certain reference point (Tinklepaugh, 1928;
Crespi, 1942; Zeaman, 1949; Kahneman and Tversky, 1979; Fla-
herty, 1982). Such a reference point may be determined by the
overall rate of reward estimated from the recent experience of the
decision maker (Helson, 1948), although this might be affected
by other contextual factors, such as the outcomes available to
other members in a society (Fehr and Schmidt, 1999; Brosnan
and de Waal, 2003). The results from the present study suggest
that some neurons in the ACCd might encode the overall reward
rate, and, therefore, they might be involved in evaluating a hedo-
nic reference point (Frederick and Loewenstein, 1999). Previ-
ously, it has been shown that the activity of some neurons in the
ACCd was closely related to the expected value of reward, regard-
less of whether the magnitude of reward was fixed or probabilistic
(Amiez et al., 2006). The results from the present study suggest
that this might result from the temporal filtering of reward signals
in the ACCd. Consistent with these findings, it has been shown
that a lesion in the cingulate cortex of rats interferes with the
animal’s sensitivity to changes in the reward rate (Gurowitz et al.,

that in rewarded trials.

warded trials. Filled circles indicate the neurons that displayed significant interactions between the reward in the previous trial
and thatin the current trial, and the gray background indicates that the magnitude of the t value in unrewarded trials s larger than

1970). In addition, lesions (Hadland et al., 2003; Kennerley et al.,
2006) or reversible inactivations (Shima and Tanji, 1998; Amiez
etal., 2006) in the cingulate cortex of monkeys produce deficits in
the animal’s ability to learn or update an appropriate association
between a particular action and reward. The results from the
present study suggest that such a deficit may result from the
disruption in the process of evaluating reward signals in the con-
text of the animal’s previous experience.

References

Amiez C, Joseph J-P, Procyk E (2005) Anterior cingulate error-related ac-
tivity is modulated by predicted reward. Eur ] Neurosci 21:3447-3452.

Amiez C, Joseph J-P, Procyk E (2006) Reward encoding in the monkey an-
terior cingulate cortex. Cereb Cortex 16:1040—1055.

Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu
Rev Neurosci 28:403—450.

Barraclough DJ, Conroy ML, Lee D (2004) Prefrontal cortex and decision
making in a mixed-strategy game. Nat Neurosci 7:404—410.

Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a
quantitative reward prediction error signal. Neuron 47:129—-141.

Brosnan S, de Waal FB (2003) Monkeys reject unequal pay. Nature
425:297-299.

Burnham KP, Anderson DR (2002) Model selection and multimodel infer-
ence. A practical information-theoretic approach, Ed 2. New York:
Springer.

Crespi LP (1942) Quantitative variation of incentive and performance in the
white rat. Am ] Psychol 55:467-517.

Daw ND, Doya K (2006) The computational neurobiology of learning and
reward. Curr Opin Neurobiol 16:199-204.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical
substrates for exploratory decisions in humans. Nature 441:876—879.
Erev I, Roth AE (1998) Predicting how people play games: reinforcement
learning in experimental games with unique, mixed strategy equilibria.

Am Econ Rev 88:848—-881.

Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooper-
ation. Q J Econ 114:817—-868.

Flaherty CF (1982) Incentive contrast: a review of behavioral changes fol-
lowing shifts in reward. Anim Learn Behav 10:409—440.

Frederick S, Loewenstein G (1999) Hedonic adaptation. In: Well-being: the
foundations of hedonic psychology (Kaheneman D, Diener E, Schwartz
N, eds), pp 302-329. New York: Russell Sage Foundation.



Seo and Lee  Reward Signals in Anterior Cingulate Cortex

Goldberg ME, Bushnell MC, Bruce CJ (1986) The effect of attentive fixation
on eye movements evoked by electrical stimulation of the frontal eye
fields. Exp Brain Res 61:579-584.

Gurowitz EM, Rosen A]J, Tessel RE (1970) Incentive shift performance in
cingulectomized rats. ] Comp Physiol Psychol 70:476—481.

Hadland KA, Rushworth MFS, Gaffan D, Passingham RE (2003) The ante-
rior cingulate and reward-guided selection of action. ] Neurophysiol
89:1161-1164.

Haruno M, Kawato M (2006) Different neural correlates of reward expec-
tation and reward expectation error in putamen and caudate nucleus
during stimulus-action-reward association learning. ] Neurophysiol
95:948-959.

Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learn-
ing. Data mining, inference and prediction. New York: Springer.

Helson H (1948) Adaptation-level as a basis for a quantitative theory of
frames of reference. Psychol Rev 55:297-313.

Hollerman JR, Tremblay L, Schultz W (1998) Influence of reward expecta-
tion on behavior-related neuronal activity in primate striatum. ] Neuro-
physiol 80:947-963.

Hoshi E, Sawamura H, Tanji ] (2005) Neurons in the rostral cingulate mo-
tor area monitor multiple phases of visuomotor behavior with modest
parametric selectivity. ] Neurophysiol 94:640—656.

Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by
the anterior cingulate cortex during saccade countermanding. Science
302:120-122.

Kahneman D, Tversky A (1979) Prospect theory: an analysis of decision
under risk. Econometrica 47:263-291.

Kawagoe R, Takikawa Y, Hikosaka O (1998) Expectation of reward modu-
lates cognitive signals in the basal ganglia. Nat Neurosci 1:411-416.

Kennerley SW, Walton ME, Behrens TEJ, Buckley MJ, Rushworth MFS
(2006) Optimal decision making and the anterior cingulate cortex. Nat
Neurosci 9:940-947.

Knutson B, Taylor J, Kaufman M, Peterson R, Glover G (2005) Distributed
neural representation of expected value. ] Neurosci 25:4806—4812.

Lau B, Glimcher PW (2005) Dynamic response-by-response models of
matching behavior in rhesus monkeys. ] Exp Anal Behav 84:555-579.
Lee D (2006) Neural basis of quasi-rational decision making. Curr Opin

Neurobiol 16:191-198.

Lee D, Port NL, Kruse W, Georgopoulos AP (2001) Neuronal clusters in the
primate motor cortex during interception of moving targets. ] Cogn Neu-
rosci 13:319-331.

Lee D, Conroy ML, McGreevy BP, Barraclough DJ (2004) Reinforcement
learning and decision making in monkeys during a competitive game.
Brain Res Cogn Brain Res 22:45-58.

Lee D, McGreevy BP, Barraclough DJ (2005) Learningand decision making
in monkeys during a rock-paper-scissors game. Brain Res Cogn Brain Res
25:416-430.

Leon MI, Shadlen MN (1999) Effect of expected reward magnitude on the
response of neurons in the dorsolateral prefrontal cortex of the macaque.
Neuron 24:415-425.

Luppino G, Rozzi S, Calzavara R, MatelliM (2003) Prefrontal and agranular

J. Neurosci., August 1, 2007 - 27(31):8366 — 8377 + 8377

cingulate projections to the dorsal premotor areas F2 and F7 in the ma-
caque monkey. Eur ] Neurosci 17:559-578.

Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and
mesial area 6 and the adjacent cingulate cortex in the macaque monkey.
J Comp Neurol 311:455-462.

Matsumoto M, Suzuki W, Tanaka K (2003) Neuronal correlates of goal-
based motor selection in the prefrontal cortex. Science 301:229-232.
Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal
cell activity signaling prediction errors of action values. Nat Neurosci

10:647—-656.

McCoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior
cingulate cortex. Nat Neurosci 8:1220-1227.

Niki H, Watanabe M (1979) Prefrontal and cingulate unit activity during
timing behavior in the monkey. Brain Res 171:213-224.

O’Doherty JP, Deichmann R, Critchley HD, Dolan R] (2002) Neural re-
sponses during anticipation of a primary taste reward. Neuron
33:815-826.

PawitanY (2001) In all likelihood: statistical modelling and inference using
likelihood. Oxford: Claredon.

Platt ML, Glimcher PW (1999) Neural correlates of decision variables in
parietal cortex. Nature 400:233-238.

Roesch MR, Olson CR (2003) Impact of expected reward on neuronal ac-
tivity in prefrontal cortex, frontal and supplementary eye fields, and pre-
motor cortex. ] Neurophysiol 90:1766-1789.

Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-
specific reward values in the striatum. Science 310:1337-1340.

Schultz W (1998) Predictive reward signal of dopamine neurons. ] Neuro-
physiol 80:1-27.

Schultz W (2006) Behavioral theories and the neurophysiology of reward.
Annu Rev Psychol 57:87-115.

Seo H, Barraclough DJ, Lee D (2007) Dynamic signals related to choices and
outcomes in the dorsolateral prefrontal cortex. Cereb Cortex, in press.

Shidara M, Richmond BJ (2002) Anterior cingulate: single neuronal signals
related to degree of reward expectancy. Science 296:1709-1711.

Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary
movement selection based on reward. Science 282:1335-1338.

Soltani A, Lee D, Wang X-] (2006) Neural mechanism for stochastic behav-
ior during a competitive game. Neural Netw 19:1075-1090.

Sugrue LP, Corrado GS, Newsome WT (2004) Matching behavior and the
representation of value in the parietal cortex. Science 304:1782-1787.
Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.

Cambridge, MA: MIT.

Tinklepaugh OL (1928) An experimental study of representative factors in
monkeys. ] Comp Psychol 8:197-236.

Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Na-
ture 382:629-632.

Yechiam E, Busemeyer JR (2005) Comparison of basic assumptions embed-
ded in learning models for experienced-based decision making. Psychon
Bull Rev 12:387—-402.

Zeaman D (1949) Response latency as a function of the amount of rein-
forcement. J Exp Psychol 39:466—483.



