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ABSTRACT

The mapping of quantitative trait loci (QTL) is to identify molecular markers or genomic loci that
influence the variation of complex traits. The problem is complicated by the facts that QTL data usually
contain a large number of markers across the entire genome and most of them have little or no effect on
the phenotype. In this article, we propose several Bayesian hierarchical models for mapping multiple QTL
that simultaneously fit and estimate all possible genetic effects associated with all markers. The proposed
models use prior distributions for the genetic effects that are scale mixtures of normal distributions with
mean zero and variances distributed to give each effect a high probability of being near zero. We consider
two types of priors for the variances, exponential and scaled inverse-x2 distributions, which result in a
Bayesian version of the popular least absolute shrinkage and selection operator (LASSO) model and the
well-known Student’s t model, respectively. Unlike most applications where fixed values are preset for
hyperparameters in the priors, we treat all hyperparameters as unknowns and estimate them along with
other parameters. Markov chain Monte Carlo (MCMC) algorithms are developed to simulate the param-
eters from the posteriors. The methods are illustrated using well-known barley data.

QUANTITATIVE traits are controlled by multiple
quantitative trait loci (QTL). The genetic ef-

fects of QTL and the phenotypic value of a quantitative
trait are usually described by a linear model. Since the
locations of QTL are not known a priori, we often use
markers to represent QTL. Some markers may be closely
linked to one or more QTL, and thus they may show
strong association with the trait. Most markers, how-
ever, may not be directly linked to QTL, and thus no
association will be expected between these markers and
the trait. Interval mapping or the equivalent single-
marker analysis does not provide accurate estimates of
QTL effects because the single-QTL model used by the
method is seldom the correct model. The multiple-QTL
model is the reasonable choice for mapping quantitative
traits (Kao et al. 1999).

When all markers are included in the QTL analysis,
the model may be oversaturated. Variable selection may
be conducted to include and exclude markers in the
model (Sillanpää and Arjas 1998; Yi et al. 2003, 2005;
Yi 2004; Yi and Shriner 2008). An alternative approach
is a shrinkage method that includes all variables in the
model and uses informative prior distributions to shrink
trivial effects toward zero. Ridge regression (Hoerl and
Kennard 1970) is a shrinkage procedure and can be
obtained using independent and identical normal

priors centered at zero, with the degree of shrinkage
controlled by the prior variance. The least absolute
shrinkage and selection operator (LASSO) is another
shrinkage method that has been widely used in re-
gression analysis for large models (Tibshirani 1996). It
minimizes the residual sum of squares constraining the
sum of absolute values of the regression coefficients,
t $

P
jbj j for t $ 0, if the response and the predictors

are standardized. This special constraint allows some
estimated regression coefficients to be exactly zero. This
selective or individualized shrinkage allows LASSO to
handle extremely large models. Mathematically, the
LASSO estimates of regression coefficients can be
achieved by

min
b;l

�
y �

X
Xj bj

�T�
y �

X
Xj bj

�
1 l

X
jbj j

h i
;

where l $ 0 is a Lagrange multiplier, which relates
implicitly to the bound t and controls the degree of
shrinkage. The LASSO estimates of coefficients can be
efficiently computed via the LARS algorithm of Efron

et al. (2004). The LASSO procedure can be interpreted
as a Bayesian posterior mode estimate when assigning
an independent double-exponential prior to each bj

(e.g., Tibshirani 1996; Yuan and Lin 2005; Park and
Casella 2007). Recently, Xu (2007) successfully ap-
plied the LASSO method to estimate the epistatic effects
of QTL. However, the LASSO provides no estimate for
the residual error variance and no interval estimate for a
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regression coefficient and needs to predetermine the
parameter l (Tibshirani 1996; Efron et al. 2004).

There are some other shrinkage methods that have
been applied to mapping multiple QTL. The method of
Xu (2003) simultaneously fits maker effects of the
entire genome in a regression model and assigns each
effect a normal prior with mean 0 and an effect-specific
variance (also see Wang et al. 2005; Hoti and Sillanpää

2006; Huang et al. 2007). The variance parameters are
further assigned the noninformative Jeffrey’s prior,
which in turn induces improper priors on the coeffi-
cients. Meuwissen et al. (2001) and Xu (2007) used
scaled inverse-x2 distributions with predetermined hy-
perparameters as priors for the effect-specific variance
parameters. Rather than presetting the hyperparameters
in the priors that control the degree of shrinkage, it
would be appealing to treat the hyperparameters as
unknowns and estimate them from the data so that the
model can shrink the coefficients as much as can be
justified by the data. Park and Casella (2007) set up a
hyperprior for the hyperparameter in the LASSO model
and developed a Gibbs sampler to fit the hierarchical
model. R. B. O’Hara and M. J. Sillanpää (unpublished
results) conducted a comparison with several Bayesian
model selection and shrinkage methods, including
Bayesian LASSO and the method of Xu (2003).

In this article, we propose several Bayesian hierarchi-
cal models for mapping multiple QTL that simulta-
neously fit and estimate all possible genetic effects
associated with all markers across the entire genome.
We use prior distributions for the genetic effects that
are scale mixtures of normal distributions with mean
zero and unknown effect-specific variances. We con-
sider two types of priors for the variances, exponential
and scaled inverse-x2 distributions, which result in a
Bayesian version of the LASSO model and the well-
known Student’s t model, respectively. We treat all
hyperparameters as unknowns and estimate them
along with other parameters. We fit the models in a fully
Bayesian approach, employing the Markov chain Monte
Carlo (MCMC) simulation to generate posterior samples
from the joint posterior distribution. Our methods give
not only point estimates but also interval estimates of all
parameters and provide natural means of assessing
model uncertainty.

MULTIPLE-QTL MODEL

We describe our method primarily for a mapping
population with only two segregating genotypes, e.g., a
backcross, double-haploid (DH), or recombinant in-
bred line (RIL). The method can be extended to other
types of population. Assume that we observe many
markers across the genome. The aim of QTL mapping
is to identify which markers are tightly linked to genes
with detectable effects and to estimate the magnitudes
of the effects. For a continuously distributed trait, the

observed phenotypic value yi of individual i can be
described by the linear regression model

yi ¼ m 1
Xp

j¼1

xij bj 1 ei b m 1 Xib 1 ei ; i ¼ 1; 2; � � � ;n;

ð1Þ

where p is the number of markers, m is the overall mean,
xij denotes the genotype of marker j for individual i and
is defined as �0.5 and 0.5 for the two genotypes in the
mapping population, the coefficient bj represents the
main effect of marker j, ei is the residual error assumed
to follow a N ð0; s2Þ distribution, Xi ¼ ðxi1; � � � ; xipÞ, and
b ¼ ðb1; � � � ;bpÞ

T .
In practice, some marker genotypes may be missing.

There are two commonly used methods to deal with
missing marker data. The first approach takes the
uncertainty in missing genotypes into account by treat-
ing the missing genotypes as unknowns and sampling
them in the MCMC update procedure. The second
approach is similar to the regression model of Haley

and Knott (1992) and replaces all missing genotypes by
their expected values conditioning on the observed
marker data, using the multipoint method (Jiang and
Zeng 1997). Although the second method ignores the
uncertainty of the estimated marker genotypes, it has a
big computational advantage over the first method.
Both approaches can be incorporated into our Bayesian
method. For simplicity and computational conve-
nience, this study considers only the second method.

PRIOR DISTRIBUTIONS

Data are usually sufficient to estimate the overall
mean m and the residual variance s2. Thus, we can use
any reasonable noninformative prior distributions for
these parameters. For example, we can use an indepen-
dent, flat prior for m, i.e., pðmÞ � 1, and a noninforma-
tive scale-invariant prior 1/s2 for s2.

QTL data typically contain a large number of
markers, leading to many coefficients in model (1).
However, most of the coefficients are expected to have
no or only weak effects on the phenotype. Only a few
coefficients may have notable effects (see, e.g., Xu

2003). To incorporate this prior knowledge into our
analysis, therefore, we set up a prior distribution that
gives each coefficient bj a high probability of being near
zero and in the meantime gives each coefficient a
chance to take a large effect.

A commonly used prior that has the above properties is
the double exponential (also called Laplace) distribution

pðbÞ ¼
Yp

j¼1

l

2
e�l jbj j ð2Þ

(Tibshirani 1996; Park and Casella 2007), where l is
a hyperparameter. With the double-exponential prior,
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the posterior mode estimate of the coefficients b is the
LASSO estimate (Tibshirani 1996; Park and Casella

2007). Another wide-tailed distribution is the well-
known Student’s t distribution,

pðbÞ ¼
Yp

j¼1

tnðbj ja; s2Þ; ð3Þ

where the hyperparameters n, a, and s2 are the degrees
of freedom, the location, and the scale parameters,
respectively (see, e.g., Sorensen and Gianola 2002;
Gelman et al. 2003; Varona et al. 2005).

Both the double-exponential distribution and Stu-
dent’s t distribution can be presented as a two-level
hierarchical model (see, e.g., Andrews and Mallows

1974; Griffin and Brown 2006). Compared with their
original forms, the two-level hierarchical models are
easier to deal with both analytically and computationally.
In the two-level hierarchical models, the first level assumes
that the coefficients bj follow independent normal
distributions with mean zero and unknown variances t2

j ,

b j t2 �
Yp

j¼1

N ðbj j 0; t2
j Þ; ð4Þ

where t2 ¼ ðt2
1; � � � ; t2

pÞ. At the second level, we assume
that the variances t2

j follow some specified independent
prior distributions

t2 j u �
Yp

j¼1

pðt2
j j uÞ; ð5Þ

where u includes all the hyperparameters. The above
two-level priors result in a scale mixture of normal
distributions for the coefficients bj ,

b � pðb j uÞ ¼
Yp

j¼1

ð‘

0
N ðbj j 0; t2

j Þpðt2
j j uÞdt2

j ; ð6Þ

where pðt2
j j uÞ is referred to as the mixing distribution.

From this, we see that two-level hierarchical models
introduce different variance parameters for different
coefficients and hence induce different amounts of
shrinkage in the estimates of different coefficients. The
variance components are not the parameters of interest,
but they are useful intermediate quantities to facilitate
better inferences for the individual regression coeffi-
cients (e.g., Gelman 2005).

The double-exponential distribution (2) can be
presented as a mixture of normal distributions (4) with
the mixing distribution pðt2

j j uÞ being an exponential
distribution Expon(l2=2) or equivalently a gamma
distribution Gamma(1, l2=2),

p t2
j j l

� �
¼ Expon t2

j j
l2

2

� �
¼ l2

2
e�l2t2

j =2; ð7Þ

where l2=2 is the inverse scale that needs to be carefully
preset or estimated from the data.

For any values of l, the mode of the exponential
distribution Expon(l2=2)¼ 0, meaning that the ‘‘most
likely’’ values of t2

j and thus bj are zero. However, the
variance of t2

j is 4=l4, strongly depending on the value
of l. Instead of presetting a value for l, it is appealing
to assign a prior distribution to l also so that l can
be estimated along with other parameters. This pro-
cedure obviates the choice of l and automatically
accounts for the uncertainty in its selection that affects
the estimates of regression coefficients (Park and
Casella 2007). For convenience, we regard l2=2,
instead of l, as the parameter of interest. Following
Park and Casella (2007), we assign a conjugate
gamma prior Gamma(a, b), a . 0, b . 0, to the
parameter l2=2. Assigning a prior distribution to l2=2
provides a way to estimate l2=2. We set a and b as small
values (e.g., a ¼ 0.1 and b ¼ 0.1) so that the prior for
l2=2 is essentially noninformative.

Student’s t distribution (3) can be expressed as a
mixture of normal distributions (4) with the mixing
distribution pðt2

j j uÞ being a conjugate scaled inverse-x2

distribution Inv-x2ðn; s2Þ or equivalently an inverse gamma
distribution Inv-gamma(n=2, ðn=2Þs2),

pðt2
j j n; s2Þ

¼ Inv-x2ðt2
j j n; s2Þ} ðt2

j Þ�ðn=211Þexp �ns2= 2t2
j

� �� �
;

ð8Þ

where the hyperparameters n . 0 and s2 . 0 represent
the degrees of freedom and the scale of the distribution,
respectively.

The amount of shrinkage in the prior (8) depends on
the values of the hyperparameters n and s2. The
improper distribution pðt2

j Þ} t�2
j , which is equivalent

to the uniform distribution on log t2
j , has the form of

the inverse-x2 density with n ¼ 0 and s2 ¼ 0 and can be
taken as a limit of the proper inverse-x2 or inverse-
gamma densities. This improper prior in turn induces
an improper prior for bj of the form pðbjÞ} jbj j�1

(Griffin and Brown 2006). In the class of inverse-x2

densities, Inv-x2ð0; 0Þ has the constant degree of shrink-
age in the coefficient estimates. Xu (2003) actually used
this improper prior pðt2

j Þ} t�2
j in his shrinkage QTL

mapping.
We here treat n and s2 as unknown parameters, ob-

viating the choice of (n, s2) and automatically account-
ing for the uncertainty in its selection that affects the
estimates of the regression coefficients. We assign a uni-
form density on 1/n for the range (0, 1] and a uniform
distribution on s for the range (0, A� with A being a large
number (see Gelman et al. 2003).

The prior (4) on the coefficients bj is independent of
the residual variance and has been commonly used in
the literature. Park and Casella (2007) recently pro-
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posed an alternative version of the prior on bj that is
dependent on the residual variance s2,

b j t2 �
Yp

j¼1

N bj j 0; s2t2
j

� �
; ð9Þ

where t2 ¼ ðt2
1; � � � ; t2

pÞ. At the second level, the prior
distributions on t2

j take the same form as (7) or (8). This
conditional prior may have some advantages; for exam-
ple, it results in that l is unitless and posteriors induced
from (9) generally do not have more than one mode
(Park and Casella 2007).

We now have introduced two different priors for bj

and two different priors for t2
j . The two priors for bj are

p1ðbjÞ ¼ N ðbj j 0; t2
j Þ and p2ðbjÞ ¼ N ðbj j 0; s2t2

j Þ, re-
spectively. The two priors for t2

j are p1ðt2
j Þ ¼

Exponðt2
j j l2=2Þ and p2ðt2

j Þ ¼ Inv-x2ðt2
j j n; s2Þ, respec-

tively. This yields four possible combinations and thus
four different models. These four models are called
model I with prior p1ðbjÞp1ðt2

j Þ, model II with prior
p2ðbjÞp1ðt2

j Þ, model III with prior p1ðbjÞp2ðt2
j Þ, and

model IV with prior p2ðbjÞp2ðt2
j Þ.

POSTERIOR COMPUTATION

We fit the models using the MCMC algorithm, applied
to the joint posterior distribution of all the parameters
ðm; b; s2; t2; uÞ. The joint posterior distribution can be
expressed as

pðm; b; s2; t2; u j yÞ

}
Yn

i¼1

pðyi jm; b; s2ÞpðmÞpðs2Þ
Yp

j¼1

p bj j t2
j

� �
p t2

j j u
� �

pðuÞ;

ð10Þ

where y ¼ ðy1; � � � ; ynÞT , b ¼ ðb1; � � � ;bpÞ
T , t2 ¼ ðt2

1; � � � ;
t2

pÞ, u represents l for models I and II and (n; s2) for
models III and IV, pðyi jm; b; s2Þ is the normal density
function N ðm 1 Xib; s2Þ, and other terms in the right-
hand side are the priors defined in the last section. For
notational convenience, we suppress the dependence
on X here and afterward.

With the two-level hierarchical models as set up in the
last section, the joint posterior distribution pðm; b; s2;
t2; u j yÞ can be simulated using the MCMC algorithm,
alternately updating m from the normal distribution
pðm j y; b; s2Þ, updating each bj from the normal dis-
tribution pðbj j y; m; b�j ; s2; t2Þ, where b�j represents
all elements of b except bj , updating s2 from the inverse-
x2 distribution pðs2 j y; m; bÞ, updating each t2

j from the
inverse Gaussian (for models I and II) or inverse-x2 dis-
tribution (for models III and IV), and updating l2=2 from
the gamma distribution pðl2 j t2Þ (for models I and II), or
updating s2 from the gamma distribution pðs2 j t2; nÞ and
updating n from pðn j y; m; b; s2; t2Þ, using a Metropolis
step (for models III and IV).

The two-level hierarchical modeling allows us to easily
derive the above conditional posterior distributions
(see appendix a). For all the four proposed models,
however, the above MCMC algorithms can be per-
formed directly using the Bayesian software WinBUGS14
(Spiegelhalter et al. 2002), and thus we actually do not
need to derive the conditional posteriors. However, the
expressions of the conditional posteriors allow us to
develop faster, purpose-built programs. The WinBUGS
code implementing these four hierarchical models can
be obtained by request from the first author.

The MCMC algorithm proceeds to draw each un-
known from its fully conditional posterior distribution,
given the current values of all other unknowns and the
observed data. Each iteration of the MCMC algorithm
cycles through all elements of ðm; b; s2; t2; uÞ. This pro-
cess continues for a large number of iterations to obtain
random samples from the joint posterior distribution.
We run multiple parallel chains with overdispersed
starting points and use the potential scale reduction
factor R̂ that compares the between- and within-se-
quence variances for any scalar estimands, to monitor
convergence (Gelman et al. 2003). We use the condition
of R̂ , 1.1 for all scalar estimands of interest as the
criteria of convergence. Once our simulations have
converged, we continue to draw thousands of simula-
tions and treat them as a sample from the joint posterior
distribution. We thin the sequences by keeping every
kth simulation draw from each sequence and discarding
the rest (e.g., k ¼ 100).

POSTERIOR SUMMARY AND INTERPRETATION

The proposed Bayesian hierarchical models can pro-
vide various graphical and tabular summaries that assess
the contribution of individual loci while adjusting for
effects of all other possible loci. One of such summaries
is the estimate of the genetic effects bj associated with
each marker. Furthermore, using the posterior samples
of bj and the observed values xij , we can also calculate
the proportion of the phenotypic variance explained by
each effect (i.e., heritability), h2

j ¼ Vj b
2
j =Vy, where Vy is

the phenotypic variance and Vj is the sample variance of
fxij ; i ¼ 1; � � � ;ng. The heritability h2

j is independent of
the scale of the phenotype, while the effect size bj

depends on it. The fully Bayesian analysis usually uses
the posterior median or mean to estimate bj and h2

j and
also can provide the posterior interval for the estimate.

The Bayesian hierarchical models shrink the ‘‘in-
significant’’ coefficients to zero, and hence the posterior
estimates of bj and h2

j can guide variable selection.
However, these posterior summaries do not automati-
cally provide a criterion to declare that an effect is ‘‘in’’
the model. Hoti and Sillanpää (2006) suggest setting
a threshold value, c, such that the standardized effect bj

is included if jbj j. c. Note that the summary statistic,
heritability, is essentially the same as the standardized
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effects in Hoti and Sillanpää (2006). Yang and Xu

(2007) proposed using a Wald test statistic.
We here construct an alternative measurement that is

similar to the widely used LOD score in the traditional
QTL mapping approach if the phenotype is affected by
a single QTL (Lander and Botstein 1989), following
the idea of Yandell et al. (2007) (also see the vignette in
the package R/qtlbim). We call this statistic the approx-
imate Bayesian LOD score. The approximate Bayesian
LOD score can be conveniently compared with the LOD
curve obtained from the traditional interval-mapping
approach. Our Bayesian LOD score considers the
contribution of a given locus to the LOD after adjusting
effects for all other possible loci. For marker j, the
Bayesian LOD score (BLOD) is calculated as

BLODj ¼ 2 log10

Q
n
i¼1 N ðyi jm 1 Xib; s2ÞQ

n
i¼1 N yi jm 1 Xib� xij bj ; s2

j

� �
0
@

1
A;
ð11Þ

where the values of m, b, and s2 are the simulated draws
in a certain iteration, and s2

j ¼ ð1=ðn � 2ÞÞ
Pn

i¼1ðyi �
m� Xib 1 xij bjÞ2, the mean of the conditional posterior
pðs2 j y; m; b�jÞ ¼ Inv-x2 n; ð1=nÞ

Pn
i¼1ðyi � m� Xib 1

�
xij bjÞ2Þ. Note that although we adjust for the residual
error variance, we use the simulated draws under the full
model (including xijbj) to calculate the likelihood
function for the reduced model (without xijbj).

REAL DATA ANALYSIS

The well-known barley data set from the North Amer-
ican Barley Genome Mapping Project (Tinker et al. 1996)
was analyzed using the four proposed Bayesian hierarchi-
cal models. This data set has been extensively analyzed

using different methods (Tinker et al. 1996; Xu 2003,
2007; Yi et al. 2003, 2005; Zhang et al. 2005; Xu and Jia
2007). The data were collected from a doubled-haploid
population that contained n¼ 145 lines; each was grown
in 25 different environments. The phenotype analyzed
was the average value of kernel weight across environ-
ments. A total of p ¼ 127 mapped markers covering a
genome of 1500 cM (seven chromosomes) were used in
the analysis. Observed marker genotypes were coded as
�0.5 for one genotype and 10.5 for the other genotype.
The data contain �5% missing marker genotypes. The
missing marker genotypes were replaced by their ex-
pected values conditioning on the observed marker data
using the multipoint method. We simultaneously mod-
eled all 127 marker effects in the linear regression (1).

For all four proposed models, the MCMC simula-
tions were performed in the Bayesian software Win-
BUGS14 (Spiegelhalter et al. 2002), linked from the
R statistical computing software (Sturtz et al. 2005;
R Development Core Team 2006), which we can use to
conveniently plot the results. For each analysis, we ran
three parallel simulation sequences with starting points
randomly generated from the prior distributions. The
models with the dependent prior (9) (models III and
IV) were found to converge slightly quicker than those
with the independent prior (4) (models I and II). For
all four models, the potential scale reduction factor R̂
values fell below 1.1 for all parameters after �5000 iter-
ations, indicating that the chains converged adequately
(data not shown). For each of the three parallel se-
quences, therefore, we ran a total of 20,000 iterations
and discarded the first halves to allow adequate conver-
gence. The remaining 10,000 posterior samples of each
sequence were thinned to 1000 for estimating the
posterior distribution of quantities of interest by keep-
ing every 10th simulation draw from each sequence and

Figure 1.—Posterior medians (points) and
95% intervals (shaded lines) for genetic effects
and the proportion of the phenotypic variance
explained by each effect (i.e., heritability).
(Top) Plots drawn from model I; (bottom) plots
for model II. Inner tick marks on the x-axis rep-
resent the marker positions.
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discarding the rest. On a dual processor 2.4-GHz ma-
chine, each analysis took �4.5 hr.

To investigate whether or not posterior inferences are
affected by the values of the shape a and the inverse
scale b in the gamma prior Gamma(a, b), we analyzed
models I and II with four different values of (a, b), a ¼
b¼ 0.01, 0.1, 0.5, 1. Under the four analyses, the posterior

estimates of the parameters ðm; b; s2; t2Þ were identical,
but the inverse scale l2=2 differed slightly.

Figure 1 shows the posterior medians and the 95%
posterior intervals for the marker effects bj and the
proportion of the phenotypic variance explained by
each effect (i.e., heritability) h2

j . Models I and II pro-
duced almost identical results, both being able to
identify markers with large effects. The analyses showed
four chromosomes (7, 1, 3, and 2) with strong evidence
of QTL. The QTL on chromosome 3 was found to have
an opposite effect on the phenotype to the other
detected QTL and was missed in the analysis of Xu

(2003), who used the improper prior pðt2
j Þ} t�2

j . The
difference may also be caused by the different ways of
treating missing marker genotypes for the two methods.
As can be seen in Figure 1, the plots of the heritability
can provide a clearer picture than those of the effect.

Figure 2 shows the histograms of the inverse scale
l2=2 for the analyses of models I and II with a¼ b¼ 0.1.
We can see that the hyperparameter l2=2 can be
estimated with quite high precision. For model I, the
inverse scale parameter was estimated at 32.0, with a
95% posterior interval of ½20.6, 50.5�. However, model II
provided a much smaller estimate, with a posterior
median of 5.1 and a 95% posterior interval of ½2.8, 9.8�.
We know that in the exponential distribution a larger
inverse scale forces stronger shrinkage. Figure 1 shows
that models I and II perform at the same level of
shrinkage in the coefficient estimates. This can also be
shown by looking at the estimated s2, which was 0.3, ,1.

Figure 3 depicts the posterior medians and the 95%
posterior intervals for marker effect bj and the herita-
bility h2

j from the analyses of models III and IV. Models
III and IV produced identical results, similar to those
from models I and II. However, the Inv-x2 prior distri-
butions on t2

j produced slightly larger posterior me-

Figure 2.—Histogram of the posterior samples for the in-
verse scale of the exponential prior on the variances. The dot-
ted lines represent the posterior 5, 50, and 95% quantiles.
The left and right plots show inferences for models I and
II, respectively.

Figure 3.—Posterior medians (points) and
95% intervals (shaded lines) for genetic effects
and the proportion of the phenotypic variance
explained by each effect (i.e., heritability).
(Top) Plots drawn from model III; (bottom) plots
for model IV. Inner tick marks on the x-axis rep-
resent the marker positions.
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dians and wider posterior intervals for bj and h2
j . The

degrees of freedom and scale parameters can be esti-
mated from the data. Figure 4 shows the histograms of
these two hyperparameters for the analyses of models III
and IV. The two models produced similar estimates for
the degrees of freedom, with the posterior median at 2.1

and the 95% posterior interval of ½1.2, 5.3�. However, the
estimate of the scale parameter for model IV was three
times as large as that for model III.

Figure 5 (top) shows the posterior medians and the
95% posterior intervals for the Bayesian LOD score
for model I. The other three models produced similar
estimates (data not shown). For comparison, Figure 5
(bottom) also shows the LOD score curve calculated by
the traditional interval mapping based on a single-QTL
model. If we use the standard threshold value of 3.2,
the interval mapping identified only two regions (on
chromosomes 7 and 1, respectively), which have larger
effects in our analyses. Our Bayesian models produced
much higher estimates of LOD score and detected more
significant QTL.

In the proposed two-level hierarchical models, the
amount of shrinkage in the coefficient estimates is
largely determined by the hyperparameters in the
priors. It is expected that optimal values of the hyper-
parameters depend on the data and the number of
variables included, which makes it difficult to preset
their values. To illustrate this, we analyzed the data with
only markers on chromosomes 1, 3, and 7 included in
the model. Figure 6 displays the plots of marker effects,
showing that we were still able to detect the same QTL as
in our previous analyses. As shown in Figure 7, however,
the posterior estimates of the hyperparameters were
different from those in the previous analyses.

DISCUSSION

We have presented four Bayesian hierarchical models
that can be used to simultaneously fit and estimate all

Figure 4.—Histogram of the posterior samples for the de-
grees of freedom and scale of the Inv-x2 prior on variances.
The dotted lines represent the posterior 5, 50, and 95% quan-
tiles. The top and bottom plots show inferences for models III
and IV, respectively.

Figure 5.—The top plot shows posterior me-
dians (points) and 95% intervals (shaded lines)
for the approximate Bayesian LOD score from
model I, and the bottom plot shows the LOD
score curve from traditional interval mapping.
The dotted lines represent the standard thresh-
old value of 3.2. Inner tick marks on the x-axis
represent the marker positions.
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possible genetic effects associated with all molecular
markers across the entire genome. We found that these
four methods perform equally well. It is known a priori
that most markers have no or little effect on the phe-
notype, but if a marker has an effect, it could be large. To
incorporate this prior knowledge into our analysis, we
set up a continuous form of prior distribution for ge-
netic effects that gives each effect a high probability of
being near zero and also enables us to accommodate
large effects. We have considered two such priors—double
exponential distribution and Student’s t distribution—

that can be expressed as scale mixtures of normal
distributions with mean zero and unknown variances
distributed as exponential and scaled inverse-x2 distri-
butions, respectively. The former prior results in a
Bayesian LASSO model (Tibshirani 1996; Yuan and
Lin 2005; Park and Casella 2007), and the latter
includes Jeffrey’s noninformative prior as a special case
(Gelman 2006).

Both the exponential and the scaled inverse-x2 dis-
tributions include hyperparameters that determine the
degrees of shrinkage in the estimates of the variances

Figure 6.—Posterior medians (points) and
95% intervals (shaded lines) for genetic effects
from all four models using markers on chromo-
somes 1, 3, and 7. Inner tick marks on the x-axis
represent the marker positions.

Figure 7.—Histogram of the posterior samples
for the hyperparameters of priors on variances.
The dotted lines represent the posterior 5, 50,
and 95% quantiles. The top plots show inferences
for models I and II, respectively, the middle plots
show inferences from model III, and the bottom
plots show inferences from model IV.
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and thus the genetic effects. A common practice is to
preset values for the hyperparameters using methods
like cross validation (Tibshirani 1996; Meuwissen et al.
2001; Xu 2003; Bao and Mallick 2004; Xu 2007).
However, optimal values depend on the data and thus
may be difficult to choose. A novel aspect of our ap-
proach is to treat all hyperparameters as unknowns and
estimate them along with other parameters. This pro-
cedure allows us to control the amount of shrinkage by
taking advantage of the characteristics of the data. In
contrast, Jeffrey’s prior includes no hyperparameter but
always forces a constant degree of shrinkage. Xu (2003)
showed that Jeffrey’s prior yields good performance, but
we observed that it converges more slowly than our
proposed methods.

We fit the models in a fully Bayesian approach,
employing the MCMC simulation to generate posterior
samples from the joint posterior distribution, which can
be used to make various posterior inferences. Although
computationally intensive, it is easy to implement and
provides not only point estimates but also interval
estimates of all parameters. We have proposed graphical
tools to summarize the posterior samples, notably the
approximate Bayesian LOD score that can be easily
compared with the results from traditional interval
mapping. However, we realize that these tools still are
informal and descriptive, due to the lack of formal
threshold value to select markers. A formal choice of
threshold value will be a topic of future research.

The fully Bayesian approach enables us to obtain
much richer inferences about the models than most
non-Bayesian analyses. In practice, however, it is desir-
able to have a quicker calculation that merely looks for
posterior modes rather than fully investigating the
posterior distribution. The original LASSO estimates
for linear regression coefficients are equivalent to Bayes-
ian posterior mode estimates when the coefficients have
independent and identical double-exponential priors
(Tibshirani 1996). The two-level hierarchical formu-
lation enables us to find posterior modes using vari-
ous algorithms, e.g., conditional maximization (Zhang

and Xu 2005), the EM algorithm, and its extensions
(Figueiredo 2003; Foster et al. 2007; Xu 2007). How-
ever, these methods have been developed on the basis of
preset hyperparameters. Further investigation is neces-
sary to extend the mode-searching algorithms to the
proposed hierarchical models.

The proposed models have been used to fit all
markers and estimate their effects. The methods can
be easily extended to detect QTL within marker
intervals. The idea is to insert loci within each marker
interval as possible positions of QTL and put a reason-
able number of loci on each chromosome with positions
treated as parameters (Wang et al. 2005). An additional
Metropolis step is then used to update the positions.
Future research also will consider epistatic effects and
extensions to complicated experimental crosses. Com-

putationally efficient algorithms are an essential feature
for the practical analysis of these more complicated
cases. We are in the process of developing purpose-
specific computer programs that would significantly
reduce the computing time. Our hierarchical models
assign marker effects independent priors with a single
prior mean. However, it is desirable to develop hierar-
chical priors to allow shrinkage of coefficients toward
multiple prior means with the locations of these means
unknown and to accommodate the spatial covariance
structure along markers (Gianola et al. 2003).
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National Science Foundation grant DBI-0345205 and the National
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ture Cooperative State Research, Education, and Extension Service
no. 2007-02784 to S.X.
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APPENDIX A: CONDITIONAL POSTERIOR DISTRIBUTIONS

The two-level hierarchical models presented in this study have explicit forms of conditional posterior distributions
for parameters and hyperparameters. These conditional posterior distributions are required to perform the MCMC
algorithm. The posterior distributions are presented in this section.

Conditional on the parameters ðt2; uÞ, the models are the standard weighted linear regressions, and thus the
conditional posterior distributions of ðm; b; s2Þ are

m j y; b; s2; t2; u � N
1

n

Xn

i¼1

ðyi � XibÞ;
1

n
s2

 !
ðA1Þ

s2 j y; m; b; t2; u � Inv-x2 n;
1

n

Xn

i¼1

ðyi � m� XibÞ2
 !

ðA2Þ

bj j y; m; b�j ; s2; t2; u � N

P
n
i¼1 xij yi � m�

Pp
k 6¼j xikbk

� �
P

n
i¼1 x2

ij 1 Vj
;

s2P
n
i¼1 x2

ij 1 Vj

0
@

1
A; j ¼ 1; � � � ; p; ðA3Þ

where b�j represents all elements of b except bj , and Vj ¼ s2=t2
j for models I and III or Vj ¼ 1=t2

j for models II and IV.
For models I and II, the conditional posterior distribution of t�2

j is inverse Gaussian,

t�2
j j y; m; b; s2; l2 � InvGauss

ffiffiffiffiffiffiffiffiffiffi
l2s2

b2
j

s
; l2

 !
; j ¼ 1; � � � ; p: ðA4Þ

A relatively simple algorithm is available for simulating from the inverse Gaussian distribution (Chhikara and Folks

1989). With the conjugate prior Gamma(a, b), the conditional posterior distribution of the hyperparameter l2 in the
prior (7) is gamma
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l2 j y; m; b; s2; t2 � gamma
�

p 1 a;
Xp

j¼1

t2
j =2 1 b

�
; j ¼ 1; � � � ; p: ðA5Þ

For models III and IV, the conditional posterior distribution of t2
j is inverse-x2,

t2
j j y; m; b; s2; n; s2 � Inv-x2 n 1 1;

ns2 1 b2
j

n 1 1

 !
; j ¼ 1; � � � ; p: ðA6Þ

The conditional posterior distribution of the scale parameter s2 in the prior (8) is gamma

s2 j y; m; b; s2; n � gamma
pn

2
;

n

2

Xp

j¼1

1

t2
j

 !
: ðA7Þ

The conditional posterior of the degrees of freedom n has no standard form. Therefore, a Metropolis step is required
to update n in each iteration.
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