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Defining the protein profiles of tissues and organs is critical to understanding the unique
characteristics of the various cell types in the human body. In this study, we report on an
anatomically comprehensive analysis of 4842 protein profiles in 48 human tissues and 45 human
cell lines. A detailed analysis of over 2 million manually annotated, high-resolution, immunohis-
tochemistry-based images showed a high fraction (465%) of expressed proteins in most cells and
tissues, with very few proteins (o2%) detected in any single cell type. Similarly, confocal
microscopy in three human cell lines detected expression of more than 70% of the analyzed
proteins. Despite this ubiquitous expression, hierarchical clustering analysis, based on global
protein expression patterns, shows that the analyzed cells can be still subdivided into groups
according to the current concepts of histology and cellular differentiation. This study suggests that
tissue specificity is achieved by precise regulation of protein levels in space and time, and that
different tissues in the body acquire their unique characteristics by controlling not which proteins
are expressed but how much of each is produced.
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Introduction

Recently, a detailed study of 1% of the human genome showed
that chromosomes are pervasively transcribed and that the
majority of all bases are included in primary transcripts
(Birney et al, 2007). This has been recently confirmed by
extensive parallel sequencing of transcripts, which has shown
that a large fraction (70%) of the predicted 20 400 (Clamp et al,
2007) protein-encoded genes can be detected in a single
human cell line (Sultan et al, 2008). In addition, a vast number
of alternative splicing events have been identified, adding to
the complexity and ubiquitous expression of the human
transcriptome (Tress et al, 2007; Wang et al, 2008). This
plasticity at the RNA level is even further accentuated by the
presence of an immense numbers of inhibitory RNAs (Yelin
et al, 2003; Katayama et al, 2005) and the recent discovery that

tens of thousands of binding sites are present across the
genome, as shown by genome-wide profiles of the DNA
binding of mammalian transcription factors (Robertson et al,
2007). The question arises whether this ubiquitous RNA
expression is also translated to the protein level and how this
relates to central biological questions regarding the link
between protein expression profiles and cellular phenotypes,
and the divergence of protein levels in differentiated cells from
normal and disease tissues.

We have previously described the high-throughput genera-
tion of antibodies and subsequent creation of a Human Protein
Atlas (http://www.proteinatlas.org) based on tissue micro-
arrays (TMAs), immunohistochemistry, and immunofluores-
cence (Berglund et al, 2008). In this study, we describe, for the
first time, a systematic analysis of global protein expression
patterns generated from this public resource. We have
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examined the spatial distribution and the relative abundance
of proteins in the different cell populations of various tissues in
all major human tissues and organs, including the brain, liver,
kidney, lymphoid tissues, heart, lung, skin, GI tract, pancreas,
endocrine tissues, and the reproductive organs. Thus, it has
been possible to assess the functional associations between
phenotypically different cells and to study the relationship
between protein expression profiles and developmental origin.

Results and discussion

Global protein profiling in 65 normal human
cell types

An unsupervised cluster analysis (Eisen et al, 1998) was
carried out based on the protein levels in 65 normal cell types.
The variability introduced by the individual experimental
staining protocol, including the choice of antibody dilution
and antigen retrieval methods, was addressed by the use of
TMAs (Kononen et al, 1998), thus allowing parallel determi-
nation of the relative levels of a particular protein target,
within its dynamic range, across hundreds of biosamples
(Warford et al, 2004; Taylor and Levenson, 2006). Annotations
of more than 2 million images were performed by certified
pathologists, and the relative expression level of a particular
protein was translated into a four-color code ranging from
strong (red), moderate (orange), weak (yellow), and no
(white) protein expression (Kampf et al, 2004; Bjorling et al,
2008). It is important to point out that this color code
represents the relative expression levels of a particular protein
across tissues and organs, but the absolute levels of each
protein have not been determined and could vary by many
orders of magnitude. Although the level at which it is
appropriate to divide cell types into categories is arbitrary,
the resulting heat map (Figure 1) shows that the cells cluster
into groups that could be expected on the basis of traditional
embryology, histology, and anatomy, with most of the cells
divided into six major groups: (i) cells of the central nervous
system (CNS); (ii) hematopoietic cells; (iii) mesenchymal
cells; (iv) cells with squamous differentiation; (v) endocrine
cells; and (vi) glandular and transitional epithelial cells.
Further subdivision is also evident, as exemplified by (i)
separate subgroups containing neuronal and glial cells in the
CNS cluster; (ii) subdivision of cells from the male and female
genital tracts; and (iii) a distinct subcluster of glandular cells
from the GI tract. The liver hepatocytes, together with striated
and heart muscle cells (myocytes), have the most divergent
protein profiles.

Sensitivity analyses were also carried out using proteins
encoded from single human chromosomes to obtain a random
stratification of a substantially smaller subset of the proteome.
Similar dendrograms were obtained for the chromosome
specificity (Supplementary Figures S1–S3), as well as random
groups of 200 antibodies (Supplementary Figures S4–S6),
suggesting that the phenotype of the cells is generated by a
large fraction of human proteins, as a random sampling of only
B1% of the protein-encoded genes (200 proteins) are
sufficient to group the cells in a nearly identical pattern
compared with the whole data set. The dendrogram shows that
cells with similar cellular functions exhibit similar protein

profiles, as exemplified within the hematopoietic cell cluster,
in which germinal center cells and peri-follicular lymphoid
cells have a more closely related expression profile than the
more distant hematopoietic cells in the bone marrow.
Similarly, the myocytes in cardiac and striated muscle have
similar expression profiles, and these are distinctly different
from smooth muscle cells and other stroma cells in the
mesenchymal cell cluster.

Protein profiles and developmental origin
of the cells

The similarity in protein profiles often coincides with the
putative developmental origin (endoderm, ectoderm, or
mesoderm) of cell types, as shown by different color codes
for branches of the dendrogram (Figure 1). This can be
exemplified by glandular cells in the GI tract, which are
derived from the endoderm, cells in the CNS originating from
the neuro-ectoderm, and hematopoietic/mesenchymal cells
derived from the mesoderm. For certain cell types, morpho-
logical differentiation supersedes developmental origin, as
exemplified in the cluster of cells with squamous differentia-
tion, in which cells from all three germ layers are represented:
surface epithelia of the esophagus (endoderm), epidermal cells
from the skin (ectoderm), and surface epithelia from intra-
vaginal elements of the cervix (mesoderm). These patterns
show that global protein profiles in differentiated normal cells
reflect the pluripotent origin of the corresponding stem cells in
different germ layers, but that functional convergence also
exists resulting in similar expression profiles that are
independent of developmental origin.

The tissue-specific protein expression in 65 cell
types corresponding to 48 tissues and organs

Expression analysis can be used to estimate the relative level of
different protein expressions in each cell type. An analysis of
the fraction of cell types containing each protein is shown in
Figure 2A, with the cells classified into groups exhibiting
strong (red), medium (orange), or weak (yellow) expression.
The analysis indicates that a large proportion of the proteome
is expressed across many of the 65 cell types: 20% (949) of the
proteins are found at detectable levels in X60 cell types,
whereas only 3% (150) are detected in less than six cell types.
A similar analysis was conducted to study the fraction of
analyzed proteins (4842) that are detected in each cell type
(Figure 2B). This showed that a large fraction of protein-
encoding genes are present in any given cell type, with an
average of 68% (range 40–84%) of all proteins expressed. The
supportive cells are the most specialized, for example, glial
cells in the CNS and stroma cells in the endometrium and
ovary. In contrast, the study showed that several glandular
cells have as many as 80% of the analyzed proteins present at
detectable levels, and this raises the question how much the
result is influenced by background staining due to nonspecific
binding or cross-reactivity to homologous proteins. To explore
this issue, a sensitivity analysis was carried out, using various
subfractions of the antibodies (see Supplementary Table S1)
with the selection based on paired antibodies with high
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confidence or documented supportive western blots. The
analysis showed essentially the same results as when all
antibodies were used (Supplementary Figures S7, S8 and Table
S2), with an average of 61–71% of the proteins detected across
the 65 cell types.

Differential expression in selected human
cell types

A study was performed to explore the difference in protein
expression in three cells with distinctly different phenotypes,
namely hepatocytes from the liver, neurons from the cerebral
cortex of the brain, and lymphoid cells from the germinal
center of the lymph nodes. A network analysis (Shannon et al,
2003) showed (Figure 2C) that as much as 90% of the

antibodies (n¼5138) detect proteins that are expressed
in at least one of the three cells and few proteins are detected
exclusively in one of the cells, as exemplified by the brain
(9%). However, the cells still display a highly differentiated
global expression pattern as shown by the fact that only
6% of the proteins are expressed at the same level in all
three cell types. We extended this study to explore the
protein profiles in three more closely related cell types:
glandular cells in the colon, epidermal cells from the skin,
and urothelial cells from the bladder. In this case, a smaller
fraction (59%) of the antibodies (n¼3376) detect proteins in
all three cells and a larger fraction (17%) of the proteins were
scored with the same expression level in all three cells
(Figure 2D). However, considering the fact that these cells
share a common epithelial phenotype, it is interesting that
a large fraction (74%) of the proteins still have differential
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Figure 1 Global protein profiling in 65 normal human cell types. A dendrogram showing the relationships, based on global expression profiling, between the various cell
types. The dendrogram was constructed using a hierarchical clustering model; the inset shows the original heat map. The underlying data are based on manual
annotation of protein expression patterns in 65 normal cell types using 5934 antibodies corresponding to 4842 proteins. The dendrogram bars are labeled according to
the proposed origin within the embryonic germ cell layers: ectoderm (blue), mesoderm (red), and endoderm (green). The cell types have been classified into six
categories according to the color code to the right. A list of all the cell types can be found in Supplementary Table S2. The dendrograms for proteins encoded on single
chromosomes are shown in Supplementary Figures S1–S3 and for random sets of 200 antibodies in Supplementary Figures S4–S6.
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Figure 2 The tissue-specific protein expression in 65 cell types corresponding to 48 tissues and organs. (A) The fraction (%) of cells in which a particular protein was
detected, including the fraction of cells with the relative expression levels strong (red), moderate (orange), and weak (yellow). A total of 5934 antibodies against 4842
proteins are arranged according to abundance of the corresponding protein target with cell-type-specific proteins to the left and ‘housekeeping proteins’ to the right. The
results for the various subfractions of antibodies are presented in Supplementary Figure S7. (B) The fraction (%) of the analyzed proteins detected in a specific cell type.
Cells are arranged according to the fraction of proteins detected. A bar displaying the different color codes representing the six major categories of normal cell types
(defined in Figure 1) is shown for each cell type. The name of each cell type is shown in Supplementary Table S2 and the results for the various subfractions of antibodies
are presented in Supplementary Figure S8. Black represents missing data, i.e., where there was no representative cell type for a given immunostaining. The six cell types
analyzed in C and D are pointed out by arrows. (C) A Cytoscape network plot (Shannon et al, 2003) showing the distribution of the analyzed proteins detected in at least
one of the three cell types analyzed; liver hepatocytes, neurons of the cerebral cortex of the brain, and lymphoid cells from the germinal center of the lymph node. Each
antibody/protein is represented by a small circle that is connected by a line/lines to the cells it was detected in. The color of the circle indicates the variability of staining
intensity between the different cell lines; green indicates that all cell lines belonged to the same staining intensity category, yellow indicates that two cell lines belonged to
the same staining intensity category, and red indicates that the staining intensity category was different for all three cell lines or only detected in a single cell. (D) A similar
network plot based on the analysis of protein expression in glandular cells in the colon, epidermal cells from the skin, and urothelial cells from the bladder. (E) Six
examples of proteins with essentially unknown functions that exhibit cell-type-specific expression. Testis—maturing spermatocytes and spermatids in the testicular
seminiferous duct show strong partly membranous positivity with an antibody generated toward the uncharacterized protein RIMS-binding protein 3A. Muscle—striated
skeletal muscle is shown with a fiber-type-specific sarcoplasmic positivity with an antibody directed toward an unknown protein encoded by C1orf130. Placenta—the
expression of angiomotin-like protein 1 in placental tissue (immature) shows strong membranous positivity in basal cytotrophoblasts with moderate cytoplasmic positivity
in syncytiotrophoblasts and exhibits distinct expression in the brush-border membrane. Seminal vesicle—glandular cells in the seminal vesicle were the only cells found
to express embigin, a previously unknown protein. Prostate—in the prostate, moderate positivity was found with a membranous expression pattern for beta-2-syntrophin
protein (SNTB2), a protein with unknown functions that has been shown to co-purify, with dystrophin, the protein product of the Duchenne muscular dystrophy locus.
Stomach—in the stomach mucosa the previously unknown coiled-coil domain-containing protein 22 (CCDC22) was expressed in the parietal cells, producers
of hydrochloric acid in response to histamine, acetylcholine, and gastrin.
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expression across the three cell lines. As expected, cells with
more similar functions show less differences in global protein
expression patterns compared with those with widely different
functions. Despite the high fraction of overall expression of
proteins, the given examples show that only 6% of expressed
proteins are expressed at the same level in widely different cell
types compared with 17% in more closely related cell types.
The network analysis provides a further insight into the
dynamics of cellular phenotypes and functions as a conse-
quence of differences in protein signatures and allows for a
novel angle to determine which cell types are most similar
(and most dissimilar) irrespective morphological traits and
functions.

Analysis of tissue-specific proteins

To identify tissue-specific proteins, we analyzed how many
proteins could be detected exclusively in a single cell and
this query resulted in a list of 74 proteins (Supplementary
Table S4). The list included several previously well-known
cell-type-specific proteins, such as insulin, glucagon, IAPP
(Langerhans islets), troponins (muscle), PSA, ACPP
(prostate), and several CD markers (hematopoietic cells).
The analysis also identified a subset of cell-type-specific

proteins for which there is no or little information, including
proteins exclusively expressed in the testis, skeletal
muscle, placenta, seminal vesicle, prostate, and stomach
(Figure 2E). Several of these proteins showed a remarkable
specificity, with expression in only a subset of the entire
annotated cell population, for example, expression in parietal
cells of the stomach mucosa and fiber-type-specific
expression myocytes. Expanding the query to include similar
cell types at different locations, for example, the nine
annotated cell populations in the brain, also showed a
surprisingly low number (n¼30) of proteins exclusively
expressed in the brain (data not shown). These results are
somewhat surprising considering the numerous reports
describing genes expressed in a tissue-specific manner
(Saito-Hisaminato et al, 2002), in particular examples of genes
exclusively expressed in the brain, such as the KIAA genes
(Ishikawa et al, 1997) In summary, our analysis shows a
surprisingly low fraction (o2%) of proteins expressed in a
single or only few distinct types of cells. The few cell- or tissue-
specific proteins that were found are, of course, interesting
starting points for further studies and this is facilitated by the
fact that all the annotation results and the underlying original
images are available as a public resource from the Human
Protein Atlas portal.
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Figure 3 Global protein expression in 45 human cell lines. (A) The fraction (%) of the 45 cell lines in which a particular protein was detected, including the fraction of the
three relative expression levels: strong (red), moderate (orange), and weak (yellow). Each bar represents one of the 4096 antibodies with no missing data, i.e., where all
cell lines were represented. (B) The fraction (%) of a total number of 5349 antibodies against 4349 proteins detected in a specific cell line, and with the cell lines ordered
according to the fraction of proteins detected. The corresponding name and number of each cell line is shown in Supplementary Table S3 and the results for the various
subfractions of antibodies are presented in Supplementary Figure S9. The same three staining categories were used and the black (top) part of the bar represents
antibodies with missing data for the particular cell line. Arrows point out the three cell lines used in immunofluorescence analysis. (C) The fraction of cell lines in which
each protein from a data set of 714 antibodies with supportive results from western blot analysis was detected. (D) A plot similar to C, with each bar representing one of
the 257 antibodies remaining from a data set of paired HPA-antibodies, i.e., toward the same target protein, with no missing data for any of the cell lines, and a correlation
coefficient of X0.5 when cell line expression profiles were analyzed. (E) Same as D, but displaying only the results from the 75 antibodies with a correlation coefficient of
X0.8 and no missing data. (F) An example of cells, visualizing the interpretation of immunostaining by an automated image analysis software.
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Global protein expression in 45 human cell lines

As all the immunohistochemical images from the TMAs were
manually annotated by pathologists involving subjective
scoring, we decided to carry out the same analysis on 45
human cell lines in which an automated image analysis
algorithm have been used (Stromberg et al, 2007; Lundberg
et al, 2008). The data from 5349 antibodies corresponding to
4349 genes were analyzed, involving more than 450 000
additional images, and the results are shown in Figure 3. A
pattern of protein expression similar to that for tissues and
organs was recorded for the in vitro cultured cells, with most
proteins expressed in the majority of the 45 cell lines
(Figure 3A) and nearly 80% of the proteins expressed across
all the analyzed human cell lines (Figure 3B and Supplemen-
tary Table S3). A sensitivity analysis using antibodies with
supportive western blots (Figure 3C) or paired antibodies with
highly correlated expression patterns (Figure 3D and E, and
Supplementary Figure S9) produced similar results. An

example of the automated image analysis algorithm can be
seen in Figure 3F.

Global protein expression in cell lines using
confocal microscopy

The immunohistochemical analysis, based on an enzyme
amplification method, is semiquantitative and we therefore
decided to extend the study using immunofluorescence
analysis with confocal microscopy. An analysis of three
selected human cell lines (Barbe et al, 2008) of epithelial
(A-431), glial (U251-MG), and mesenchymal (U-2 OS) origin
was carried out for 2,064 proteins (see Figure 4C). More than
70% of the proteins were detected in each of the three cell lines
(Figure 4A), even when proteins without a defined subcellular
localization (i.e., with weak, granular, and cytoplasmic
staining) were excluded. Only 14% of the proteins could not
be detected in any of the three cell lines. A plot was generated
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Figure 4 Global protein expression in three human cell lines using immunofluorescence-based confocal microscopy. (A) The fraction (%) of proteins detected in the
three analyzed cell lines. The stainings are classified into the categories strong (red), moderate (orange), and weak (yellow) based on their measured intensity. Stainings
annotated as weak with a granular cytoplasmic subcellular distribution (i.e., not a distinct cytoplasmic organelle or component) are considered less reliable (shown in
gray). (B) A Cytoscape network plot (Shannon et al, 2003) showing the distribution of the analyzed proteins detected in at least one of the three cell lines. Each antibody/
protein is represented by a small and the color of the circle indicates the variability of staining intensity between the different cell lines; green indicates that all cell lines
belonged to the same staining intensity category, yellow indicates that two cell lines belonged to the same staining intensity category, and red indicates that the staining
intensity category was different for all three cell lines. (C) Three example images of immunofluorescently stained U-2 OS showing proteins from the different categories
(green, yellow, and red) in panel B and with different subcellular localizations. The protein of interest is shown in green, microtubules in red, and nuclei in blue. The first
image (left) shows the 60-kDa heat shock protein (HSPD1) to be localized in the mitochondria and give a strong staining intensity in all three cell lines (green category) as
detected by the antibody HPA001523. The second image (middle) shows the four and a half LIM domains protein 2 (FHL2) to be localized at focal adhesion sites in the
cytoskeleton and give a strong staining intensity in U-2 OS and a moderate staining intensity in A-431 and U-251 MG (yellow category) as detected by the antibody
HPA006028. The third image (right) shows the uncharacterized protein KIAA1467 to be localized in the endoplasmic reticulum and give a strong staining intensity in U-2
OS, moderate in A-431, and weak in U-251 MG (red category) as detected by the antibody HPA010803.
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to show the number of proteins expressed in one, two, or all
cell lines (Figure 4B), and the results show that the majority
(72%) of the antibodies (n¼1384) detect proteins in all three
cell lines and that only 11% of the proteins are detected in just
one out of the three cell lines. As to the tissue analysis (Figure
2C and D), the majority (66%) of the proteins were expressed
at a different level in at least one of the three cell lines.

Conclusions

Our findings suggest that few proteins are expressed in a cell-
type-specific manner, and that the phenotype and function of a
cell is determined by localization and fluctuations in concen-
tration of a large portion of the proteome, as opposed to a
binary ‘on/off’ expression pattern. Although antibody-based
assays are sensitive, it is possible that even more sensitive
assays, such as the use of sandwich-based analysis (Larsson
et al, 2004), could allow the detection of lower levels of
proteins, thus showing an even more ubiquitous expression. It
is important to point out that the regulation of proteins is also
mediated through protein modification, in which certain
fractions of the proteins are activated by chemical modification
(Olsen et al, 2006) or proteolysis (Yen et al, 2008). The separate
functions of a particular cell are, thus, a consequence of local
concentrations and modifications of proteins that are carefully
regulated to ensure proper functionality in each cell type. For
example, the concentrations of a majority of our proteins in a
human kidney cell provide an interaction network appropriate
for kidney functions (filtration), whereas the protein interac-
tion network in a specific neuron in the brain is targeted
toward neurological functions. These data therefore suggest
that the phenotype of a particular cell is a consequence of the
local concentration of a large portion of the human proteome.
This underlines the importance of systems biology approaches
(Kislinger et al, 2006) based on quantitative measurements of
protein levels (Cox and Mann, 2008) and network predictions
of protein interactions (Shlomi et al, 2008) to study mamma-
lian biology. In this context, it would be interesting to add
quantitative expression data from complementary technology
platforms, such as mass spectrometry (Mann and Kelleher,
2008), to further explore the protein space in individual cells.
The analysis could also be integrated with numerous RNA-based
expression studies (Kilpinen et al, 2008) to gain further in-depth
understanding of the relationship between transcript and protein
profiles. To facilitate such bioinformatics comparisons, the
expression data used in this analysis are available for down-
loads at the public Human Protein Atlas portal (http://www.
proteinatlas.org/download.php). In conclusion, this study
suggests that tissue specificity is achieved by precise regulation
of protein levels in space and time, and the results emphasis the
need for quantitative systems biology approaches to understand
the molecular mechanisms of human biology and diseases.

Materials and methods

Data collection and extraction

To determine the level of protein expression of each protein in this
study, antibodies were used to immunohistochemically stain human
tissues assembled in TMA blocks (Kononen et al, 1998). Tissue cores
with 1 mm diameter, sampled from 144 individuals, corresponding to

48 different normal human tissues types, were included in the study. In
addition, a microarray containing human cell lines was assembled
(CMA) (Kampf et al, 2004). In addition, the protein levels were
estimated for three human cell lines (A-431, U-2OS, and U-251 MG)
using immunofluorescence-based confocal microscopy (Barbe et al,
2008). Immunohistochemically stained sections from TMA/CMA
blocks were scanned in high-resolution scanners and separated to
individual spot images representing each core. For TMAs, all images
were evaluated by certified pathologists in a web-based annotation
system to collect parameters regarding distribution, the extent and
level of protein expression (P Oksvold and E Björling, unpublished
results). Parameters from the annotation included staining intensity,
fraction of stained cells in a defined cell population, and subcellular
localization of staining. The annotation was performed for selected cell
types for each tissue, as most tissue types include several defined cell
phenotypes, e.g., neurons and glial cells in brain tissue and glomeruli
and tubules in the kidney (Bjorling et al, 2008). CMAs were evaluated
using automated image analysis (Stromberg et al, 2007) where five
output parameters were combined to calculate a score for the protein
expression level. For immunofluorescence images, subcellular locali-
zations were annotated and the relative expression levels were
classified as strong, moderate, weak, or negative based on the
employed laser power and detector gain settings.

In total, 5934 antibodies against 4842 proteins with 298 annotations
were assembled from TMA measurements and 5349 antibodies against
4349 proteins with 45 annotations from CMAs. The annotation
parameters for intensity and quantity (fraction of positively stained
cells) were combined into a four-grade scale represented by the colors
white (negative), yellow (weak), orange (moderate), and red (strong)
level of protein expression. All data are presented in this format on the
protein atlas (http://www.proteinatlas.org). For statistical analysis
regarding protein expression, the color codes representing the staining
levels were converted to numerical values using a red to 4, orange to 3,
yellow to 2 and white to 1 transformation. In cases where the protein
expression value could not be derived, because of low image quality, a
not available (NA) value was introduced. These data were ordered into
a matrix with m (number of antibodies) � n (number of tissues
(n¼65) or cell lines (n¼45)) dimensions. The number of tissues is a
combined tissue and cell type parameter, where the number of tissues
and cell types give rise to � the number of tissues cell type
parameters. In all, two matrices were constructed; one matrix contains
protein expression data from human normal tissues and a second
matrix contains protein expression data from human cell lines. The
number of antibodies in the two matrices and all subsets used in the
different figures is presented in Supplementary Table 1.

Hierarchical clustering

For the normal tissue data set, two correlation matrices based on
Spearman’s r were calculated for two dimensions (m�m and n�n,
respectively) (Spearman, 1987). The correlation matrices were
converted to a distance metric using a 1�correlation value transfor-
mation. These data were clustered using unsupervised top-down
hierarchical clustering (Eisen et al, 1998; Golub et al, 1999), where at
each stage the distances between clusters are recomputed by the
Lance–Williams dissimilarity update formula according to average
linkage. The algorithm consistently sorted the tighter cluster in each
division to the left in the resulting dendrogram representing the
hierarchical cluster output. The antibodies with no defined correlation
due to constant expression across all tissues or cell lines were removed
in the clustering procedure.

Statistical analysis

To estimate protein expression values for each protein across all tissues
and cell lines, the different intensity categories (weak, moderate, and
strong) were added as separate units into a marginal distribution,
which constitutes of 4� the number antibodies values. The marginal
distribution can be seen as a proxy for the total expression level for the
respective protein across the 65 tissues and cell types used in this
study. A similar procedure was conducted for the protein expression
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for each tissue and cell line across all antibodies, resulting in a
marginal distribution of 4� the number of tissues or cell lines values.

Validity estimation of dendrograms and marginal
distributions

In order to investigate the quality and the conclusions made from data,
different subsets were constructed and used in the same analysis
approaches as the full data set. For the hierarchical clustering, three
additional data sets were constructed, where the subsets were selected
based on chromosomal appurtenance using 215, 203, and 206
antibodies representing proteins from chromosome 9, 10, and 22
respectively. The similarity between the dendrograms generated with
the three subsets and the dendrogram using all antibodies were
investigated using cophenetic correlation coefficients (Sokal and
Rohlf, 1962). To estimate the reliability of the marginal distributions,
different subsets of antibodies were chosen (Supplementary Table S1).
One of the subsets was chosen based on western blot data, where the
expected size of the protein matches the correct band from a western
blot gel image. Two additional subsets were built based on correlation
analysis of paired antibodies, where the two antibodies in a pair are
generated to different parts of the same protein. For each antibody pair,
a correlation coefficient was calculated using Spearman’s r. A cutoff
value of 0.5 was applied to construct subsets used for the tissue and
cell type data set and for the human cell lines. A cutoff of 0.8 was
implemented to construct an additional data set for the human cell
lines. To estimate the similarities of the sub sets and the full data set,
a w2 test statistic was used on the marginal distributions.

Network analysis

In order to visualize the protein expression overlap between different
tissues or cell lines, Cytoscape (Shannon et al, 2003), a software
package for analyzing biomolecular interaction networks, was used.
The resulting images contain schemes that indicate the overlap of
different proteins across different sets of cell types. The first
combination was hepatocytes from the liver, neurons from the cerebral
cortex of the brain, and lymphoid cells from the germinal center of the
lymph nodes, where all three cell types have distinctly different
phenotypes. The second combination consisted of three more closely
related cell types, namely glandular cells in the colon, epidermal cells
from the skin, and urothelial cells from the bladder. The third group of
cells consisted of the three cell lines used for immunofluorescence
analysis, namely A-431, U-2OS, and U-251 MG. Antibodies with
missing protein expression data for any of these cell types were
removed from the analysis. This resulted in three different sets of 5710,
5700, and 2250 antibodies, respectively. In each of the resulting
networks, a node represents an antibody with a specific protein
expression profile, and the edges connect the node to the cell(s) where
certain protein is expressed, generating nodes with a degree (number
of edges) of 1, 2, or 3. Thus, only antibodies corresponding to proteins
expressed in the analyzed cell types are parts of the network. The total
number of nodes in the three networks was 5138, 5186, and 1921. Each
node was colored according to the variability of staining intensity
between the analyzed cell types. Red nodes indicate different staining
categories for the three cell types, yellow nodes indicate two cell types
in the same staining category, and green nodes indicate that all three
cell types belong to the same staining category and are therefore only
found for nodes with a degree of three.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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