

NIH Public Access

Author Manuscript

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2010 October 25.

Published in final edited form as:

Am J Med Genet B Neuropsychiatr Genet. 2010 July ; 153B(5): 1070–1080. doi:10.1002/ajmg.b.31082.

Association Study of 182 Candidate Genes in Anorexia Nervosa

Andrea Poyastro Pinheiro1, **Cynthia M. Bulik**1,2,* , **Laura M. Thornton**1, **Patrick F. Sullivan**1,3, **Tammy L. Root**1, **Cinnamon S. Bloss**4, **Wade H. Berrettini**5, **Nicholas J. Schork**4, **Walter H. Kaye**6,** , **Andrew W. Bergen**7, **Pierre Magistretti**8, **Harry Brandt**9, **Steve Crawford**9, **Scott Crow**10, **Manfred M. Fichter**11,12, **David Goldman**13, **Katherine A. Halmi**14, **Craig Johnson**15, **Allan S. Kaplan**16,17, **Pamela K. Keel**18, **Kelly L. Klump**19, **Maria La Via**1, **James E. Mitchell**20,21, **Michael Strober**22, **Alessandro Rotondo**23, **Janet Treasure**24, and **D. Blake Woodside**16,17,25

¹ Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina ² Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 3 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina ⁴ Scripps Genomic Medicine, The Scripps Research Institute, La Jolla, California⁵ Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania ⁶ Department of Psychiatry, University of California at San Diego, San Diego, California⁷ Center for Health Sciences, SRI International, Menlo Park, California ⁸ Department of Psychiatry, Brain Mind Institute EPFL-Lausanne, Center for Psychiatric Neuroscience, University of Lausanne Medical School, Lausanne, Switzerland ⁹ Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland ¹⁰ Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota ¹¹ Roseneck Hospital for Behavioral Medicine, Prien, Germany ¹² Department of Psychiatry, University of Munich (LMU), Munich, Germany ¹³ Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland ¹⁴ New York Presbyterian Hospital, Westchester Division, Weill Medical College of Cornell University, White Plains, New York ¹⁵ Laureate Psychiatric Clinic and Hospital, Tulsa, Oklahoma ¹⁶ Center for Addiction and Mental Health, Toronto, Canada ¹⁷ Department of Psychiatry, Toronto General Hospital, University Health Network, Toronto, Canada¹⁸ Department of Psychology, Florida State University, Tallahassee, Florida ¹⁹ Department of Psychology, Michigan State University, East Lansing, Michigan ²⁰ Neuropsychiatric Research Institute, Fargo, North Dakota²¹ Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota ²² Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California ²³ Neuropsychiatric Research Biotechnologies, University of Pisa, Pisa, Italy ²⁴ Eating Disorders Section, Institute of Psychiatry, King's College, University of London, London, England²⁵ Department of Psychiatry, University of Toronto, Toronto, Canada

Abstract

We performed association studies with 5,151 SNPs that were judged as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN) based on location under reported linkage peaks, previous results in the literature (182 candidate genes), brain expression, biological plausibility, and estrogen responsivity. We employed a case–control design that tested each SNP individually as well as haplotypes derived from these SNPs in 1,085 case individuals with AN

^{*}Correspondence to: Dr. Cynthia M. Bulik, Ph.D., Department of Psychiatry, University of North Carolina at Chapel Hill, 101 Manning Drive, CB #7160, Chapel Hill, NC 27599 -7160. cbulik@med.unc.edu. "Correspondence to: Dr. Walter H. Kaye, M.D., Department of Psychiatry, University of California San Diego, 8950 Villa La Jolla Dr., Suite C207, La Jolla, CA 92037. wkaye@ucsd.edu. Additional Supporting Information may be found in the online version of this article.

diagnoses and 677 control individuals. We also performed separate association analyses using three increasingly restrictive case definitions for AN: all individuals with any subtype of AN (All AN: n $= 1,085$; individuals with AN with no binge eating behavior (AN with No Binge Eating: $n = 687$); and individuals with the restricting subtype of AN (Restricting AN: $n = 421$). After accounting for multiple comparisons, there were no statistically significant associations for any individual SNP or haplotype block with any definition of illness. These results underscore the importance of large samples to yield appropriate power to detect genotypic differences in individuals with AN and also motivate complementary approaches involving Genome-Wide Association (GWA) studies, Copy Number Variation (CNV) analyses, sequencing-based rare variant discovery assays, and pathwaybased analysis in order to make up for deficiencies in traditional candidate gene approaches to AN.

Keywords

single nucleotide polymorphisms; probands; anorexia nervosa; bulimia nervosa

INTRODUCTION

Anorexia nervosa (AN) is a potentially chronic illness with extremely high morbidity and mortality for which no generally agreed upon model of etiology presently exists [Sullivan, 1995; Birmingham et al., 2005]. In spite of the chronicity and high economic burden it confers, the effects of currently applied treatment approaches remain largely disappointing. Although psychosocial factors were long implicated in its etiology [Striegel-Moore and Bulik, 2007], a growing body of evidence now supports the role of genetic influences, although no specific variants have been definitively implicated as causal to date [Bulik et al., 2007]. In this light, however, the familiality of AN has now been well established, with first-degree female relatives of individuals with AN having an approximately 10-fold greater lifetime risk of having an eating disorder compared with relatives of unaffected individuals [Lilenfeld et al., 1998; Strober et al., 2000]. Heritability estimates for AN have ranged from 46% to 78% [Wade et al., 2000; Klump et al., 2001; Kortegaard et al., 2001; Bulik et al., 2006]. The convergent findings from family and twin studies have motivated efforts to identify loci that contribute to risk for AN through linkage and association studies.

A previous study from our group that applied linkage analysis to affected relatives with the restricting type of AN yielded significant evidence for a susceptibility locus in the 1p33–36 region [Grice et al., 2002]. In addition, enhancements to traditional linkage analyses that have incorporated key behavioral covariates such as drive for thinness and obsessionality have resulted in suggestive linkages on chromosomes 1, 2, and 13 [Devlin et al., 2002].

Specific candidate gene approaches have targeted neurotransmitter and neuropeptide systems, and have included a variety of serotonergic, epinephrine/norepinephrine and dopaminergic genes, genes coding for proteins associated with the melanocortin system, and genes for leptin, ghrelin, agouti-related protein, neuropeptide Y, opioids, cannabinoid receptors, potassium channels, brain derived neurotrophic factor, and reproductive hormones. Several reviews have been published detailing the results of these studies [Tozzi et al., 2002; Hinney et al., 2004; Klump and Gobrogge, 2005; Slof-Op 't Landt et al., 2005; Bulik et al., 2007]. Overall, association studies have yielded sporadically significant and typically non-replicated findings [Bulik et al., 2007] highlighting the methodological and statistical challenges associated with genetic studies of a relatively low prevalence disorder (e.g., small sample sizes, lack of power, multiple testing issues, and varying phenotypic definitions) [Balding, 2006]. As with other, and perhaps all, complex traits, it is likely that susceptibility to disease is comprised of multiple, relatively common genetic variants each of which confers only small to modest risk in conjunction with environmental factors, a model of disease that will require approaches that

increase the number of target genes and single nucleotide polymorphisms (SNPs) investigated. Nonetheless, in the literature on AN, some associations have been replicated, with the accumulated data suggesting the involvement of *HTR1D* and *OPRD1* [Bergen et al., 2003; Brown et al., 2006], SLC6A4 [Gorwood, 2004], and *BDNF* [Ribases et al., 2004; Gratacos et al., 2008].

Accordingly, we present herein the results of a case–control association study in a sample of 1,085 unrelated women with a lifetime history of AN and 677 unrelated controls ascertained in the multisite Price Foundation Genetic Studies of Eating Disorders initiative between 1996 and 2002 [Kaye et al., 2000, 2004; Reba et al., 2005]. We tested 5,151 SNPs as well as the derived haplotypes from these SNPs for association to three progressively more restrictive phenotypic definitions of anorexia nervosa. We selected a total of 182 candidate genes that had been previously identified in case–control candidate gene association analyses, genes under linkage peaks for anorexia nervosa and bulimia nervosa [Devlin et al., 2002; Grice et al., 2002; Bulik et al., 2003; Bacanu et al., 2005], genes with evidence of expression in the brain, biologically plausible genes, and genes that were known to be estrogen responsive from microarray studies.

MATERIALS AND METHODS

Participants

Participants of primarily European decent were from the three multisite international Price Foundation Genetic Studies of Eating Disorders: the Anorexia Nervosa Affected Relative Pair Study, the Bulimia Nervosa Affected Relative Pair Study, and the Anorexia Nervosa Trios Study [Kaye et al., 2000, 2004; Reba et al., 2005]. Each study was designed to identify susceptibility loci involved in risk for eating disorders. Informed consent was obtained from all study participants, and all sites received approval from their local Institutional Review Board. Brief descriptions of each study are provided below.

AN affected relative pair study—The sample for this study included both probands and affected relatives. Probands met the following criteria: (1) lifetime diagnosis of AN by DSM-IV criteria excluding the amenorrhea criterion because of the unreliability of its retrospective assessment in females, and replicated data indicating that individuals with and without amenorrhea do not differ meaningfully [Gendall et al., 2006; Poyastro Pinheiro et al., 2007]; (2) low weight that is/was less than the 5th percentile of body mass index (BMI) for age and gender according to the Hebebrand et al. [1996] NHANES chart; (3) ages 13 and 65 years; (4) eating disorder onset prior to age 25; and (5) having met criteria for AN not less than 3 years prior to ascertainment. Affected relatives were defined as biological family members who were (1) between the ages of 13 and 65 years, and (2) had lifetime eating disorder diagnoses of modified DSM-IV AN (again excluding amenorrhea), lifetime eating disorder diagnoses of DSM-IV bulimia nervosa (BN)-purging type or nonpurging type, or an eating disorder not otherwise specified (EDNOS)—sub-threshold AN, sub-threshold BN, or sub-threshold mixed (relatives who were normal weight but reported either purging behavior or excessive exercise or periods of fasting due to extreme fear of weight gain or undue influence of body weight on self-esteem). For the complete list of inclusion and exclusion criteria for probands and relatives, see Kaye et al. [2000].

BN affected relative pair study—The sample for this study included probands and affected relatives. Probands met the following criteria: (1) DSM-IV diagnosis of BN—purging type, with the additional requirement of at least a 6-month period of binge eating and vomiting at least twice a week; and (2) ages 13 to 65. Affected relatives were defined as biological family members who were (1) between the ages of 13 and 65 years, and (2) had a lifetime eating

disorder diagnoses of modified DSM-IV AN (i.e., amenorrhea not required), DSM-IV BN purging type or non-purging type, or eating disorder not otherwise specified EDNOS as defined above. For the complete list of inclusion and exclusion criteria for pro-bands and relatives, see Kaye et al. [2004].

AN Trios study—The sample for this study included individuals with AN and their parents as well as a sample of control women. Probands were required to meet the following criteria: (1) modified DSM-IV lifetime diagnosis of AN, with or without amenorrhea; (2) low weight that is/was less than 5th percentile of BMI for age and gender according to the Hebebrand et al. [1996] NHANES chart; (3) onset prior to age 25; (4) weight that is/was controlled through restricting and/or purging; (5) between the ages of 13 and 65; and (6) study diagnostic criteria were met at least 3 years prior to entry into the study. Potential affected participants were excluded if they reported maximum BMI since puberty $>27 \text{ kg/m}^2$ for females and $>27.8 \text{ kg/m}^2$ $m²$ for males to limit any potential genetic signals from obesity. Parents were encouraged to participate regardless of age, weight, or psychiatric diagnosis.

In the AN Trios Study, healthy control women were recruited to serve as a comparison group for the affected individuals. These women were recruited by advertisements in the local communities of the participating sites. Participants in the control group were (1) between the ages of 18 and 65 years, (2) at normal weight with a lifetime adult BMI 19-27 kg/m², and (3) matched with the eating disorder participants based on site, age range, ancestry, and highest educational level completed. BMI exclusions were designed to screen for eating disorders (on the low end) and obesity on the upper end to be consistent with exclusion criteria in the eating disorders groups. Participants in the control group were excluded if they: (1) reported history of an eating disorder or eating disordered behaviors, as defined by a score of 20 or higher on the Eating Attitudes Test [Garner et al., 1982]; (2) had a first degree relative with an eating disorder; or (3) had any of the following as defined by the presence of an Axis I disorder on the Structured Clinical Interview for DSM-IV (SCID) Screen Patient Questionnaire [First et al., 1997]: mood disorders, anxiety disorders, alcohol dependence and abuse, other substance dependence and abuse, somatoform disorders, eating disorders, and schizophrenia and other psychotic disorders. Participants in the control group completed the same battery of self-report assessments as probands, which covered personality and symptom measures.

Participant Selection for Association Studies

From the three studies above, a total of 2,257 individuals were selected for these association studies. Participants were first chosen based on whether an adequate genomic DNA sample was available. Then, participants were ordered using a diagnostic hierarchy (highest to lowest), regardless of whether they were probands or affected relatives: restricting AN (RAN), AN with purging but no binging (PAN), AN with binge eating with or without purging (BAN), a lifetime history of both AN and BN (ANBN), subthreshold AN with no binging or purging, purging BN, non-purging BN, and subthreshold BN. The individual from each family with the diagnosis that was highest on the hierarchy was selected. These participants as well as 677 control women from the AN Trios Study were defined as the primary samples for inclusion. A secondary set of samples was selected based on the criteria above and each of these participants was related to one individual in the primary sample. Genomic DNA samples from these individuals were sent to Illumina for genotyping. Of these individuals, we removed 11 participants whose DNA samples failed genotyping; 220 participants who were included for quality control purposes; and 264 participants included to support pilot projects (27 males with AN, 121 first-degree relatives, and 116 individuals with eating disorder diagnoses other than AN). No participants were excluded due to excessive genotype missingness (all were ≤ 0.021). Thus the overall sample includes 1,762 female participants (1,085 cases and 677 controls). In this analysis

sample, there were 10 families with two second-degree relatives, 15 families with two thirddegree relatives, and three families with two fourth-degree relatives.

Table I presents the abbreviations and definitions of illness on which we based our samples for analysis. We chose three increasingly restrictive definitions of AN based on the literature and previous linkage analysis results [Devlin et al., 2002;Grice et al., 2002]. For all definitions, participants were required to meet all DSM-IV criteria for AN except Criterion D, amenorrhea. The first analysis was conducted on the sample defined by the broadest definition of illness (All AN; $N = 1,085$). This sample included 415 individuals with RAN, 266 with PAN, 132 with BAN, 266 with ANBN, and 6 with subthreshold AN with no binging or purging. The second analysis was based on a sample defined as AN with No Binge Eating ($N = 687$) and included only individuals with AN subtypes that did not include regular binge eating. This definition of illness was chosen due to the fact that the presence of binge eating has been identified as a distinguishing feature within the AN diagnostic category [Herzog et al., 1996]. This sample comprised 415 individuals with RAN, 266 with PAN, and 6 with subthreshold AN with no binging or purging. The third analysis included the narrowest definition of illness, namely Restricting AN $(N = 421)$, based on previous linkage analyses that identified significant and suggestive linkage signals based on a case definition of Restricting AN [Devlin et al., 2002;Grice et al., 2002]. This sample included 415 individuals with RAN and 6 individuals with subthreshold AN with no binging or purging. The AN with No Binge Eating sample was a subset of the All AN sample, and the Restricting AN sample was a subset of the AN with No Binge Eating sample.

Candidate Gene and SNP Selection

Candidate genes were selected by the investigators via a consensus process. First, genes residing under reported eating disorders linkage peaks were identified using SLEP [Konneker et al., 2008]. Second, an exhaustive search of the literature was conducted to identify plausible candidate genes based on previous findings reported in the eating disorders literature, published findings in other related disorders, and genes involved in pathways thought to be implicated in AN. This inclusive list was limited by selecting genes with evidence of expression in the brain and by genes that were shown to be estrogen responsive in microarray studies. Based on the RefSeq data base [Pruitt et al., 2007] accessed in 3/2007, these combined approaches yielded a list of 247 genes which were then necessarily prioritized by consensus to match available genotyping budget and winnowed to 190 plausible candidate genes. See supplemental material for the complete gene list.

SNP selection was conducted in two rounds. These 190 candidate genes were processed by TAMAL v2.0 [Hemminger et al., 2006], indicating that 186 could be uniquely mapped. SNPs were selected to tag common variation in Europeans (using TAGGER, aggressive tagging, r^2 threshold 0.8, and any coding SNPs forced in). Additional SNPs with MAF \geq 0.05 in splice sites, exons (synonymous or non-synonymous), and highly conserved regions were selected along with SNPs in predicted promoter, regulatory, transcription factor binding, and micro RNA target sites. The final list comprised 186 genes and 6,568 SNPs and was sent to Illumina for genotyping with their Custom Infinium Genotyping Beadchips platform.

SNP Quality Control

Despite favorable design scores, the SNP assay design process failed at Illumina for 480 SNPs. An additional 237 SNPs failed genotyping and genotypes for 5,851 SNPs were delivered. Quality control (QC) filters were then applied and a total of 700 SNPs failed for the following reasons (note that a SNP could fail for more than one reason): minor allele frequency (MAF) <0.01 (538 SNPs); AN Trios (affected individual with two parents, parents only used for QC) with \geq 2 Mendel errors (1 SNP); duplicate samples with \geq 2 disagreements (111 SNPs); missing

genotypes in >0.05 of cases or controls (24 SNPs); differential genotype missingness in cases versus controls at *P* <0.01 (4 SNPs); and Hardy–Weinberg equilibrium (HWE) exact *P* <0.01 in controls (47 SNPs). The total number of SNPs passing all QC steps was 5,151. The total number of genes with SNPs passing all QC steps was 182. In addition, the plot of homozygosity over all SNPs showed no significant differences between cases and controls ($P = 0.35$) and no individual had marked elevated homozygosity. Finally, population stratification was assessed through genomic control [Devlin and Roeder, 1999]: lambda $(\lambda) = 1.035$ is consistent with an acceptably small amount of population stratification.

Statistical Analyses

PLINK [Purcell et al., 2007] was used to conduct all association analyses. The principal test for association was the 1 degree-of-freedom Cochran-Armitage trend test. For each analysis, multiple testing correction was accomplished using the false discovery rate approach [Benjamini and Hochberg, 1995; Benjamini et al., 2001]. Haplotype analyses using tagging SNPs were also performed. Haplotype blocks for these 5,151 SNPs were defined using the TAGGER method in Haploview 4.0 [Barrett et al., 2005]. The Haploview algorithm creates blocks if 95% of informative comparisons are in strong linkage disequilibrium. These blocks, ranging in size from 2 SNPs to 79 SNPs (chr 14), were then imported into PLINK for haplotype analysis. Because linkage disequilibrium was used to generate haplotype blocks, the sliding window method for haplotype analysis was not applied. Quanto [Gauderman, 2002] was used to approximate statistical power (0.80) given the following assumptions: two-tailed $P = 9.7 \times$ 10−⁶ (Bonferroni correction for 5,151 SNPs), lifetime morbid risk of AN of 0.009 [Hudson et al., 2007], and a log additive genetic model. For the broad phenotype, All AN, (1,085 AN cases, 677 controls), the minimum detectible genotypic relative risks were 1.8, 1.5, and 1.5 for minor allele frequencies of 0.10, 0.25, and 0.40. For the AN with No Binge Eating phenotype, (687 cases, 677 controls), the minimum detectible genotypic relative risks were 1.9, 1.6, and 1.5 for minor allele frequencies of 0.10, 0.25, and 0.40. For the narrow phenotype, Restricting AN, (421 cases, 677 controls), the minimum detectible genotypic relative risks are 2.0, 1.7, and 1.6 for minor allele frequencies of 0.10, 0.25, and 0.40.

RESULTS

Results for the All AN Phenotype

Table II presents the 25 most significant SNPs from the association analyses conducted on the broadest definition of illness, that is, the All AN phenotype. The λ for All AN was 1.01, close to unity, which is consistent with a lack of stratification artifacts. The minimum p value using the trend test was 4.7×10^{-5} , which corresponds to an FDR of 0.22, suggesting no significant differences between cases and controls. Table II also presents the p values and FDR for those top 25 SNPs from the analyses reported below for the AN with No Binge Eating and Restricting AN phenotypes for comparison. Figure 1a presents the QQ plot for this comparison. The QQ plot is based on *P*-values that correspond to the 1 degree-of-freedom Wald test on 5,151 autosomal SNPs by assuming an additive risk model. The observed values correspond closely to that expected by chance.

Results for the AN With No Binge Eating Phenotype

Table III presents the top 25 SNPs for analyses conducted on the AN with No Binge Eating sample. The λ for AN with No Binge Eating was 1.005, also close to unity, which is not consistent with the presence of stratification artifacts. Using the trend test, the minimum *P*value was 1.9×10^{-4} , corresponding to an FDR of 0.62, suggesting no statistically significant differences between cases and controls. Figure 1b shows the QQ plot and again shows no deviation of observed from expected *P*-values.

Table IV presents the top 25 SNPs for analyses conducted on the Restricting AN sample. The λ for Restricting AN was 1.0. The minimum *P*-value using the trend test was 4.7×10^{-4} , which corresponds to an FDR of 0.91. Figure 1c depicts the QQ plot with no deviation of observed from expected *P*-values. Again, the observed *P*-value distribution corresponds closely to that expected by chance.

Haplotype Analyses

No haplotypes reached the statistical threshold of 5×10^{-7} . Results for the top 25 haplotypes for analyses conducted on each of the samples are available in the supplementary material.

DISCUSSION

Discovering genetic variants that confer risk to AN has the potential to illuminate pathways relevant to both etiopathogenesis and drug development efforts. However, to date replicable associations of candidate gene tagging and coding SNPs with diagnostic categories have mostly eluded the eating disorders field. The present study arguably represents the most comprehensive candidate-gene-based approach conducted in eating disorders. We performed association tests with SNPs and haplotypes to detect associations with a priori defined statistical thresholds to three eating disorder case–control datasets, where the cases were nested based on binging and purging. We studied a relatively large sample, selected high probability candidate genes, used tagging and coding SNPs, and applied conservative quality control and multiple test correction procedures. However, these association analyses yielded no statistically significant results.

The current study's failure to identify significant associations does not mean that associations do not exist. Although statistically nonsignificant, our top SNP is noteworthy in that the *GLP2R*, which is a member of the G protein-coupled receptor superfamily, is a receptor for a 33-amino acid proglucagon-derived peptide (GLP2), both expressed primarily in the gut. GLP2 has been shown to slow the ingestion and transit of food through the GI tract [Burrin et al., 2001]. While there is no evidence to suggest that systemic administration of GLP2 is associated with food intake, central administration of GLP2 in the lateral cerebral ventricle has been shown to inhibit food intake in rats [Tang-Christensen et al., 1996; Drucker, 1998]. GLP2 is also related to homeostatic control of human body weight in that GLP2 acts as a neurotransmitter linking the brainstem with the dorsal medial hypothalamic nucleus [Tang-Christensen et al., 2000]. Our second top SNP is associated with the *PAH* gene which codes for the enzyme phenylalanine hydroxylase [Scriver, 2007]. Phenylalanine hydroxylase is responsible for the conversion of phenylalanine to tyrosine. Phenylalanine is found in all proteins and some artificial sweeteners. Mutations in the *PAH* gene are most commonly associated with phenylketonuria (PKU), an inherited disorder which increases levels of phenylalanine in the blood [Erlandsen et al., 2003].

Finally, the top two SNPS located on chromosome 1 are also worth mentioning given that significant over-representation of *KCNN3* alleles with longer CAG repeats have been previously reported in AN patients [Koronyo-Hamaoui et al., 2002, 2004]. The smallconductance calcium-activated potassium channel gene *KCNN3* is expressed in brain; increased expression in the hippocampus has been associated with reduced long-term potentiation [Blank et al., 2003]. Although several studies have reported positive associations of increased CAG-repeat length of KCNN3 with schizophrenia and bipolar disorder, a recent meta-analysis casts doubt on this association, while leaving open the possibility that other aspects of this polymorphism may contribute to specific features of these disorders [Glatt et al., 2003].

This study had significant strengths including a five-nation cooperative and coordinated case and control ascertainment consortium, comprehensive phenotyping that was carefully designed and coordinated, and gene selection procedures designed to optimize findings. Nonetheless, the study was underpowered, limiting our ability to detect significant effects. After FDR corrections, the smallest *P*-value observed was 0.2125 for SNP rs4791362 on gene GLP2R for the All AN analyses. This corresponds to a relative risk of 1.3, 1.2, and 1.2 for minor allele frequencies of 0.10, 0.25, and 0.40. Using statistical power of 0.80, in a 1:1 unmatched case/ control study, the minimum sample sizes needed to obtain significance for these relative risks are approximately 4,050, 4,270, and 3,430, respectively, three to four times the number of the participants in this study. Lack of power is a common problem faced by consortia studying the genetics of relatively rare phenotypes such as AN. Statistical power was particularly weakened as case numbers dropped with the increasingly restrictive definitions of AN. Our approach to case definition was based on previous findings (i.e., stronger linkage signals with more restrictive case definitions). However, there are two concerns with narrowing the case definition: (1) statistical power is reduced, and (2) other case definition restrictions may lead to different results. In addition, although our strategy of selecting high-probability candidate genes was scientifically defensible, it is noteworthy that many genetic variants identified by genomewide association studies have not emerged from lists of "usual suspects" and have been genes previously not thought to be involved in the target disease etiology [Psychiatric GWAS Consortium (PGC), 2009].

Our results, in conjunction with the published inconsistent findings in single candidate-gene studies, underscore the critical need for larger samples but also additional analytic approaches to detect genotypic differences between individuals with and without AN. In this context, as we better appreciate the nature of diverse individual differences in trait characteristics, cognitions and affective processes, and symptomatic behaviors with broadly defined diagnostics classes, it will be essential for genetic analyses of AN to make better use of empirically derived phenotype selection criteria that integrate neural systems information with these behavioral data.

Following these points, several complementary approaches exist. One alternative is a genomewide association (GWA) scan on AN. GWA studies have been successful in identifying highly replicable associations for T1DM, T2DM, Crohn's disease, cardiovascular disease, prostate cancer, breast cancer, body mass index, nicotine addiction, and height [Bierut et al., 2007; Consortium, 2007; Frayling et al., 2007; Saxena et al., 2007; Scott et al., 2007; Berrettini et al., 2008; Thorgeirsson et al., 2008]. Whether similar successes will be realized in psychiatry remains unclear although many efforts are currently underway [Psychiatric GWAS Consortium (PGC), 2009]. Critical to note is that our approach focused on common variants (MAF >0.5%), and thus rare variation has been necessarily missed. Our results do not eliminate these genes as potential candidates for AN, but rather indicate that common variants located in them are unlikely to be the causal variants. Other approaches include searches for multiple rare variations via sequencing studies [Nejentsev et al., 2009], analysis of copy number variations [Walsh et al., 2008], accommodation and consideration of epigenomic factors [Peedicayil, 2004] and sophisticated multi-locus analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Grant sponsor: National Institutes of Health (NIH); Grant numbers: MH66117, 1U54RR025204-01, T32MH076694.

The authors thank the Price Foundation for the support of the clinical collection of participants' data and biospecimens, genotyping, and data analysis. The authors thank the staff of the Price Foundation Collaborative Group for their efforts in participant screening and clinical assessments. The authors are indebted to the participating families for their contribution of time and effort in support of this study. This work was supported by the Price Foundation of Geneva Switzerland. Dr. Strober received support for his contribution to this manuscript in part by the Franklin Mint Chair in Eating Disorders. Dr. Schork and Dr. Bloss are supported in part by National Institutes of Health grant (NIH 1U54RR025204-01). Dr. Root is supported by National Institutes of Health grant (T32MH076694).

References

- Bacanu S, Bulik C, Klump K, Fichter M, Halmi K, Keel P, Kaplan A, Mitchell J, Rotondo A, Strober M, et al. Linkage analysis of anorexia and bulimia nervosa cohorts using selected behavioral phenotypes as quantitative traits or covariates. Am J Med Genet Part B 2005;139B:61–68. [PubMed: 16152574]
- Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet 2006;7 (10):781–791. [PubMed: 16983374]
- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–265. [PubMed: 15297300]
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 1995;57:289–300.
- Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;125(1–2):279–284. [PubMed: 11682119]
- Bergen AW, van den Bree MBM, Yeager M, Welch R, Ganjei JK, Haque K, Bacanu SA, Berrettini WH, Grice DE, Goldman D, et al. Candidate genes for anorexia nervosa in the 1p33-36 linkage region: Serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry 2003;8:397–406. [PubMed: 12740597]
- Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Water-worth D, Muglia P, Mooser V. Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 2008;13(4):368–373. [PubMed: 18227835]
- Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007;16(1):24–35. [PubMed: 17158188]
- Birmingham C, Su J, Hlynsky J, Goldner E, Gao M. The mortality rate from anorexia nervosa. Int J Eat Disord 2005;38:143–146. [PubMed: 16134111]
- Blank T, Nijholt I, Kye MJ, Radulovic J, Spiess J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat Neurosci 2003;6(9):911–912. [PubMed: 12883553]
- Brown KM, Bujac SR, Mann ET, Campbell DA, Stubbins MJ, Blundell JE. Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol Psychiatry 2006;61(3):367–373. [PubMed: 16806108]
- Bulik CM, Devlin B, Bacanu SA, Thornton L, Klump KL, Fichter MM, Halmi KA, Kaplan AS, Strober M, Woodside DB, et al. Significant linkage on chromosome 10p in families with bulimia nervosa. Am J Hum Genet 2003;72(1):200–207. [PubMed: 12476400]
- Bulik C, Sullivan P, Tozzi F, Furberg H, Lichtenstein P, Pedersen N. Prevalence, heritability and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 2006;63:305–312. [PubMed: 16520436]
- Bulik CM, Slof-Op't Landt MC, van Furth EF, Sullivan PF. The genetics of anorexia nervosa. Annu Rev Nutr 2007;27:263–275. [PubMed: 17430085]
- Burrin DG, Petersen Y, Stoll B, Sangild P. Glucagon-like peptide 2: A nutrient-responsive gut growth factor. J Nutr 2001;131(3):709–712. [PubMed: 11238747]
- Consortium WTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–678. [PubMed: 17554300]
- Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55:997–1004. [PubMed: 11315092]
- Devlin B, Bacanu S, Klump K, Bulik C, Fichter M, Halmi K, Kaplan A, Strober M, Treasure J, Woodside DB, et al. Linkage analysis of anorexia nervosa incorporating behavioral covariates. Hum Mol Genet 2002;11(6):689–696. [PubMed: 11912184]
- Drucker DJ. Glucagon-like peptides. Diabetes 1998;47(2):159–169. [PubMed: 9519708]
- Erlandsen H, Patch MG, Gamez A, Straub M, Stevens RC. Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria. Pediatrics 2003;112(6 Pt 2):1557–1565. [PubMed: 14654665]
- First, M.; Spitzer, R.; Gibbon, M.; Williams, J. Structured clinical interview for DSM-IV axis I disorders, research version, patient edition. New York: Biometrics Research, New York State Psychiatric Institute; 1997.
- Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316(5826):889–894. [PubMed: 17434869]
- Garner D, Olmsted M, Bohr Y, Garfinkel P. The eating attitudes test: Psychometric features and clinical correlates. Psychol Med 1982;12:871–878. [PubMed: 6961471]
- Gauderman WJ. Sample size requirements for association studies of gene–gene interaction. Am J Epidemiol 2002;155(5):478–484. [PubMed: 11867360]
- Gendall K, Joyce P, Carter F, McIntosh V, Jordan J, Bulik C. The psychobiology and diagnostic significance of amenorrhea in patients with anorexia nervosa. Fertil Steril 2006;85:1531–1535. [PubMed: 16600234]
- Glatt SJ, Faraone SV, Tsuang MT. CAG-repeat length in exon 1 of KCNN3 does not influence risk for schizophrenia or bipolar disorder: A meta-analysis of association studies. Am J Med Genet Part B 2003;121B(1):14–20. [PubMed: 12898569]
- Gorwood P. Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics 2004;4(1):9–17. [PubMed: 14987118]
- Gratacos M, Soria V, Urretavizcaya M, Gonzalez JR, Crespo JM, Bayes M, de Cid R, Menchon JM, Vallejo J, Estivill X. A brain-derived neurotrophic factor (BDNF) haplotype is associated with antidepressant treatment outcome in mood disorders. Pharmacogenomics J 2008;8(2):101–112. [PubMed: 17505499]
- Grice DE, Halmi KA, Fichter MM, Strober M, Woodside DB, Treasure JT, Kaplan AS, Magistretti PJ, Goldman D, Bulik CM, et al. Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am J Hum Genet 2002;70(3):787–792. [PubMed: 11799475]
- Hebebrand J, Himmelmann GW, Heseker H, Schafer H, Remschmidt H. Use of percentiles for the body mass index in anorexia nervosa: Diagnostic, epidemiological, and therapeutic considerations. Int J Eat Disord 1996;19:359–369. [PubMed: 9156689]
- Hemminger B, Saelim B, Sullivan P. TAMAL: An integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics 2006;22(5):626–627. [PubMed: 16418238]
- Herzog D, Field A, Keller M, West J, Robbins W, Staley J, Colditz G. Subtyping eating disorders: Is it justified? J Am Acad Child Adol Psychiatry 1996;35:928–936.
- Hinney A, Friedel S, Remschmidt H, Hebebrand J. Genetic risk factors in eating disorders. Am J Pharmacogenomics 2004;4:209–223. [PubMed: 15287815]
- Hudson JI, Hiripi E, Pope HG Jr, Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 2007;61:348–358. [PubMed: 16815322]
- Kaye WH, Lilenfeld LR, Berrettini WH, Strober M, Devlin B, Klump KL, Goldman D, Bulik CM, Halmi KA, Fichter MM, et al. A search for susceptibility loci for anorexia nervosa: Methods and sample description. Biol Psychiatry 2000;47(9):794–803. [PubMed: 10812038]
- Kaye WH, Devlin B, Barbarich N, Bulik CM, Thornton L, Bacanu SA, Fichter MM, Halmi KA, Kaplan AS, Strober M, et al. Genetic analysis of bulimia nervosa: Methods and sample description. Int J Eat Disord 2004;35(4):556–570. [PubMed: 15101071]
- Klump KL, Gobrogge KL. A review and primer of molecular genetic studies of anorexia nervosa. Int J Eat Disord 2005;37(Suppl):S43–S48. discussion S87–S89. [PubMed: 15852319]

- Klump KL, Miller KB, Keel PK, McGue M, Iacono WG. Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol Med 2001;31(4):737–740. [PubMed: 11352375]
- Konneker T, Barnes T, Furberg H, Losh M, Bulik CM, Sullivan PF. A searchable database of genetic evidence for psychiatric disorders. Am J Med Genet Part B 2008;147B:671–675. [PubMed: 18548508]
- Koronyo-Hamaoui M, Danziger Y, Frisch A, Stein D, Leor S, Laufer N, Carel C, Fennig S, Minoumi M, Apter A, et al. Association between anorexia nervosa and the hsKCa3 gene: A family-based and case control study. Mol Psychiatry 2002;7:82–85. [PubMed: 11803450]
- Koronyo-Hamaoui M, Gak E, Stein D, Frisch A, Danziger Y, Leor S, Michaelovsky E, Laufer N, Carel C, Fennig S, et al. CAG repeat polymorphism within the KCNN3 gene is a significant contributor to susceptibility to anorexia nervosa: A case–control study of female patients and several ethnic groups in the Israeli Jewish population. Am J Med Genet Part B 2004;131B(1):76–80. [PubMed: 15389773]
- Kortegaard LS, Hoerder K, Joergensen J, Gillberg C, Kyvik KO. A preliminary population-based twin study of self-reported eating disorder. Psychol Med 2001;31(2):361–365. [PubMed: 11232922]
- Lilenfeld L, Kaye W, Greeno C, Merikangas K, Plotnikov K, Pollice C, Rao R, Strober M, Bulik C, Nagy L. A controlled family study of restricting anorexia and bulimia nervosa: Comorbidity in probands and disorders in first-degree relatives. Arch Gen Psychiatry 1998;55:603–610. [PubMed: 9672050]
- Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against Type 1 diabetes. Science 2009;324(5925):387–389. [PubMed: 19264985]
- Peedicayil J. The relevance of epigenomics to psychiatry. Am J Psychiatry 2004;161:1502–1503. [PubMed: 15285990]
- Poyastro Pinheiro A, Thornton LM, Plotonicov KH, Tozzi F, Klump KL, Berrettini WH, Brandt H, Crawford S, Crow S, Fichter MM, et al. Patterns of menstrual disturbance in eating disorders. Int J Eat Disord 2007;40(5):424–434. [PubMed: 17497704]
- Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007;35 (Databaseissue):D61–D65. [PubMed: 17130148]
- Psychiatric GWAS Consortium (PGC). A framework for interpreting genomewide association studies of psychiatric disorders. Mol Psychiatry 2009;14:10–17. [PubMed: 19002139]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, de Bakker P, Daly M, Sham P. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007;81:559–575. Data base issue. [PubMed: 17701901]
- Reba L, Thornton L, Tozzi F, Klump KL, Brandt H, Crawford S, Crow S, Fichter MM, Halmi KA, Johnson C, et al. Relationships between features associated with vomiting in purging-type eating disorders. Int J Eat Disord 2005;38(4):287–294. [PubMed: 16261604]
- Ribases M, Gratacos M, Fernandez-Aranda F, Bellodi L, Boni C, Anderluh M, Cavallini M, Cellini E, Di Bella D, Erzegovesi S, et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet 2004;13:1205–1212. [PubMed: 15115760]
- Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, et al. Genome-wide association analysis identifies loci for Type 2 diabetes and triglyceride levels. Science 2007;316(5829):1331–1336. [PubMed: 17463246]
- Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, et al. A genome-wide association study of Type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007;316(5829):1341–1345. [PubMed: 17463248]
- Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 2007;28(9):831–845. [PubMed: 17443661]
- Slof-Op't Landt M, van Furth E, Meulenbelt I, Slagboom P, Bartels M, Boomsma D, Bulik C. Eating disorders: From twin studies to candidate genes and beyond. Twin Res Hum Genet 2005;16:467– 482.
- Striegel-Moore RH, Bulik CM. Risk factors for eating disorders. Am Psychol 2007;62(3):181–198. [PubMed: 17469897]

- Strober M, Freeman R, Lampert C, Diamond J, Kaye W. Controlled family study of anorexia nervosa and bulimia nervosa: Evidence of shared liability and transmission of partial syndromes. Am J Psychiatry 2000;157(3):393–401. [PubMed: 10698815]
- Sullivan PF. Mortality in anorexia nervosa. Am J Psychiatry 1995;152:1073–1074. [PubMed: 7793446]
- Tang-Christensen M, Larsen PJ, Goke R, Fink-Jensen A, Jessop DS, Moller M, Sheikh SP. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271 (4 Pt 2):R848–R856. [PubMed: 8897973]
- Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neuro-transmitter involved in the regulation of food intake. Nat Med 2000;6(7):802–807. [PubMed: 10888930]
- Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008;452(7187):638–642. [PubMed: 18385739]
- Tozzi F, Bergen AW, Bulik CM. Candidate gene studies in eating disorders. Psychopharmacol Bull 2002;36(3):60–90. [PubMed: 12473966]
- Wade TD, Bulik CM, Neale M, Kendler KS. Anorexia nervosa and major depression: Shared genetic and environmental risk factors. Am J Psychiatry 2000;157(3):469–471. [PubMed: 10698830]
- Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D, Bhandari A, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008;320(5875):539–543. [PubMed: 18369103]

FIG. 1.

QQ plots for All AN (a), AN with No Binge Eating (b), and Restricting AN (c). The dashed lines show the expected 95% probability interval for ordered *P* values.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Abbreviations and Definitions of Illness Used in This Study

 a Amenor
thea not required for any anorexia nervosa diagnoses. *a*Amenorrhea not required for any anorexia nervosa diagnoses.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

AN, anorexia nervosa; SNP, single nucleotide polymorphism, Chr., chromosome; FDR, false discovery rate. AN, anorexia nervosa; SNP, single nucleotide polymorphism, Chr., chromosome; FDR, false discovery rate.

TABLE III

Anorexia Nervosa With No Binge Eating (N = 687), Top 25 SNP Associations (Sorted by Chromosome) Anorexia Nervosa With No Binge Eating (N = 687), Top 25 SNP Associations (Sorted by Chromosome)

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2010 October 25.

AN, anorexia nervosa; SNP, single nucleotide polymorphism, Chr., chromosome; FDR, false discovery rate.

TABLE IV

Restricting Anorexia Nervosa Only (N = 421), Top 25 SNP Associations (Sorted by Chromosome) Restricting Anorexia Nervosa Only (N = 421), Top 25 SNP Associations (Sorted by Chromosome)

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2010 October 25.

AN, anorexia nervosa; SNP, single nucleotide polymorphism, Chr., chromosome; FDR, false discovery rate.