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Therapies that target estrogen signaling have made a very consid-
erable contribution to reducing mortality from breast cancer.
However, resistance to tamoxifen remains amajor clinical problem.
Here we have used a genome-wide functional profiling approach
to identify multiple genes that confer resistance or sensitivity to
tamoxifen. Combining whole-genome shRNA screening with mas-
sively parallel sequencing, we have profiled the impact of more
than 56,670 RNA interference reagents targeting 16,487 genes on
the cellular response to tamoxifen. This screen, along with sub-
sequent validation experiments, identifies a compendium of genes
whose silencing causes tamoxifen resistance (including BAP1, CLPP,
GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3)
and also a set of genes whose silencing causes sensitivity to this
endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS,
NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individ-
ual genes, including NF1, a regulator of RAS signaling, also corre-
late with clinical outcome after tamoxifen treatment.
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Approximately 70% of breast tumors express estrogen re-
ceptor α (ER) (1), which binds and mediates many of the

effects of the hormone estrogen. Estrogen signaling is known to
modulate several processes relevant to tumorigenesis mostly by
the activity of ER as a transcription factor (2). After binding
estrogen ER interacts with coactivators, resulting in the regula-
tion of histones and gene expression (3). Of particular impor-
tance are the effects of estrogen/ER on cyclin D1 (4) and c-Myc
expression (5), which are likely drivers of estrogen-stimulated
cellular proliferation.
The dependence of a significant proportion of breast cancers

upon estrogen signaling has been studied since the 1890s (6) and
culminated in the development of pharmacological agents that
inhibit ER signaling, including tamoxifen (7). Tamoxifen has
gone on to become the most widely used drug in managing breast
cancer. However, as with many cancer treatments, resistance to
tamoxifen is a significant issue, and up to 40%of early-stage breast
cancer patients who receive tamoxifen as an adjuvant therapy
eventually relapse with tamoxifen-resistant disease (8).
Despite intense study, the molecular alterations that underlie

endocrine therapy resistance are not fully understood, and this has
limited the development of effective approaches for preventing
and overcoming resistance. Nevertheless, two general mechanisms
have been proposed to explain the development of resistance: (i)
continued ER signaling in the presence of ER antagonists or the
absence of estrogen (9), and (ii) the use of non-ER pathways that
circumvent the reliance upon ER signaling (10). The activity of
signal-transducing kinases has been implicated in both of these
mechanisms (11, 12), and considerable effort has been made to
characterize the role of individual genes in endocrine therapy
resistance, with the notable findings that PAK1 and AKT activa-
tion can cause resistance to tamoxifen (13, 14). However, although

candidate-based studies have been informative, a complementary
approach is to interrogate the entire genome to uncover potential
unique mechanisms of resistance, and high-throughput RNAi
screening allows such systematic analysis to be performed (15).
Here we identified multiple genes that modulate the cellular

response to tamoxifen by carrying out an unbiased genome-wide
functional screen, coupling an shRNA interference library to
pool deconvolution by massively parallel sequencing.

Results
Tamoxifen Genome-Wide RNAi Screen. To identify determinants of
tamoxifen response, we designed a high-throughput RNAi screen
(SI Appendix, Fig. S1A). In brief, the screening procedure in-
volved (i) infecting a 4-hydroxytamoxifen (4OHT, an active me-
tabolite of tamoxifen) sensitive, estrogen receptor positive
(ER+), breast tumor cell line (MCF7) with a library encom-
passing 56,670 shRNA-coding lentiviral constructs designed to
target 16,487 human protein-coding genes (OpenBiosystems
GIPZ shRNAmir human genome-wide library), (ii) after allowing
the viral constructs to integrate into the tumor cell genome, (iii)
exposing cells to 4OHT for 21 d, (iv) recovering shRNA target
sequences from the genomic DNA of the surviving cell fraction by
PCR amplification, and then (v) estimating the frequency of each
shRNA sequence in surviving cells (and thus the effect of each
shRNA upon 4OHT response) by sequencing PCR amplification
products by massively parallel sequencing.
Before MCF7 cell infection, we divided the genome-wide

shRNA library into six pools (each pool comprising 9,600 shRNAs)
and infected cells with each pool separately. Cells were infected at
multiplicity of infection of 0.7, and on average 2,000 cells per
shRNA construct were infected (SI Appendix, Fig. S2). Seventy-
two hours after infection, cells were selected in puromycin for 2 d
to remove the nontransduced fraction and then divided into two
samples: one subsequently exposed to 4OHT solubilized in etha-
nol, the other exposed to ethanol alone. Five days after initial in-
fection, drug exposure was initiated and sustained for 21 d to
model chronic tamoxifen exposure used clinically. A final 4OHT
concentration of 500 nMwas used, which caused 40% inhibition of
cell survival over the time course of the screen (surviving fraction
60%, SF60). To identify shRNA constructs that modulated the
response to 4OHT, we estimated shRNA frequency in 4OHT and
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vehicle-treated cultures at the end of this 21-d period using mas-
sively parallel sequencing.
After PCR products were sequenced (SI Appendix, Table S1),

each short read was matched to the corresponding RNAi target
in the reference library. We then used the frequency of each
individual short-read sequence to estimate the frequency of
shRNAs in each surviving population. To identify shRNAs that
conferred either 4OHT resistance or sensitivity effects, we
compared the representation of shRNAs in the 4OHT-treated
samples with those in vehicle-treated samples. First, data from
each of three biological replicate screens were normalized to
account for experimental intrascreen variation (variation be-
tween different viral pools). In doing this, we also corrected
biases associated with differential starting representations of
shRNAs. Second, we applied an interreplica screen rank nor-
malization and used these values to ascribe each shRNA a drug
effect (DE) score that represented the magnitude of 4OHT re-
sistance (positive DE) or sensitivity (negative DE) (SI Appendix,
Fig. S1B). Here overrepresentation of an shRNA in a 4OHT-
treated sample indicated a resistance-causing effect, whereas
underrepresentation indicated a sensitization effect.

Identification of Screen Hits. To define 4OHT-modulating effects
from the screen data, we used three parallel strategies previously
used in RNA interference screens. In the first instance we se-
lected significant effects according to the variance of the entire
dataset. We calculated the median absolute deviation (MAD) to
estimate the variance of the normalized data (16) and defined
resistance-causing hits as those shRNAs that gave DE scores >2 ×
MAD (Z score >2), a threshold approximately equal to 2 SDs
from the median. Sensitization effects were defined as shRNAs
that returned DE scores of Z < −2. In addition to this approach
we also used RNAi Gene Enrichment Ranking (RIGER) (17), as
implemented in the Broad Institute’s GENE-E software package.
In brief, RIGER calculated theweighted sumof the two top-ranked
shRNAs for each gene on the basis of the log fold change between
three biological replicates for each condition, and provided a nor-
malized enrichment score per gene. Finally, we also used RNAi Set
Analysis (RSA), a modification of Gene Set Analysis (http://www-
stat.stanford.edu/∼tibs/GSA/) that uses maximum–mean statistics
to identify significantly enriched or depleted shRNA sets.
In total, Z score threshold identified 1,049 resistance-causing

genes and 1,126 sensitization genes, RIGER generated a list of
504 resistance-causing and 498 sensitization genes with a P value

of <0.05, and RSA generated a list of 443 resistance-causing
genes and 477 sensitization genes with a false discovery rate
approaching zero. Given the limitations of each method, we took
a pragmatic approach and considered a subset of the genes
identified by all three methods for further examination. This
intersection approach identified 121 candidate genes mediating
sensitization and 131 candidate genes mediating resistance to
tamoxifen (Fig. 1A and SI Appendix, Table S2).
We examined screen performance using positive and negative

controls. As expected, nonsilencing control shRNAs did not
modulate the cellular response to 4OHT, whereas four shRNAs
targeting ESR1, the gene encoding ERα, caused sensitivity to
4OHT (Fig. 1B). In vitro functional studies as well as clinical
data suggest that reduced PTEN activity causes resistance to
tamoxifen (17). Five shRNAs targeting PTEN caused 4OHT
resistance in the screen (Fig. 1B), and three PTEN shRNAs
chosen for further investigation caused 4OHT resistance as
assessed using a GFP competition assay (SI Appendix, Fig. S3 A
and C). Similarly, an siRNA pool targeting PTEN was able to
recapitulate the resistance phenotype in MCF7 cells treated with
either 4OHT or a pure antiestrogen, ICI182,780, using a pre-
viously validated 96-well arrayed method (15) (SI Appendix,
Fig. S3 B and C). As the PTEN effect identified in the genome-
wide screen was confirmed using two orthogonal assays, we
reasoned that the screen itself and the analysis methods used
were able to identify true endocrine therapy-modulating effects.

Validation of Screen Effects.Despite their utility, RNAi screens are
prone to artifacts such as off-target and screen format-specific
effects (18). To overcome these issues, we selected genes iden-
tified in the genome-wide shRNA screen and examined them
using an independent mode of RNA interference (siRNA) and
a 96-well arrayed method. The target sequences for siRNAs used
in this validation step did not overlap with the target sequences
of shRNAs present in the initial screen (SI Appendix, Table S3),
and this allowed us to minimize the impact of off-target effects.
Using this assay system and a single concentration of 4OHT,

siRNA duplexes recapitulated 23 tamoxifen-modulating effects
(Fig. 2A). Focusing on this 23-gene set, we established 4OHTdose–
response relationships for each gene (SI Appendix, Table S4). In
addition to PTEN, we validated 11 genes whose RNAi targeting
caused 4OHT resistance (BAP1, CLPP, GPRC5D, NAE1, NF1,
NIPBL,NSD1,RAD21,RARG, SMC3, andUBA3) (Fig. 2B) and 11
genes that when targeted caused sensitivity (ESR1, C10orf72,

Fig. 1. Detection of tamoxifen sensiti-
zation and resistance-causing effects. (A)
Venn diagrams indicating the number of
candidate hits defined by three parallel
analysis methods. (B) Plot of shRNA DE Z
scores ranked by size of effect. Data from
nonsilencing shRNAs is highlighted, as
are data from shRNA targeting PTEN or
ESR1, the gene encoding ERα.
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Fig. 2. Validation of individual tamoxifen resistance- or sensitivity-causing effects. (A) Effect of siRNA on survival in 4OHT. MCF7s were transfected with
siRNA duplexes in replica plates and 48 h later exposed to 1 μM 4OHT or drug vehicle. Seven days later cell viability was determined using Cell Titer Glo.
Surviving fraction for each siRNA was calculated using the calculation SFgene x = luminescence in 4OHT-treated wells/luminescence in similarly transfected
vehicle-treated wells. (B) Individual dose–response curves for 11 resistance-causing genes. Experimental setup was as in A but using a 4OHT titration. (C)
Individual dose–response curves for 11 sensitivity-causing genes.
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C15orf55/NUT, EDF1, ING5, KRAS,NOC3L, PPP1R15B, RRAS2,
TMPRSS2, and TPM4) (Fig. 2C and SI Appendix, Table S5).
Network analysis using STRING (19) identified a number of

well-established molecular associations among these validated
genes (Fig. 3A). These included the identification of both com-
ponents of the UBA3/NAE1 heterodimer, which mediates the
conjugation of NEDD8, an ubiquitin-like protein, to substrates
(20). siRNAs targeting either UBA3 or NAE1 (SI Appendix, Fig.
S4), in addition to causing resistance to 4OHT, also caused re-
sistance to ICI182,780 (21). The resistant phenotype was also
reproduced by siRNA silencing of NEDD8 itself (Fig. 3B), thus
validating our screen observations. Interestingly, members of this
neddylation pathway, and the UBA3/NAE1 complex in partic-
ular, have previously been reported to mediate the degradation
of ER (22).
We also demonstrated that a number of cohesion-associated/

chromatin remodeling proteins modulated response to both

4OHT and ICI182,780. The cohesin protein complex is involved
in maintaining sister chromatid proximity in dividing cells and
has recently been implicated in mediating transcriptional insu-
lation and control via interactions with CTCF (23). siRNA tar-
geting RAD21 (24), SMC3, and NIPBL (25), caused 4OHT and
ICI182,780 resistance (Figs. 2B and 3B). The precise mechanism
whereby cohesin components affect tamoxifen sensitivity is not
yet clear, but it seems possible that imbalance of these proteins
alters the transcriptional profile of ER+ tumor cells, enabling
continued growth in the face of endocrine therapy (23).
Finally, a number of proteins involved in RAS signaling were

also found to modulate the response to 4OHT. Both shRNA and
siRNAs targeting NF1 (neurofibromin), a GTPase tumor sup-
pressor protein, caused 4OHT resistance (Figs. 2B and 3B). NF1
mediates the inactivation of classic RAS proteins (e.g., KRAS and
HRAS) but also nonclassic RAS proteins, including RRAS2 (26).
siRNAs targeting KRAS and RRAS2 both caused 4OHT sensi-
tivity, and KRAS silencing also caused moderate ICI182,780
sensitivity (Figs. 2C and 3B), as did the downstream mediator of
RAS signaling, c-RAF (RAF1) (Fig. 3B). To verify that silencing
of NF1 affected RAS signaling in the face of 4OHT treatment, we
measured levels of active RAS (GTP-RAS) and phosphorylated
ERK in MCF7 cells treated with 4OHT, and these were indeed
elevated with NF1 silencing (Fig. 4A). Furthermore, silencing of
c-Raf in MCF7 cells with stable NF1 silencing alleviated tamox-

Fig. 3. Network-associated effects. (A) Interaction diagrams for selected
validated hits. In each case, the type interaction is shown. (B) ICI182,780 and
4OHT dose–response curves for selected genes.

Fig. 4. NF1 and tamoxifen response. (A) NF1 RNAi reagents that cause
4OHT resistance activate RAS and ERK in MCF7 cells treated with 4OHT.
MCF7 cells were transfected with the indicated RNAi reagents and treated
with 4OHT (500 nM for 24 h), after which levels of GTP-Ras and phosphor-
ylated ERK were detected by immunoblotting. (B) Suppression of down-
stream RAS effector, c-RAF (RAF1), restores sensitivity to tamoxifen in MCF7s
with stable NF1 knockdown. MCF7 cells were infected with NF1 shRNA and,
after puromycin selection, subsequently transfected with nontargeting or
RAF1 siRNAs. The response to 4OHT was then monitored using a 96-well
format assay (15).
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ifen resistance (Fig. 4B), supporting the hypothesis that these
effects were, in part at least, via RAS/RAF signaling.

Clinical Significance. Having identified a compendium of genes
that modulated the response to endocrine therapy, we assessed
whether they were associated with clinical response to endocrine
therapy. To do this we interrogated publicly available microarray
gene expression profiles from tumors of patients subsequently
treated with adjuvant tamoxifen. Specifically, we used five pa-
tient datasets for this analysis: Stockholm GSE1456, n = 87
(STOCK in Fig. 5) (27); Oxford GSE6532, n = 109 (OXFT)
(28); Karolinska Institute GSE3494, n = 72 (KIT) (29); Guy’s
Hospital GSE9195, n = 77 (GUYS77) (30); and Guy’s Hospital
GSE6532, n = 87 (GUYS87) (28). In each of these datasets,
biopsies were taken from ER+ breast tumors before tamoxifen
treatment. We obtained the normalized gene expression levels
for each of the 23 functionally validated genes and compared
these with a surrogate marker of tamoxifen response, the time to
distant relapse. To quantify associations between gene expres-
sion and the likelihood of relapse/tamoxifen resistance, we cal-
culated Cox proportional log hazard ratios (HRs) (31) for each
gene as the relative risk of distant relapse in terms of gene
expression. This analysis suggested that reduced expression of
NF1, a gene whose silencing caused tamoxifen resistance in the
functional screen, was associated with a statistically significant
higher risk to distant relapse when considering all datasets (P <
0.05; Fig. 5A). Reduced NF1 expression did not, however, cor-
relate with well-established prognostic factors (SI Appendix,
Table S6), suggesting that it was a relatively independent marker
of response to tamoxifen. A similar analysis of the validated
sensitivity-causing effects indicated that reduced expression of
EDF1 was associated with a statistically significant lower risk to
distant relapse in a combined series of independent cohorts (P <
0.05; SI Appendix, Fig. S5).
Although interrogating the relationship between individual

gene expression and clinical outcome parameters in tamoxifen-
treated patients can provide some insight into the clinical rele-
vance of the genetics of tamoxifen resistance, it is also possible
that a constellation of individually modest gene effects combine
to generate the final resistant phenotype. Given this, we tested
whether aggregate measures of expression from groups or mod-
ules of genes (metagenes) also correlated with time to distant
relapse in patients treated with tamoxifen. Using the same patient
datasets and established methodology (32), we defined two
functional metagenes for this analysis: one populated by genes
shown in this or our previous study (15, 33) to cause resistance to

tamoxifen, and a second similarly curated gene set defined by
sensitivity-causing effects that also correlated with outcome data.
In total, these modules comprised eight genes functionally pre-
dicting resistance [BAP1, RARG, PTEN, SMC3, NF1, NIPBL,
UBA3, and CDK10 (15)] (Fig. 5B) and six genes functionally
predicting sensitivity [EDF1,KRAS,RAF1, TMPRSS2, TPM4, and
PDPK1 (33)] (Fig. 5C). This analysis suggested that both “re-
sistance” and “sensitivity” metagenes correlated with clinical out-
come (P < 0.05) and gave moderately greater predictions of
outcome than the use of individual genes such as NF1.

Discussion
Here, we report a genome-wide functional screen to identify
determinants of tamoxifen sensitivity. This screen and the sub-
sequent validation experiments define a constellation of genes
that modulate the cellular response to this widely used drug.
Notable among the set of genes identified are multiple compo-
nents of a neddylation complex, a series of genes that modulate
cohesion-associated/chromatin remodeling and also multiple
members of the RAS signaling cascade. Of these, the mRNA
expression levels of genes such as NF1 appear to correlate with
clinical outcome, as do two metagenes that encompass genes
functionally shown to modulate the response to tamoxifen.
Our functional screen provides additional evidence for a key

role of RAS/RAF/MEK/ERK signaling in determining the re-
sponse to endocrine agents. Previously, we demonstrated that
silencing of the kinase CDK10 was sufficient to cause 4OHT and
ICI182,780 resistance, an effect likely mediated by the loss of
CDK10 suppression on RAF1 expression and subsequent up-
regulation of RAS/RAF/MEK/ERK signaling (15). Further-
more, other studies have demonstrated that transfection of
constitutively active MEK1 or RAF1 cDNA expression con-
structs into MCF7 cells results in hyperactivation of p42/p44
MAPK and acquisition of antiestrogen resistance (34). In the
genome-wide screen reported here shRNA targeting NF1
(neurofibromin), a GTPase that suppresses tumor formation by
inhibiting RAS activation, caused 4OHT resistance, and RNAi
targeting of KRAS caused 4OHT sensitivity, thus adding to the
known nodal points within this signaling cascade that can mod-
ulate drug response. In addition, RRAS2 (TC21) silencing also
resulted in tamoxifen sensitivity. RRAS2 is a RAS family
member that shares more than 50% amino acid sequence iden-
tity with classic RAS proteins (HRAS, NRAS, and KRAS).
RRAS2 encompasses almost identical functional domains to
these latter proteins and accordingly shares a number of effec-
tors, including RAF1 (35). A link between RRAS2 and tamoxi-

Fig. 5. Clinical significance of genes identi-
fied in the functional screen. (A) Low NF1
expression correlates with poor outcome in
tamoxifen-treated patients. Forest plot indi-
cates log HRs for increase in NF1 expression as
estimated by Cox regression. Dots represent
the weighted median effect and lines the 95%
confidence interval (CI) for each of the five
studies considered. Log HRs refer here to the
relative risk of distant relapse in relation to
gene expression, whereby positive and nega-
tive values represent decreasing or increasing
risk, respectively, as gene expression decreases
(zero suggests no correlation between gene
expression and relative risk). A global negative
log HR indicates that reduced expression of
NF1 correlates with a poor outcome (high risk)
in tamoxifen-treated breast cancer patients. As diamond limits define CI for the overall effect, the combined effect for NF1 is significant at P < 0.05. The most
significant individual study is presented as a Kaplan-Meier survival curve in SI Appendix, Fig. S6. (B) Low expression of eight resistance-causing genes
identified in the functional screen correlates with poorer outcome in tamoxifen-treated patients. Genes included in this analysis were BAP1, CDK10, NF1,
NIPBL, PTEN, RARG, SMC3, and UBA3. (C) Low expression of six sensitivity-causing genes identified in the functional screen correlates with a favorable
outcome in tamoxifen-treated breast cancer patients. Genes included in this analysis were EDF1, KRAS, PDPK1, RAF1, TMPRSS2, and TPM4.
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fen response has already been suggested. Specifically, high
RRAS2 protein expression in breast tumor biopsies has been
shown to correlate with a shorter time to relapse in tamoxifen-
treated patients, as does possession of a RRAS2 allele carrying
the −582C→T RRAS2 promoter polymorphism present in ≈34%
of European Caucasians (36). Our functional data support the
case for RRAS2 playing a critical role in determining the re-
sponse to tamoxifen and strengthens the argument for examining
the functional effects of RRAS2 polymorphisms and how these
relate to clinical outcome.
Genome-wide functional screens, such as that described here,

should provide annotated gene lists that may act as a starting
point for the in-depth dissection of clinically relevant phenotypes,
in much the same way as microarray profiling has allowed an
understanding of gene expression alterations associated with
disease. As RNAi screening technology and reagents mature, the
functional screening of selected gene subsets is now within the
means of most laboratories. Furthermore, the experimental setup
applied here, with the deconvolution of pooled shRNAs by
massively parallel sequencing, allows genome-wide screens to be
performed at a fraction of the cost and time compared with ge-
nome-wide plate arrayed screens and will likely enable the dis-
section of additional disease-based phenotypes.

Materials and Methods
Pooled shRNA Screen Method. As a screening library, we used the Open-
Biosystems GIPZ human genome-wide shRNA library. Lentiviral DNA was
generated according to the manufacturer’s instructions and then pooled to

generate six pools, each containing 9,600 different shRNA constructs. Virus
was packaged in 293T cells and MCF7 cells transduced with a final repre-
sentation of ≈1,000 cells per shRNA (20,000,000 per shRNA pool). Trans-
duction efficiency was estimated by GFP detection using FACS 72 h after
infection. Cells were then cultured in 1 mg/L puromycin for 2 d to enrich for
transduced cells and then continuously cultured in media containing 500 nM
4OHT or 0.5% (vol/vol) ethanol for 21 d. Media with drug was replenished
every 2 to 3 d. MCF7 cells were cultured in phenol red-free RPMI-1640 media
supplemented with 10% (vol/vol) charcoal-dextran stripped FBS. Massively
parallel sequencing for shRNA retrieval and screen data analysis are de-
scribed in SI Appendix, SI Methods and Materials.

Clinical Analysis. This was performed using tumor samples from five in-
dependent datasets of ER+ patients subject to tamoxifen adjuvant therapy.
Raw Affymetrix U133A microarray expression files were downloaded from
the Gene Expression Omnibus repository (accession codes per study in-
dicated in main text) and processed using the RMA function from the Bio-
conductor Affy package for R (37). Log–rank analyses and Kaplan-Meier
plots were produced using the “survdiff” and “plot.survfit” S-plus (TIBCO
Software) functions, respectively. Normalized gene expression values were
partitioned into quartiles. Cox proportional hazards regression was carried
out using the “coxph” S-plus function. Here we used gene expression values
as the sole continuous predictor variable. Random effects metaanalysis was
carried out using the β values estimated by this regression.
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