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ABSTRACT

Alternative splicing plays a major role in increasing
proteome complexity and regulating gene expres-
sion. Here, we developed a new fluorescent
protein-based approach to quantitatively analyze
the alternative splicing of a target cassette exon
(skipping or inclusion), which results in an open-
reading frame shift. A fragment of a gene of
interest is cloned between red and green fluores-
cent protein (RFP and GFP)-encoding sequences in
such a way that translation of the normally spliced
full-length transcript results in expression of
both RFP and GFP. In contrast, alternative exon
skipping results in the synthesis of RFP only.
Green and red fluorescence intensities can be
used to estimate the proportions of normal and
alternative transcripts in each cell. The new
method was successfully tested for human PIG3
(p53-inducible gene 3) cassette exon 4. Expected
pattern of alternative splicing of PIG3 minigene
was observed, including previously characterized
effects of UV light irradiation and specific
mutations. Interestingly, we observed a broad
distribution of normal to alternative transcript ratio
in individual cells with at least two distinct popula-
tions with ~45% and >95% alternative transcript.
We believe that this method is useful for
fluorescence-based quantitative analysis of alterna-
tive splicing of target genes in a variety of biological
models.

INTRODUCTION
Protein-coding eukaryotic genes possess exon—intron
structure, and their primary transcripts undergo

splicing—excision of introns from pre-mRNA to form
mature mRNA consisting of exons only. Importantly,

most genes of higher eukaryotes produce multiple
isoforms of mature mRINA because of so-called alterna-
tive splicing, the process by which exons can be spliced in
different arrangements (1). Alternative splicing provides
a way to increase proteome complexity and to regulate
gene expression in a tissue-, stage- or stimuli-dependent
manner (2).

Regulation of alternative splicing is a complex process,
which is still not completely understood. Short cis-acting
sequence elements referred to as exonic splicing enhancers
(ESEs) and exonic splicing silencers (ESSs) or intronic
splicing enhancers and silencers located within alternative
exons and nearby introns, as well as adjacent constitutive
exons, were found to play important roles in the alterna-
tive splicing regulation (1,3). Also, other structural
features, such as RNA secondary structure and length of
the exons, can be involved in determination of the alter-
native splicing patterns.

Classical methods to study alternative splicing include
northern blot analysis and reverse transcriptase—polymer-
ase chain reaction (RT-PCR). Modern high-throughput
approaches, such as hybridization to oligonucleotide
microarrays and large-scale sequencing of transcriptomes
in combination with extensive bioinformatic examination,
enable global analyses of alternative splicing (1,3).

Last decade, several approaches to analyze alternative
splicing using green fluorescent protein (GFP) and other
fluorescent proteins, e.g., red fluorescent protein (RFP),
were developed (4-9). These methods enable visualization
of results of alternative splicing in live cells and organisms
at single-cell resolution. However, none of them gives the
possibility of calculating relative amounts of mRNA
species by measuring single cell fluorescence intensities
(see ‘Results and Discussion’ section below).

Here, we suggest a new approach to analyze alternative
splicing of a target cassette exon using two fluorescent
proteins of different colors. A percentage of the full
length and alternative (exon-skipping) forms can be
estimated from the ratio of the fluorescent signals at
single cell level.

*To whom correspondence should be addressed. Tel: +7 499 7248122; Fax: +7 495 3307056; Email: kluk@ibch.ru

Present address:

Lijuan Zhang, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 1, 1030 Vienna, Austria.

© The Author(s) 2012. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



e57 Nucleic Acids Research, 2012, Vol. 40, No. 8

MATERIALS AND METHODS

Genetic constructs

pSpIPIG was made on the base of pTurboFP635-C vector
(Evrogen) for expression of far-red fluorescent protein
Katushka in mammalian cells. TagGFP-coding region
was PCR amplified with primers 5-GGATGTCGACGT
GAATAGCGGGGGCGAGGAGCTG and 5-GGATA
GATCTCCTGTACAGCTCGTCCATGCC (restriction
sites for Sall and BglIl are underlined) and inserted
in the corresponding sites (Sall and BamH1) of
pTurboFP635-C vector. The obtained plasmid Katushka—
TagGFP contained a polylinker between Katushka and
TagGFP with sites for BglIl and Sall.

The minigene of PIG3 was obtained by PCR amplifica-
tion of exons 3-5 and the corresponding introns of PIG3
from HeLa genomic DNA using primers 5-TCGC
AGATCTCCGGAAATGTTCAGGCTGGAGACTAT
and 5-GGATGTCGACCGTCTGGGGCAGTTCCAG
GACG. The PCR product (3.6kb) was cloned into
Katushka-TagGFP vector using Bglll and Sall sites.

To prepare pCtrlPIG, a 592-bp ¢cDNA fragment of
PIG3 corresponding to exons 3-5 was amplified with the
same specific primers as for pSpIPIG (see above) on the
template of HeLa cDNA. This fragment was cloned into
Katushka—TagGFP vector using Bglll and Sall sites.

Mutagenesis

Our mutagenetic efforts were based on the previously pub-
lished work (10), where 12bp segments of exon 4 were
systematically replaced with a heterologous sequence TC
AGCATGACTC lacking splicing enhancer or silencer
activities. However, this sequence contains stop codon
(underlined), which is unacceptable for our method, and
also can result in artifacts due to nonsense-mediated decay
of mRNA with a premature stop codon. Thus, to replace
target regions in PIG3 exon 4, we used sequence TCAGC
ATGTCTC with no stop codon.

In mutants MutE and MutH, the following regions of
exon 4 were substituted for TCAGCATGTCTC: AAGAA
CGTCAAC (positions 49—60 of exon 4, MutE) or GTTCT
CTATGGT (positions 87-98 of exon 4, MutH). In mutant
MutCU, we introduced multiple silent substitutions
(underlined) into regions 86133 of exon 4:

GTA TTA TAT GGC TTA ATG GGT GGC GGA GAT ATT
AAC GGA CCA TTG TTC.

To clone the mutated sequences into pSpIPIG, we used
BamHI and Apal restriction sites, which are in proximity
to the target region of the PIG3 gene (upstream and down-
stream, respectively).

Cell culture

Human embryonic kidney HEK293T cell line was
cultured in DMEM (PanEco) with 10% FBS (Sigma) at
37°C in 5% CO, atmosphere. Transient transfections were
performed with FuGene 6 reagent (Roche) according to
the manufacturer’s protocol. Cells were analyzed by fluor-
escence microscopy and flow cytometry 24-48h after
transfection.
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For UV treatment, cells before transfection were placed
in PBS and exposed to Philips G8T5 germicidal lamp
(254nm) for 90s at about 1 m distance (dose of about
100 J/m~).

Fluorescence microscopy

Fluorescence microscopy of live cells was performed using
Leica AF6000 LX imaging system equipped with a
Photometrics CoolSNAP HQ CCD camera and a 120 W
HXP short arc lamp (Osram). Green and red fluorescence
images were acquired using x10 objective and standard
filter sets: GFP (excitation BP470/40, emission BP525/50)
and TX2 (excitation BP560/40, emission BP645/75).

Flow cytometry

Flow cytometry of live cells was performed using
Beckman Coulter Cytomics FC500 equipped with
488 nm laser. Fluorescence was detected in green (FLI,
510-540nm) and red (FL4, 660-690nm) channels.
HEK?293T cells expressing either Katushka or TagGFP
(Evrogen) were used as controls to check for cross talk
of TagGFP signal into red channel and vice versa.
Digital data for calculations of alternative transcript per-
centage were extracted using Weasel software and
processed by Origin software.

RESULTS AND DISCUSSION

The proposed method is aimed to analyze alternative
splicing of cassette exons, skipping or including of which
results in an open reading frame shift (i.e. exon length is
not a multiple of 3). Two fluorescent proteins of clearly
different colors are used for quantitative analysis at single
live cell level. A fragment of target gene (minigene)
consisting of an alternative exon (AE,) of interest
flanked by adjacent upstream and downstream introns
(I) and constitutive exons (E) is cloned between RFP-
and GFP-encoding sequences in the following order:
rfp-E— 1y-1o—1y-AE,-L-E(, 1y-gfp (Figure 1A) so that the
OREF is conserved from RFP to GFP. Thus, translation of
the normally spliced full-length transcript results in a
RFP-tORF-GFP fusion protein. In contrast, alternative
exon skipping results in a frame shift within exon E,
and thus leads to a truncated protein RFP-tORF without
GFP.

Cells expressing this construct develop different levels of
red and green fluorescence (which can be quantified using
fluorescence microscopy or flow cytometry), and the ratio
of red to green can be used to estimate a proportion of
normal and alternative transcripts. To this end, a control
construct encoding RFP-tORF-GFP without introns
should be used. Expression of this control provides a ref-
erence ratio between the red and the green signals
observed in a particular model and detection settings
when only normal transcript is present. In the experimen-
tal construct undergoing alternative splicing, additional
red signal, which is above the estimated control red/
green ratio, corresponds to the alternative transcript.

Experimental results can be represented as a plot where
each cell gives a dot of particular intensities in green
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Figure 1. Outline of the proposed method. (A) Schematic representa-
tion of the reporter, which includes target gene fragment (an alternative
exon with adjacent introns and constitutive exons) flanked by RFP-
and GFP-coding regions. Alternative splicing results in two mRNA
species. Translation of the normal full-length transcript (left)
produces RFP and GFP, whereas translation of the alternative short
transcript (right) results in RFP only. (B) Scheme of expected flow
cytometry results (GFP-RFP bivariate plot). Gray area shows control
cells expressing normal transcript without introns. Cells with only
normal splicing, only alternative splicing and both types of splicing
of the target gene are shown as yellow, red and orange dots, respect-
ively. A percentage of normal and alternative transcripts in each cell
can be estimated using designated equation.

(abscise axe) and red (ordinate axe) channels (Figure 1B).
On this plot, the control cells would form a diagonal
cluster, whereas experimental cells would lie either on or
above this diagonal. Portions of normal and alternative
transcripts in each cell can be estimated using a simple
calculation using its position relative to the control
diagonal (Figure 1B).

To test this new method, we analyzed alternative
splicing of human PIG3 (p53-inducible gene 3) gene.
This gene represents an interesting example of a
regulatable alternative splicing. Expression of PIG3
produces two splice variants: major full-length transcript
consisting of all 5 exons and minor short transcript
lacking exon 4 of 197-bp length (10). Absence of exon 4
induces a frame shift in exon 5.

In this work, we used far-red fluorescent proteins
Katushka and GFP TagGFP. These fluorescent proteins
provide bright and spectrally non-overlapping signals. In
the previous work, we showed that the coding region of
Katushka contains a strong donor splice site, which can
interfere with target gene splicing (11). Therefore, we used
a mutated Katushka gene with altered codon usage that
does not possess splice sites and, thus, can be used to
analyze splicing events (11). We cloned PIG3 minigene
(exons 3-5 and corresponding introns) between
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Katushka and TagGFP-coding sequences (plasmid
pSpIPIG) in accordance to the scheme depicted in
Figure 1A. Also, a control plasmid pCtrlPIG correspond-
ing to the normally spliced transcript (Katushka-exons3—
5-TagGFP) was constructed. HEK293T cells were
transfected with these plasmids and analyzed using fluor-
escence microscopy and flow cytometry. Cells expressing
pCtrIPIG demonstrated bright green and red fluorescence;
the ratio between red and green signals did not vary much
from cell to cell. Therefore, overlay of the images in green
and red channels gave mainly yellow cells (Figure 2A),
and flow cytometry showed that these cells form a
quite narrow diagonal on the red-green bivariate plot
(Figure 3A).

In contrast, transfection with pSplPIG revealed unex-
pected cell-to-cell variation in a red/green ratio.
Side-by-side analysis of pSplPIG- and pCtrlPIG-
expressing cells under the same detection settings showed
that some pSplIPIG cells were similar to the control cells,
some others were almost purely red, and majority of
pSpIPIG cells gave various relative intensities of red and
green signals (with a clear prevalence of red over green
fluorescence compared with pCtrlPIG cells) (Figure 2B).
We concluded that levels of PIG3 minigene alterna-
tive splicing in individual HEK293T cells can vary
significantly—from nearly 100% normal transcript
(‘yellow’ cells) to nearly 100% alternative transcript
(‘red’ cells), but most cells produce both transcripts in
various proportions (‘orange’ cells).

Quantitative analysis of flow cytometry data confirmed
a broad distribution of the proportion between normal
and alternative transcripts in pSplPIG cells (Figure 3B).
Two clear peaks at ~45% and >95% of alternative tran-
script can be recognized. Thus, at least two distinct popu-
lations of cells with different levels of alternative splicing
of the target gene exist in HEK293T. A mean percentage
of pSpIPIG alternative form was estimated to be 50%. To
check this value by an independent method, we isolated
RNA from HEK293T transfected with pSplIPIG,
generated cDNA, and performed PCR with primers cor-
responding to Katushka and TagGFP sequences. As
expected, this amplification resulted in two bands corres-
ponding to the normally and alternatively spliced tran-
scripts (Figure 3). Densitometry analysis showed lower
band (alternative transcript) to constitute 52% of the
total, which is in a good agreement with flow cytometry
data.

The production of the PIG3 alternative transcript was
found to be enhanced by irradiation of cells with UV light
(10). Thus, we tested the effect of UV illumination on
pSpIPIG splicing. In line with literature data (10), a con-
siderable increase in the percentage of the alternative tran-
script was observed (Figures 2C and 3C).

Earlier mutagenesis studies on PIG3 minigene revealed
regions within exon 4 acting as strong ESE or ESS (10).
We generated two mutants, pSpIPIG-mutE and pSpIPIG-
mutH, corresponding (with some modifications, see
Materials and Methods for details) to two extreme
mutants dubbed e and h in the original publication (10),
which produce nearly exclusively alternative and normal
transcripts, respectively. pSplPIG-mutE-expressing cells
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Figure 2. Fluorescence microscopy of HEK293T cells transiently expressing target vectors. Left column, red channel; middle, green channel and
right, overlay. All cells were imaged using identical settings. Scale bar 100 um. (A) pCtrlPIG; (B) pSpIPIG; (C) pSpIPIG, cells were treated with UV;

(D) pSpIPIG-mutE; (E) pSplPIG-mutH; and (F) pSpIPIG-mutCU.

developed only red fluorescence, which corresponds to the
presence of alternative and absence of the normal tran-
scripts (Figures 2D and 3D). In contrast, transfection
with pSpIPIG-mutH resulted in ‘yellow’ cells, which prac-
tically overlap with the control pCtrIPIG-expressing cells
(purely normal splicing) on the bivariate plot (Figures 2E
and 3E). Thus, both mutants showed expected behavior.

We also generated a mutant pSplPIG-mutCU with
altered codon usage, which contains no amino acid sub-
stitutions but many silent mutations within exon 4 nucleo-
tides 86-133 [designated h—k in (10)]. This region was
shown to be ESS (10), and we thus aimed to generate

PIG3 variant with no exon 4 skipping. Unexpectedly,
pSpIPIG-mutCU demonstrated a considerable enhance-
ment of exon 4 skipping (Figures 2F and 3F).
Interestingly, the splicing pattern of this mutant was
very similar to that observed for UV-treated pSplPIG
cells. We believe that pSplPIG-mutCU can potentially
be used as a model of UV-induced changes of PIG3 alter-
native splicing (but without UV irradiation) to study bio-
chemical consequences of this phenomenon.

In conclusion, our method provided an adequate evalu-
ation of PIG3 minigene splicing including expected
changes in response to UV and introduced mutations.
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Figure 3. Flow cytometry analysis of HEK293T cells transiently
expressing target vectors. Left panels: dot plots of cell fluorescence in
green (TagGFP) and red (Katushka) channels. All samples were
analyzed using the same settings of the flow cytometer. Area of
non-transfected and low fluorescent cells is not shown and not taken
for analysis. Area corresponding to the pCtrlPIG-expressing cells is
outlined by dashed gray line on each plot. Right panels: quantitative
analysis of the corresponding left plots. For each cell, a percentage of
alternative transcript was estimated, and these data were used to build
a histogram of cell distribution in the sample. Cells with seemingly
negative percentage of alternative transcript come from the area
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Moreover, analysis at single-cell level made it possible to
reveal a strong heterogeneity of cells with respect to PIG3
alternative splicing. The reasons for this heterogeneity
are unclear and call for further investigation. Generally,
heterogeneity within seemingly uniform cell populations
recently became the focus of extensive research (12-14).
It can be revealed by cell staining for several independent
markers (15,16). Heterogeneity of alternative splicing can
add a new dimension to these studies.

We believe that the new method is potentially useful for
the analysis of alternative splicing of target genes in a
variety of biological models—cell lines and whole organ-
isms—where fluorescence microscopy and/or flow
cytometry can be used to detect fluorescence. The
method possesses common drawbacks of GFP-based tech-
niques such as the necessity to (over)express an exogenous
gene (that can affect cell physiology including splicing),
and potentially altered stability of chimeric mRNA with
and without alternative exon. However, worldwide
practice of applications of fluorescent proteins shows
that it can be used safely in most biological models.
Advantages of the method proposed can be summarized
as follows:

(i) A new scheme of arrangement of two fluorescent
proteins is applied. The main novelty of the
scheme is that RFP is encoded in both normal
and alternative transcripts. This design allows quan-
titative analysis of alternative splicing in individual
cells by decomposing red signal into two portions
corresponding to alternative (RFP) and normal
(RFP+GFP) transcripts using a simple control
sample (RFP+GFP). In contrast, previously pub-
lished methods do not allow calculating the percent-
age of transcripts from fluorescence intensities even
when two fluorescent proteins are used (5,6,8,9). A
quantitative analysis of a cassette exon skipping
within single cells using EGFP and DsRed was
claimed by Orengo et al. (7). However, this
method is based on the comparison of fluorescence
intensity of a cell in green channel with that of the
same cell in red channel as assessed by fluorescence
microscopy or flow cytometry. In fact, such direct
comparison of the green fluorescence signal to the
red one to estimate molar ratio between EGFP and
DsRed (or any other fluorophores) seems to be in-
correct for many reasons including the following:
(a) different fluorophores possess different intrinsic
(per molecule) brightness, (b) excitation filters
(lasers) and emission filters fit the excitation—
emission spectra of the fluorophores differently, (c)
intensity of excitation light (e.g. from a mercury
lamp) can differ drastically in different spectral

below the middle line of the control sample. Insets show results of
RT-PCR analysis of the corresponding cDNA samples. Upper band
(~1100bp) corresponds to the normal PIG3 transcript, lower band
(~900bp) corresponds to the alternative transcript without exon 4.
The percentage of each band was calculated by densitometry with cor-
rection for the difference in size of the DNA fragments. (A) pCtrIPIG;
(B) pSpIPIG; (C) pSpIPIG, cells were treated with UV; (D)
pSplPIG-mutE; (E) pSplPIG-mutH; and (F) pSplPIG-mutCU.
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regions and (d) the detector can possess different
sensitivity in different spectral regions.

(i) A large fragment of the unaltered target gene
including an alternative exon with flanked introns
and constitutive exons is taken for analysis. This
ensures inclusion of nearly all native regulatory
elements, which are usually concentrated not only
within alternative exons and flanked introns but
also can be found in adjacent constitutive exons
(3). At the same time, expression cassettes in some
existing methods of fluorescent protein-based
analysis of alternative splicing do not include
adjacent constitutive exon(s) or contain fluorescent
protein-coding inserts into alternative exons (5,9). In
some cases, this can affect the regulation of alterna-
tive splicing.

(iii) In addition to cassette exons, our method can be
potentially adapted for other alternative splicing
types such as alternative 5- or 3'- splice sites,
intron retention and mutually exclusive exons. The
only requirement is a frame shift in the alternative
transcript relative to the normal one. The frame
shift was found to occur in more than one-third
of all alternative splicing events in human and
mouse (1,17). Thus, the method suggested is applic-
able for a large number of genes. For other genes,
artificial alteration of the size of alternative regions
by 1-2 nucleotides can be used to induce the
required frame shift (6,7).
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