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Bacterial meningitis is an ongoing threat for the population of the African

Meningitis Belt, a region characterized by the highest incidence rates world-

wide. The determinants of the disease dynamics are still poorly understood;

nevertheless, it is often advocated that climate and mineral dust have a large

impact. Over the last decade, several studies have investigated this relation-

ship at a large scale. In this analysis, we scaled down to the district-level

weekly scale (which is used for in-year response to emerging epidemics),

and used wavelet and phase analysis methods to define and compare the

time-varying periodicities of meningitis, climate and dust in Niger. We

mostly focused on detecting time-lags between the signals that were consist-

ent across districts. Results highlighted the special case of dust in

comparison to wind, humidity or temperature: a strong similarity between

districts is noticed in the evolution of the time-lags between the seasonal

component of dust and meningitis. This result, together with the assumption

of dust damaging the pharyngeal mucosa and easing bacterial invasion,

reinforces our confidence in dust forcing on meningitis seasonality. Dust

data should now be integrated in epidemiological and forecasting models

to make them more realistic and usable in a public health perspective.
1. Introduction
Bacterial meningitis (which we will refer to as meningitis) is a contagious

disease transmitted from individual to individual by airborne droplets of res-

piratory or throat secretions. The highest burden of the disease occurs in the

‘African Meningitis Belt’, a region stretching from Senegal to Ethiopia with

an estimated population of 300 000 million people [1,2]. While Neisseria menin-
gitidis A is the main cause for large epidemics, serogroups W135, C and X are

also responsible for localized outbreaks [3,4] as well as Streptococcus pneumoniae
or Haemophilus influenzae type B. Increase in incidence is typically observed

every dry season, with weekly incidence rates reaching up to 100 per 100 000

population in individual communities [5,6]. Even with appropriate treatment,

the mortality rate fluctuates around 10 per cent, and 10–15% of survivors

suffer long-term neurological sequelae [7]. Asymptomatic carriage is

common, which most often does not lead to the consecutive development of

the illness [8,9]. Despite a strong seasonality, the determinants of meningitis

dynamics are still poorly understood. Various factors are likely involved in

the underlying mechanism of the disease dynamic, including (re)introduction

of consecutive strains [6,10], vaccination impact, population dynamics and

immunity [11–13]; climate and dust are often advocated as having a large

impact. The epidemic season for meningitis coincides with the dry season

and ends with the arrival of the African monsoon [1,2,14]; early epidemic

onset often correlates with high annual incidence [15].
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A bimodal tropical climate is predominant in Western

Africa, with a dry season running from mid-October to

mid-April followed by a wet season over the remaining six

months of the year [16,17]. In the core of the dry season,

from January to March, the dry and hot winds called Harmat-

tan blow from the northeast and carry high dust loads [18].

These dusts mostly originate from Bodélé (Chad) [19] and

are carried by wind over continental distances. Their speci-

ficity is to be mainly localized in the low layers of the

atmosphere [20]. During the wet season, the southern mon-

soon winds blow from the Gulf of Guinea, and bring

precipitations (mostly July–September) and high levels of

humidity. Temperature, humidity levels, pressure, wind and

dust thus display seasonal variations. This seasonality is less

obvious in the arid Sahara region where it is mostly dry the

whole year, as the monsoon winds do not go beyond 13.58
of latitude at their maximal northward expansion. In the

meantime, rainfalls occur in areas up to 168 of latitude, with

a gradient in their frequency and intensity.

The influence of climate on meningitis dynamics was

first suspected in 1940 by Sicé et al. [21]. Since then, several

studies have investigated the relationship between climate

and meningitis using different approaches: qualitative [1,2,5,

6,22,23] and recently quantitative [24–28]. The main con-

clusions of these studies were that (i) the intensity of the

epidemics is related to the Harmattan wind [23,24,27,28] and

its strength [29]; (ii) the onset of the epidemics is in phase

with the winter maximum as defined by Sultan et al. [24] and

with the arrival of the dust in the low layers of the atmosphere

[25,26]; and (iii) the end of the epidemic season coincides with

the arrival of the African monsoon [25,26]. The main hypothesis

to explain climate impact on meningitis epidemics is an increase

in the invasion rate (i.e. shift from carrier to infected status) [10]:

persistent low air humidity and high dust loads are believed to

damage the pharyngeal mucosa and ease the colonization of

the epithelium by the meningococci [5,6,8,14]. Additionally,

increased incidence could be attributed to higher transmission

levels, due for instance to changes in living habits, such as

proximity of individuals as they take refuge from the dusty

winds [6,29]. Finally, co-occurrence of viral respiratory infec-

tions is expected to weaken the immune system and further

ease the transmission and invasion by the bacteria [22].

To our knowledge, all studies of climate impact on menin-

gitis were conducted at the national level and the annual or

monthly time scale. Here, we focused on a finer level: the

weekly temporal scale and district spatial scale, which are

currently used for operational decisions and in-year response

to emerging epidemics in most countries of the Belt,

following WHO recommendations [30]. Two factors charac-

terize an epidemic: its timing and its amplitude. In this

study, we focused on the timing aspect and explored the

relationship between the seasonality of meningitis, dust and

climate. Based on wavelet and phase analysis [31], we inves-

tigated and compared time-varying periodic components,

and mostly searched for temporal and spatial consistency in

the time-lags between the signals, in order to detect persistent

links. On top of dust, the climatic variables we have con-

sidered are: temperature (TEMP), wind force (Wf), wind

direction (Wd) and relative humidity (RH). Niger was selected

to conduct this analysis as it is one of the most affected

countries of the Belt and has the longest history of meningitis

cases reporting. As the district-level weekly scale is currently

used for operational decisions, detailed understanding of the
relationship between meningitis and climate as well as dust

could help in improving the public health response strategy.
2. Data and methods
2.1. Data
The epidemiological data consist of reported number of sus-

pected meningitis cases per week from 1986 to 2007, for

Niger’s 38 health districts (figure 1). Data were collected

through the national enhanced surveillance system, which is

supported by WHO. Suspected cases were identified by use

of a standard case definition based on clinical criteria [32].

The aerosol index (AI) is a semi-quantitative index of the

aerosol loads integrated over the whole atmospheric column.

It is based on ultraviolet radiance measures captured by sat-

ellite probes [33,34]. Specificities of the AI product are to be

(i) particularly efficient over bright surfaces such as desert

[35,36], being thus adapted to our semi-arid area of interest

that is Niger and (ii) sensitive to dust altitude, with higher

AI values obtained for the same amount of dust at high alti-

tude compared with low altitude [37,38]. The AI product is

available from the Total Ozone Mapping Spectrometer

(TOMS) at a 18 � 1.258 spatial resolution (18 corresponds to

approx. 100 km) from mid-1996 to 2005 [33], and from the

Ozone Monitoring Instrument (OMI) at a 0.258 � 0.258 spatial

resolution from 2005 to 2009 [34]. An instrumental drift was

detected for TOMS over the years 2002–2004 (R McPeters, S

Taylor, G Jaross, D Haffner, G Labow, M Kowalewski 2007,

personal communication; electronic supplementary material,

figure S1). Three periods were accordingly defined, 1996–

2001 (TOMS), 2002–2004 (TOMS) and 2005–2009 (OMI), over

which data were corrected through standardization of the

values, using as a reference the annual mean and standard devi-

ation values averaged over the third period. The continuous

time series that were obtained are further referred to as DUST.

Only dust at ground level has the potential to be inhaled

by humans and to impact their health. We aimed at correct-

ing the AI measurements from an altitude effect in order to

better approach levels of dust concentrations at the surface.

This is made possible by assuming that the altitude of dust

in the Meningitis Belt results from cyclic climate conditions:

in the dry season, the dusty Harmattan winds blow at low

altitude [20]. It is followed by a transition period between

the Harmattan and the monsoon regimes, during which ver-

tical mixing is important, with dusts located both at low and

high altitudes. At the beginning of the wet season, the mon-

soon wind replaces the air at the surface and pushes the dusty

air higher up in the atmosphere. Finally, the concentration of

dust in the higher layers of the atmosphere further decreases

until the arrival of the next dry season. We used measure-

ments of the surface aerosol concentrations extracted from

two of the three ground-based stations of the Sahelian Dust

Transect. These were set in the frame of the African monsoon

multidisciplinary analyses (AMMA) programme, and rely on

the tapered element oscillating microbalance technology [18].

The two stations we considered are located in the semi-arid

part of Niger and Mali; whereas the third is located in

Senegal on the coast, where climate is different. For the two

given stations, we compared the related in situ measurements

(named particulate matters, PM) to DUST values. We showed

that, despite a large intra-seasonal variability, the PM/DUST

rates could be considered seasonal and were overall
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Figure 1. Map of districts in Niger. The country was partitioned into 38 health districts until 2002. After 2002, three of these districts were subdivided, which we did
not consider in order to maintain a consistent geography throughout the study period. The right and left dots give the location of the Banizoumbou (Niger) and
Cinzana (Mali) ground-based weather stations, respectively. (Online version in colour.)
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consistent across years and across the two stations (see the

electronic supplementary material, figure S2). An averaged

and smoothed annual curve of the PM/DUST rates was com-

puted: it reflects the week-specific proportion of the aerosols

that are located at ground level. DUST data were further

multiplied by the value of this annual curve for the corre-

sponding week. The resulting time series (referred to as

DUSTC) represents the aerosols concentrations at ground

level better than DUST (see the electronic supplementary

material, figure S2, for details of the method). However, the

PM/DUST rates are climate-dependent, and our correction

is expected to be valid only over the Sahel part of Niger,

where the dust cycle is alike. Note that Niger is divided

into a northern semi-desert part (typically, Agadez, Arlit

and Bilma districts, figure 1), where precipitations do not

exceed 200 mm yr21, and a southern semi-arid part, where

they vary between 200 and 600 mm yr21.

ERA-Interim is the third-generation reanalysis provided

by the European Centre for Medium-Range Weather Fore-

casts [39], from which we have extracted RH, TEMP,

Wf and Wd data for the period 1989–2009 at a 1.58 spatial

resolution at a daily time-step.

For each climate and dust variable, we used a spatial

mask at the given resolution to extract the values of the

pixels overlapping each district, which we averaged.

Weekly time series were further obtained by averaging the

daily values for each calendar week, in agreement with the
epidemiological dataset. Time series of meningitis, climate

and dust variables are displayed in figure 2.
2.2. Wavelet analysis
Detecting periodicities in time series is classically achieved by

frequency decomposition using Fourier transform. This

method requires series to be second-order stationary, which

most epidemiological or environmental signals are not. On

the other hand, wavelet transforms cope with transient

dynamics by allowing extraction of periodic components that

are time-dependent [31,40]. Wavelet coefficients are the result

of the convolution product between the time series and a wind-

owed mathematical function (called the mother wavelet) that is

dilated onto the desired wavelike shape and translated across

the time axis [41,42]. The relative importance of these coeffi-

cients at each time step and frequency is represented on a

time–frequency two-dimensional plot called the wavelet

power spectrum. The cone of influence is the region that is

not influenced by edge effects; outside this region, wavelet

coefficients should be interpreted with caution [43]. When a

given periodicity is detected, the related phase can be extracted,

and indicates the instantaneous position in the cycle.

Statistical significance tests for the wavelet transforms go

from simple bootstrap [44] to more complex resampling that

preserves the autocorrelation function of the raw time series

[45]. In our study, we used beta-surrogates that mimic the
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slope of the wavelet power spectrum of the original time

series, and thus display similar variance and autocorrelation

structure [46]. For each test, 1000 surrogates were simulated;

significance is given at a 5% confidence level.
2.3. Coherency and phase difference
Wavelet coherency provides information about two non-

stationary time series being linearly correlated or not at a

particular frequency and temporal location in the time–

frequency plane [47]. Coherency coefficients are equal to one

when there is perfect linear relationship, i.e. when in a given

time period, the two time series oscillate with the same period-

icity [31]. Similarly to univariate wavelet spectra, the

importance of the coherency coefficients is represented on a

time–frequency two-dimensional plot called the coherency

graph. Significance is tested by simulating 1000 beta-surrogates

for both time series, computing their related coherency graphs

and comparing them to the coherency graph of the original data.
When coherency is significant, the phase difference can be

interpreted. It represents the instantaneous time lag between

the time series’ oscillations at a given periodicity. Two time

series are phase-locked for a given periodicity when they are

coherent and their phase difference is constant throughout the

study period. They are synchronous in phase if they are phase-

locked with null phase difference, in which case values rise and

fall simultaneously [48,49]. For each pair of variables, the phase

difference curve was computed for each district and plotted. To

estimate the consistency across districts in the evolution of these

phase difference time series, we compared the differentiated

time series two-by-two (observed within the cone of influence)

by defining their correlation coefficients, and retained the mean

value. We will refer to this distance as the distance D. Similarly

to correlation coefficients, the closer to 1 the D value, the more

consistent the evolution of phase difference across districts.

In our study, we used a Morlet mother wavelet because it

is specially suited for sinusoidal signals, which most epide-

miological and climate series are [31]. Phase difference

values are, however, not expected to differ whichever



Table 1. Characteristics of the phase difference curves between DUST, DUSTc and climate variables. Phase differences for Aguié and Bilma are not accounted for,
as they are considered as extreme values (see electronic supplementary material, figures S7 and S8, for details).

mean range s.d. mean weekly s.d. distance D

DUST versus Wd 210.01 (217.60, 22.25) 3.08 2.47 0.85

DUST versus RH 213.81 (221.50, 26.43) 2.92 2.21 0.88

DUST versus TEMP 23.61 (212.40, 4.79) 3.25 2.47 0.89

DUST versus Wf 12.38 (21.28, 22.29) 4.22 3.69 0.65

DUSTC versus Wd 217.14 (219.65, 211.42) 1.42 0.94 0.92

DUSTC versus RH 220.95 (225.23, 215.22) 1.43 0.89 0.97

DUSTC versus TEMP 210.74 (217.73, 0.20) 2.93 2.65 0.91

DUSTC versus Wf 5.26 (23.19, 11.87) 2.76 2.52 0.58

Wd versus RH 23.93 (28.25, 22.87) 0.76 0.71 0.72

Wd versus TEMPa 5.99 (20.57, 11.92) 2.45 2.38 0.76

Wd versus Wf 22.25 (14.24, 26.55) 2.40 2.21 0.71

RH versus TEMPa 9.93 (5.38, 15.03) 2.07 1.99 0.73

RH versus Wf 26.18 (17.82, 31.98) 2.52 2.34 0.77

TEMP versus Wfa 16.34 (4.36, 24.69) 3.93 3.84 0.66
aPhase difference for Gaya is not accounted for.
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mother wavelet is considered. Wavelet methods were directly

applied on climate variables, whereas log-transformation was

first performed on the meningitis time series to bring out

their periodicity by compressing extreme values.

Wavelet spectra and coherency graphs could not all be

presented. Instead, we selected a district that displays aver-

age characteristics, for which graphs are given as an

example in the electronic supplementary material, figures

S3 and S4. Districts’ locations are given in figure 1.
3. Results
3.1. Univariate wavelet spectra
Among the 38 districts of Niger, five recorded very low

meningitis incidence with numerous zero values: Arlit,

Bilma, Diffa, Maine-Soroa and N’Guigmi. This leads to

unclear seasonality and makes the time series inappropriate

for wavelet analyses. These five districts are located in the

arid northwest part of the country. Their low incidence is

likely partly due to their small population size (see the elec-

tronic supplementary material, figure S5). For all other

districts, meningitis time series are dominated by an annual

periodic component, which is significant—except when inci-

dence is too low (example of wavelet spectrum given in the

electronic supplementary material, figure S3a). Transient

pluri-annual periodicities were identified, with a dominant

6–8 years cycle displayed in half of the districts’ spectra.

Broutin et al. previously highlighted an 8–12 years transient

periodic component for meningitis epidemics at a national

level, in nine countries of the Meningitis Belt including

Niger [50]. The time series used in our study were of too

short a length to test the persistence of these low-frequency

components at a district level.

For all the districts, spectra for DUST, DUSTC, RH and

Wd exhibited a dominant annual periodicity, significant

over the whole study period—except for Arlit, Bilma and
Aguié for Wd, and to a lower extent for RH (example given

in the electronic supplementary material, figure S3b–f ). This

annual periodicity is also displayed in Wf and TEMP spectra;

it is, however, not significant over the whole study period,

and is counterbalanced by a strong six-month periodicity,

mostly for TEMP. This periodicity is due to the occurrence

of two consecutive climate regimes in the area of study: the

Harmattan regime in the dry season, with a maximum in

Wf and in TEMP being reached in March; and the monsoon

regime, with local maxima in Wf and TEMP reached in July

(figure 2e,f; averaged patterns in electronic supplementary

material, figure S6). A six-month periodicity also appears

in several districts’ RH spectrum, yet in a weak and non-

consistent way. No pluri-annual periodicities were observed

in any of the dust or climate spectra.

We further observed the temporal evolution of the signifi-

cance of the annual periodic component. High significance for

a given parameter corresponds to large amplitude between

values of the dry and the wet season. Interestingly, we noted

a decrease in the significance of the RH annual periodicity in

northern districts: the rainy season’s average RH decreased in

these districts after the year 2000. In the following, we focus

on the dynamics of the predominant 1-year periodic com-

ponent as we aim at better understanding the impact of dust

and climate factors on the seasonality of the disease.
3.2. Coherency and phase difference
First, we observed the district-level coherency and phase

difference for each pair of dust and climate variables (results

summarized in table 1). On the annual periodicity, coherency

was significant over the whole study period for all districts

and all pairs of variables. Results highlighted a synchronicity

in phase for Wd versus RH in all districts but Arlit and Bilma

(table 1, mean and s.d.). The temporal evolution of the phase

difference was similar across the same districts for DUST

versus TEMP, RH and Wd (distance D values greater than

0.85), and to a greater extent for DUSTC versus TEMP, RH



Table 2. Characteristics of the phase difference curves for meningitis (men) versus dust and climate variables. Phase difference was considered for all districts
but the low incidence ones.

mean range s.e. mean weekly s.e. distance D

men versus DUST 25.87 (211.96, 1.94) 2.22 1.79 0.62

men versus DUSTC 1.55 (24.49, 7.30) 1.95 1.68 0.55

men versus Wd 215.38 (233.50, 28.13) 2.21 2.17 0.15

men versus RH 219.66 (236.98, 211.40) 2.77 2.76 0.12

men versus TEMP 29.07 (231.02, 1.18) 3.05 2.95 0.31

men versus Wf 6.54 (212.12, 15.88) 3.26 3.11 0.31

men versus Wda 215.16 (219.66, 28.13) 2.10 2.11 0.11

men versus RHa 219.33 (232.50, 211.40) 2.82 2.84 0.11

men versus TEMPa 28.54 (216.29, 1.18) 2.96 2.91 0.45

men versus Wfa 6.98 (22.44, 15.88) 3.49 3.35 0.45
aComputed over the period all data were available (i.e. 1996–2007).
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and Wd (D values greater than 0.90); yet it could not be

considered phase-locked (too large s.d., table 1).

Second, coherency and phase difference were computed

for meningitis compared to dust and climate variables for

all but the five low incidence districts previously defined

(results summarized in table 2). Coherencies are all domi-

nated by a 1-year periodic component, significant over the

whole study period for meningitis versus DUST, DUSTC,

RH and Wd, and in a more inconsistent way for meningitis

versus TEMP and Wf (example of coherency graph given in

the electronic supplementary material, figure S4). Over the

respective study periods, we observed no district-level

phenomenon of phase lock, but a noticeable consistency in

the evolution of the phase difference curves across districts

for meningitis versus DUST and DUSTC: unlike other vari-

ables, the phase difference evolves similarly across districts

(figure 3). The value for the distance D is 0.62 for meningitis

versus DUST and 0.55 for meningitis versus DUSTC; it does

not exceed 0.31 for meningitis versus other climate variables.

We further computed the distance D over a common

restricted time period over which DUST and DUSTC are

defined. Over this 11 year period, the D value for meningitis

versus climate variables does not exceed 0.45, hence remains

smaller than the 0.62 and 0.53 values for DUST and DUSTC,

respectively. On average, the time lag between seasonal

components of meningitis and DUST is 25.87 weeks, and

1.55 weeks for DUSTC. The averaged phase difference

was observed by district and displayed spatial variations

(figure 4). We further observed the phase difference between

districts for a given variable: the closer to 0, the more similar

the timing of the cycles between districts. The global standard

deviation of these two-by-two phase difference curves is 2.91

for meningitis (table 3); it is 2.22 and 1.95 for meningitis

versus DUST and meningitis versus DUSTC, respectively

(table 2). This indicates there is a stronger similarity when

relating a district’s meningitis curve to its DUST or DUSTC

curves than when relating it to other districts’ meningitis

curves. Moreover, the standard deviations of the two-

by-two phase difference curves for DUST and DUSTC are

3.74 and 1.28, respectively (table 3). Despite the small varia-

bility between districts for DUSTC, comparing DUSTC to

meningitis curves led to a smaller variability than comparing

meningitis curves together.
4. Discussion
Relationship between climate and dust and meningitis has

often been advocated in the last decade. First quantitative

studies were recently conducted, especially in the frame of

the AMMA programme [24–27], leading to new hypotheses

on the relationships between climate, dust and epidemic

cycles. In this study, we strengthen these first results and

go further into details by considering data at the weekly

district level. To our knowledge, despite being the base for

in-year response to emerging epidemics in most countries

of the Belt, this scale has not been used yet for investigating

meningitis epidemics’ link with climate and dust. Wavelet

methods were recently largely used in both epidemiology

[50–54] and climate [55,56], and were first applied to menin-

gitis data by Broutin et al. [50] at a national scale to compare

periodicities and detect synchrony between nine countries of

the Meningitis Belt. In our study, we used this method to

investigate climate forcing on meningitis seasonality, and

mostly focused on detecting spatially consistent time-lags

between the seasonal component of the signals. Results high-

lighted the special case of dust in comparison to Wd, humidity

or TEMP: the time-lags between seasonal components of

meningitis and DUST and between meningitis and DUSTC

evolve similarly for all districts (figure 3). This favours the

assumption of a strong link between dust and meningitis

annual seasonality and prompts considering dust as a major

predictor of the timing of meningitis epidemics.

Despite this consistency across districts, the time lag

between the seasonal component of dust and meningitis

evolves across the study period: this is likely due to another

time-varying factor, which is that interaction with dust

would trigger an increase in meningitis cases. Introduction

and re-introduction of consecutive meningitis strains [14,57]

in the area of study could be this other predictor: with an

increased global susceptibility of the population to these new

strains, dust could have a more instantaneous effect by helping

the invasion of the given bacteria, with it being hardly slowed

down by the immune system. Another candidate predictor

could be the intensity of dust events; but they do not appear

to covary with the average difference of phase (figure 2b
versus figure 3a and figure 2c versus figure 3b). However, the

effect of dust and climate variables on the amplitude of the
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epidemics was not investigated here (as we focused on the

seasonality), and should be studied in more depth.

Only dusts at ground level are of interest for the public

health community for being potentially inhaled by local

population and impacting human health. However, remote

sensed AI corresponds to absorbing aerosols cumulated over

the whole atmospheric column: we aimed at correcting the AI

estimates (so-called DUST) from an altitude effect in order to

be more representative of the dust at the surface (so-called

DUSTC). Same spatial consistency in the evolution of the

phase difference with meningitis was observed for DUSTC

and DUST, with a negative average lead time for DUST

(25.81 weeks), while it is positive for DUSTC (1.53 weeks,

table 3). This difference reflects the increase of aerosol altitude

at the end of the meningitis season [37,38]. These results

reinforce our confidence in using our correction of the AI esti-

mates of dust: the pattern of similarity among districts in the

evolution of the phase difference observed for DUST versus

meningitis is reproduced for DUSTC versus meningitis; the
average phase difference becomes positive, but its variability

is maintained (table 3). This indicates that the applied correction

was not too strong and did not constrain all district-level annual

curves to peak simultaneously. The average phase difference

between DUSTC and meningitis is 11 days, which is consistent

with the time for dust to damage the respiratory tract along

with the incubation period of the disease (1–14 days) [58].

This study hence suggests that, when the levels of dust in the

low layers of the atmosphere start increasing/decreasing, we

can infer that the meningitis incidence will start increasing/

decreasing approximately 10 days later. As specified

previously, another time-varying factor (possibly (re)introduc-

tion of consecutive strains) is believed to interact with dust, and

define the exact time lag between dust and meningitis

oscillations.

The remaining variability among districts in the average

phase difference between dust and meningitis (figure 4)

could be due (i) to the local intensity and persistence of dust

events; (ii) to reporting delays with longer delays expected in
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Table 3. Characteristics of the phase difference curves between districts for a given variable among meningitis (men), dust and climate.

mean range s.e. mean weekly s.e.

mena 20.26 (211.78, 11.32) 2.91 2.88

DUST 0.32 (211.59, 14.43) 3.74 3.70

DUSTC 0.18 (24.16, 5.03) 1.28 1.27

Wd 20.58 (28.88, 8.26) 1.85 1.82

RH 1.00 (215.61, 15.92) 3.51 3.41

TEMP 20.24 (215.79, 16.94) 4.38 4.36

Wf 20.11 (210.10, 10.10) 3.00 2.89

mena,b 20.28 (29.93, 10.83) 2.91 2.90

DUSTb 0.26 (210.74, 12.84) 3.56 3.53

DUSTC
b 0.19 (24.16, 5.03) 1.31 1.29

Wdb 20.58 (28.88, 8.26) 1.81 1.77

RHb 1.17 (215.47, 15.92) 3.95 3.93

TEMPb 20.22 (215.79, 16.75) 4.47 4.46

Wfb 20.13 (29.96, 9.58) 3.16 3.06
aPhase difference for all districts but the low incidence ones (i.e. Arlit Bilma, Diffa, N’Guigmi and Main-Soroa).
bComputed over the period all data were available (i.e. 1996–2007).
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remote districts; (iii) to spatial variations in the susceptibility,

resulting from contrasted socio-cultural and environmental

factors; and/or (iv) to increased natural immunity owing to

higher contact rate in densely populated areas.

It is challenging to define an ideal spatial window to focus

on for investigating climate impact on meningitis dynamics: cli-

mate is a large-scale phenomenon; while it was proved in

earlier studies that meningitis epidemics occur at a sub-district

level [2,12,59,60]. However, the district scale is in our opinion

the most appropriate to investigate periodic components: it is

a large enough scale to detect periodic patterns for meningitis

epidemics, while being small enough to capture spatial varia-

bility in dust and climate variables. Moreover, using this

unusual scale to observe climate helped in highlighting a few

phenomena. First, it was observed that RH variability between

seasons decreases at the middle of the study period in the

northern semi-desert part of Niger, which could be attributed

to changes in climate with a possible expansion of the desert.
Second, a six-month periodicity appeared in Wf and TEMP

spectra. This is coherent with what we know of the climate in

the area: (i) TEMP is driven by the solar intensity, with a nega-

tive impact of RH: it reaches its maximum in March in the core

of the dry season, but another local maximum is reached at the

end of the rainy season, in September; and (ii) Wf is the highest

in the dry season when continental trade winds blow. How-

ever, the southern flux intensifies in July as the monsoon

winds blow, with a consecutive increase in Wf (see the elec-

tronic supplementary material, figure S6). It is important to

highlight these results, as up to now the climate and teleconnec-

tion researches in the Sahelian area mostly focused on the wet

season. The dry season should equally be studied, for it is of

major importance when relating climate to human health.

One limitation of this study concerns measurement errors

and representativeness. First, owing to the high level of

public awareness and concern, the degree of involvement of

health professionals and the country-wide use of the WHO
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case definition [30], the reporting rate for meningitis cases is

believed to be both high and consistent. Reporting error or

delays are relatively unlikely, and should, however,

affect data in a spatially and temporally consistent way.

Second, climate estimates are obtained from reanalysis,

which are the most representative estimates we can currently

obtain, and are widely used by the climate research commu-

nity [19,61–63]. Third, the AI representativeness has been

tested: although it is perfectible, especially in terms of captur-

ing the intensity of dust events in the dry season, it was

proved to perform well in capturing the timing of those

events [64–66]. As we focus in this study on variables’

timing, results should not be affected. No other aerosol data-

sets covering such a long time period are available. Here, we

provide an alternative to the issue of the appropriateness of

measurements of dust captured over the whole atmospheric

column when investigating dust impact on health: we

aimed to correct DUST data from an altitude effect (which

was assumed to be cyclic and consistent in the studied

region) and approximate dust levels at the surface. The coher-

ency in the results obtained using raw DUST data and

corrected DUSTC data, along with the length of the study

period we are considering, strengthens our confidence in

using these sets of data. Ideally, ground-level measurements

of dust would be needed, but the existing ones are too sparse

to be used in fine spatial scale studies such as this one (to our

knowledge, in the region, we can locate no other station but

the three of Sahelian Dust Transect). We hope for more stations

to be setup in the future. Spatial dust data could also be obtained

from simulation of dust emission and transport models such as

CHIMERE [67,68]. Although current dust models were proved a

good match with ground-level data at a large scale (monthly

temporal scale), they still need to be tested at a smaller scale

before being used in further studies [67–69].

To conclude, to our knowledge, this exploratory study is the

first one (i) at a district level and weekly scale and

(ii) to investigate and compare the link between the season-

ality of meningitis versus dust and climate variables. We
provide an important insight by defining dust loads as the

prime parameter explaining the seasonality of meningitis. Up

to now, few studies have investigated the impact of dust on

health [70,71], and deplored a weak focus on West Africa. We

provide here new evidence of this impact on meningitis in

the given region. However, more quantitative studies are now

needed to confirm and deepen our findings, to investigate

the factors impacting the amplitude of the epidemics (including

dust and climate), and to look for possible interaction effects.

Finally, we would recommend the estimates of ground-level

dust to be further improved. Ultimately, this refined knowledge

of the dust impact on meningitis dynamic could help in

improving the public health decision process.

A new conjugate vaccine against Neisseria meningitidis A is

currently being introduced in the African Belt [72], and in the

future will be used in preventive routine vaccination campaigns

of infants. In the short- and long-term perspective, it is crucial

to identify the determinants of the meningitis dynamics in

order to be able to make epidemiological models more realistic

and to test different scenarios of vaccination strategy. Wavelet

analyses were used here to explore the complexity of environ-

mental and epidemiological signals before the modelling stage

[31]. The current epidemiological [73] and forecasting [74]

models for meningitis considered so far a theoretical seasonal-

ity of the meningitis transmission dynamics. We now suggest

integrating dust data in these models to make them more

realistic and usable in a public health perspective.
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18. Marticorena B et al. 2010 Temporal variability of
mineral dust concentrations over West Africa:
analyses of a pluriannual monitoring from the
AMMA Sahelian Dust Transect. Atmos. Chem. Phys.
10, 8899 – 8915. (doi:10.5194/acpd-10-8051-2010)

19. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill
TE. 2002 Environmental characterization of global
sources of atmospheric soil dust identified with the
NIMBUS 7 total ozone mapping spectrometer
(TOMS) absorbing aerosol product. Rev. Geophys.
40, 1 – 31. (doi:10.1029/2000RG000095)

20. Leon J-F, Derimian Y, Chiapello I, Podvin T, Chatenet
B, Diallo A, Deroo C. 2009 Aerosol vertical
distribution and optical properties over M’Bour
(16.968 W; 14.398 N), Senegal from 2006 to 2008.
Atmos. Chem. Phys. 9, 9249 – 9261. (doi:10.5194/
acp-9-9249-2009)

21. Sice A, Robin E, Brochil L. 1940 Considération
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au soudan français. Bulletin de la Société de
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Météorologie 79, 72 – 78.

26. Martiny N, Chiapello I. Submitted. Assessments for
the impact of mineral dust on the meningitis
regime in West Africa.

27. Yaka P, Sultan B, Broutin H, Janicot S, Philippon S,
Fourquet N. 2008 Relationships between climate and
year-to-year variability in meningitis outbreaks: a case
study in Burkina Faso and Niger. Int. J. Health Geogr. 7,
34. (doi:10.1186/1476-072X-7-34)

28. Besancenot JP, Boko M, Oke PC. 1997 Weather
conditions and cerebrospinal meningitis in Benin
(Gulf of Guinea, West Africa). Eur. J. Epidemiol. 13,
807 – 815. (doi:10.1023/A:1007365919013)

29. Remy G. 1990 Les fondements écologiques de la
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