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Abstract——The interaction of drugs with biologic
targets is a critical area of research, particularly for the
development of medications to treat substance use
disorders. In addition to understanding these drug-
target interactions, however, there is a need to un-
derstand more fully the psychosocial influences that
moderate these interactions. The first section of this
review introduces some examples from human behav-
ioral pharmacology that illustrate the clinical importance

of this research. The second section covers preclini-
cal evidence to characterize some of the key individ-
ual differences that alter drug sensitivity and abuse
vulnerability, related primarily to differences in re-
sponse to novelty and impulsivity. Evidence is presented
to indicate that critical neuropharmacological mecha-
nisms associated with these individual differences in-
volve integrated neurocircuits underlying stress, reward,
and behavioral inhibitory processes. The third section

This work was supported in part by the National Institutes of Health [Grants P50-DA05312, R01-DA12964, UL1-RR033173] (to M.T.B.);
National Institutes of Health [Grants DA11064, DA023957] to (J.L.N.); and National Institutes of Health [Grants P50-DA05312, UL1-
RR033173] (to T.H.K.).

Address correspondence to:Michael T. Bardo, Department of Psychology, University of Kentucky, BBSRB Room 447, 741 S. Limestone,
Lexington, KY 40536-0509. E-mail: mbardo@uky.edu

dx.doi.org/10.1124/pr.111.005124.

255

http://dx.doi.org/10.1124/pr.111.005124
mailto:mbardo@uky.edu
http://dx.doi.org/10.1124/pr.112.005124


covers social influences on drug abuse vulnerability,
including effects experienced during infancy, adoles-
cence, and young adulthood, such as maternal sepa-
ration, housing conditions, and social interactions
(defeat, play, and social rank). Some of the same
neurocircuits involved in individual differences also

are altered by social influences, although the precise
neurochemical and cellular mechanisms involved
remain to be elucidated fully. Finally, some specu-
lation is offered about the implications of this re-
search for the prevention and treatment of substance
abuse.

I. Introduction

The interaction of drugs with biologic targets is
a fundamental area of neuropharmacological research
and has critical implications for the development of
medications to treat various neurologic and neuropsy-
chiatric disorders. However, basic principles of drug-
target interactions do not provide a full understanding
of drug action at the systems level because the targets
are dynamic within and across individuals. That is,
differences in drug action occur not only across individ-
uals drawn from a single population but also across
individuals exposed to different environmental histo-
ries. The current review examines relatively stable
phenotypic differences and malleable social-based dif-
ferences in the effects of abused drugs. Since the vast
majority of literature in this area has examined either
individual or social-based differences as main effects
independent of each other, these factors are reviewed
separately. However, recent work on gene � environ-
ment interactions (Caspi and Moffitt, 2006; Suomi,
2011) suggests that individual � social interactions
need to be considered, even though little is known
currently about these interactions.
In the case of individual differences, vulnerability

to addiction, as defined by the risk for meeting the
diagnostic criteria for substance use disorders (Amer-
ican Psychiatric Association, 2000), varies across
individuals. That is, although many individuals exper-
iment or initiate drug use early in life, most do not
develop an abuse pattern that would meet the di-
agnostic criteria for substance use disorder, regardless
of whether the drug is a stimulant, opiate, alcohol, or
cannabis (Ellenbroek et al., 2005). Individual differences
in vulnerability for abuse are thought to exist before the
first drug experience, and they may relate, at least in
part, to individual differences in sensitivity to drug
reward (Haertzen et al., 1983). Individual differences in
drug sensitivity are generally thought to be a consequence
of differences in drug potency (Piazza et al., 2000).
In the case of social-based differences, psychosocial

history and social circumstances encountered during
the drug experience play prominent roles. Social

interactions are among the basic needs that are
essential for survival and reproductive success (Siviy
and Panksepp, 2011), and these experiences are critical
for the development of neural systems mediating re-
ward and stress (Pedersen, 2004). Consequently, a history
of neglect or deleterious social experiences can enhance
sensitivity to rewarding and stressful events. Moreover,
recent evidence shows the importance of social influence
as a moderator of individual differences in response to
drugs of abuse. In both humans and nonhuman ani-
mals, drugs that have an effect in one social context can
be altered when administered in another social context
(Gipson et al., 2011b; Varela and Pritchard, 2011).

In the current review, most cited studies involve highly
controlled preclinical experiments that provide a mecha-
nistic understanding of individual and social determi-
nants for the rewarding effects of abused drugs. In these
preclinical studies, we use the term reward as a general
process that includes both Pavlovian and operant
conditioning procedures, but we use the more specific
term reinforcement when referring to operant respond-
ing. Before covering the preclinical literature, however,
a brief presentation of some relevant clinical work is
presented to set the stage for the more detailed review of
preclinical studies. This initial section establishes the
relevance of psychosocial factors in drug abuse vulnera-
bility, but it is not intended to serve as a comprehensive
review of all relevant studies. The review closes by
offering some speculation about how this information
may be useful for improving the development and
implementation of preventive and treatment interven-
tions. Future research directions are also suggested.

II. Human Behavioral Pharmacology

Studies of developmental trajectories of drug use
provide clear evidence that initiation and escalation of
drug use occur predominantly during adolescence
and early adulthood. The most prominent view of this
process is that drug use is a learned behavior influenced
by the rewarding effects of abused drugs, with vulner-
ability being influenced by both individual differences

ABBREVIATIONS: ACTH, adrenocorticotropic hormone; AFR, animal facility-reared; AMPA, a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; BDNF, brain-derived neurotropic factor; CPA, conditioned place aversion; CPP, conditioned place preference; CSF,
cerebrospinal fluid; CRH, corticotrophin-releasing hormone; 5-CSRTT, five-choice serial reaction time task; DAT, dopamine transporter;
DOPAC, 3,4-dihydoxyphenylacetic acid; DRL, differential reinforcement of low response rate; EC, enriched condition; FR, fixed ratio; 5-HIAA,
5-hydoxyindoleacetic acid; HPA, hypothalamic-pituitary-adrenal; HR, high responder; 5-HT, serotonin; IC, isolated condition; LR, low
responder; MAO, monoamine oxidase; MDMA, 3,4-methylenedioxymethamphetamine; MEAP, met-enkephlin-Arg6-Phe7; MHPG, 3-methoxy-
4-hydroxyphenylglycol; MS, maternal separation; NH, nonhandled; NMDA, N-methyl-D-aspartate; PET, positron emission tomography; PR,
progressive ratio; SC, social condition; SD, social defeat.
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and social factors occurring throughout development, as
well as within the more proximal context of drug use
(Swendsen and Le Moal, 2011). Whereas a comprehen-
sive review of the role of various psychosocial factors on
the acquisition of human drug-taking behavior is
beyond the scope of this review, examples of well
established individual differences and social factors
that impact drug abuse vulnerability are described to
establish the clinical relevance of basic preclinical
research in this area.

A. Individual Differences

Studies examining vulnerability to drug abuse as
a function of the degree of genetic relations among
individuals (i.e., heritability studies) have established
an important role of genetics (Koob and Le Moal, 2006).
Vulnerability to the development of drug and alcohol
dependence varies with the degree of shared inheri-
tance (i.e., identical twins have higher concordance
rates than fraternal twins, even when controlling for
shared environmental influences). Recent molecular
biology studies have begun to identify which genes con-
tribute to vulnerability to drug abuse, as well as their
mechanisms of action (Goldman et al., 2005), with ge-
netic influences on the neurobiological processes medi-
ating drug sensitivity playing a critical role in the
acquisition of drug-taking behavior and abuse (Comer
et al., 2010). However, it is equally important to
acknowledge the independent and interactive role of
environmental influences on drug abuse vulnerability
(Swendsen and Le Moal, 2011). Recent developments in
epigenetics, for example, have established mechanisms
by which environmental experience can modify genetic
expression (Rutter et al., 2006; Maze and Nestler, 2011).
1. Novelty Seeking. One of the most critical in-

dividual difference factors predicting drug use among
humans is novelty seeking or sensation seeking (Kosten
et al., 1994; Zuckerman, 1994; Wills et al., 1998; Ball,
2004). Zuckerman (1994) defines sensation seeking as
a trait defined by the seeking of varied, novel, complex,
and intense sensations and experiences and the
willingness to take physical, social, legal, and financial
risks for the sake of such experiences. Although drug
use can increase sensation seeking (Ersche et al., 2010),
longitudinal results also indicate a direct path leading
from sensation seeking to initiation (Horvath et al.,
2004). Adolescent sensation seekers are at increased
risk for use of various drugs, including alcohol, tobacco,
and marijuana (Martin et al., 2002, 2004; Sargent et al.,
2010). Young adult high sensation seekers also are more
sensitive to the effects of drugs (self-administration,
positive subjective effects) than are low sensation
seekers under controlled laboratory conditions (Stoops
et al., 2007; Perkins et al., 2008; Fillmore et al., 2009;
Kelly et al., 2009), suggesting that this facet is present
before problem use. Neurobiological studies indicate that
the underlying neurocircuitry associated with sensation

seeking involves, at least in part, the nucleus accum-
bens. Human neuroimaging studies indicate that am-
phetamine produces the greatest dopamine release in
the nucleus accumbens among high sensation seekers
(Leyton et al., 2002), although this effect may be gender
specific (Riccardi et al., 2006). When viewing highly
arousing images, high sensation seekers show enhanced
activation in regions involved in emotional induction and
reward, as well as reduced activation of regions involved
in emotional regulation (Joseph et al., 2009). Thus, brain
systems altered by exposure to salient stimuli share
a common link with drug reward, which may mediate
the association between sensation seeking and drug use.

2. Impulsivity. Another individual difference factor
predicting drug use among humans is impulsivity,
defined broadly as the tendency to engage in pre-
mature, inappropriate, or maladaptive behavior with-
out foresight (e.g., Dalley et al., 2011). Although
impulsivity is a broadly defined biologically based trait
that appears in most major theories of personality, it
can be parsed into different facets (Whiteside and
Lynam, 2001). Impulsivity reflects the balance of two
independent behavioral processes: 1) approach or
activation associated with reinforcement and 2) in-
hibition associated with punishment, with impulsive
individuals exhibiting hyperactivation or hypoinhibi-
tion (e.g., Bechara, 2005). Neuroimaging studies have
confirmed the interplay between reinforcement path-
ways (ventral striatum/nucleus accumbens and orbito-
frontal, dorsal, and lateral regions of the prefrontal
cortex) and inhibitory pathways (amygdala, insula,
anterior cingulate, right inferior frontal gyrus, sub-
thalamic nucleus, and supplementary motor areas of
the prefrontal cortex) associated with impulsivity and
drug abuse vulnerability (Nigg et al., 2006; Aragues
et al., 2011; Dalley et al., 2011; Hommer et al., 2011).
Impulsive individuals, determined using either per-
sonality- or performance-based criteria, initiate drug
use at earlier ages, escalate to heavy use, and transition
to abuse and dependence more quickly and are less
likely to remain abstinent after treatment compared
with nonimpulsive individuals (de Wit, 2009; Dick et al.,
2010; Dalley et al., 2011). Longitudinal studies of early
childhood temperament indicate that the association
between impulsivity and vulnerability to drug abuse is
present at an early age (Zucker et al., 2008; Chartier
et al., 2010). Thus, individuals who are high in im-
pulsivity are likely to engage in a variety of risky
behaviors, including drug use, and are more sensitive to
the reinforcing and other pharmacodynamic effects of
drugs after initial use, thereby making them more
inclined to continue and escalate drug use.

B. Social Influences

Social context impacts drug abuse vulnerability in at
least two ways. First, social context associated with
childhood development (e.g., family social context, peer
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relationships) influences drug abuse vulnerability.
Second, the social context in which drug use occurs
also influences the functional effects of drugs of abuse,
thereby impacting directly the acquisition of drug-
taking behavior and thus vulnerability to drug abuse.
1. Social Experiences during Development.

Environmental experiences during early development
impact the brain directly or modify the genetic de-
velopmental processes through gene-environment
interactions (Zucker et al., 2008). Low prosocial family
interaction, for example, as well as peer deviance and
drug use, are risk factors for the initiation of alcohol
use during childhood (Oxford et al., 2001; Rose et al.,
2001). Other social context factors influencing alcohol
use by children include alcohol use by parents and
exposure to alcohol through the media. Peer influence
on alcohol and drug use becomes more salient among
older adolescents (ages 11–13). Peers influence use
through three pathways: 1) direct modeling of use; 2)
self-sustaining affiliation with like-minded peers; and
3) overestimation of peer drug use (Windle et al., 2008;
Chartier et al., 2010). Adolescents reporting high rates
of drug use also report lower levels of social support
from family and peers, whereas adolescents with heavy
alcohol use actually report higher social support from
friends. Recent studies link social environment with
drug abuse vulnerability through underlying neurobi-
ological mechanisms in that dopamine D2/3 receptor
binding efficacy, which is associated with the reinforc-
ing effects of drugs, is correlated with both social status
and perceived level of social support and inversely
correlated with social detachment (e.g., Schneier et al.,
2000; Martinez et al., 2010).
2. Social Context during Drug Use. Drug use is

a learned behavior driven in large part by the
functional effects of the drug. As mentioned earlier,
the functional effect of a drug is not intrinsic to the
pharmacology of the drug, but rather it reflects an
interaction between pharmacology and the context in
which drug is available (Hughes et al., 1988). The
social environment can play a prominent role in
modulating the functional effects of abused drugs.
One conceptual model for social context as a determi-
nant of the functional effects of drugs is based on the
manner in which drug use sets the occasion for access
to social opportunities (Falk, 1983). This model postu-
lates that drug use becomes a requirement for affiliation
with selective groups, and intoxication becomes a “time-
out” from social rules, which permits individuals to
engage in behaviors not otherwise acceptable. Sub-
sequent studies provide support for this model. For
example, clinical laboratory studies show that stimulant
and sedative drugs increase verbal behavior and social
interaction (Stitzer et al., 1981; Higgins and Stitzer,
1986; Ward et al., 1997), suggesting that the reinforcing
effects of a drug are increased when there is a pharma-
cologically induced enhancement of social interaction

(i.e., the cocktail-party phenomenon). This possibility
has been examined by testing the effects of amphet-
amine, secobarbital, and marijuana on talking behavior
and preference for social interaction among healthy
volunteers (Heishman and Stitzer, 1989). Relative to
placebo, both amphetamine and secobarbital increased
rates of talking, as well as preference for social inter-
action (i.e., increased the reinforcing efficacy of social
interaction). In comparison, marijuana had little effect
on talking rate or preference for social interaction.

Drug-taking behavior can also be altered by the
social consequences of drug use. In an early series of
residential laboratory studies, Bigelow and colleagues
demonstrated that time-out from social interaction
resulted in decreased alcohol self-administration among
heavy alcohol users (Griffiths et al., 1974, 1977). These
early studies helped to establish the importance of
social access as a primary motive for alcohol and drug
use (Cooper, 1994). The possible role of negative
reinforcement (e.g., drug modulation of negative socially
induced mood states such as social anxiety) also is
a likely determinant of drug abuse vulnerability
(DeMartini and Carey, 2011). Despite these behavioral
results, little is known currently about the neural
factors that explain why social interaction alters the
behavioral effects of abused drugs.

C. Summary

Clinical evidence demonstrates that individual dif-
ferences present before the first drug experience
modulate sensitivity to drug reward. These differences
are thought to reflect both genetic and environmental
determinants. Similarly, clinical evidence suggests
that social influences can enhance drug use. However,
there is limited information about the precise neural
mechanisms underlying these individual and social
differences in drug sensitivity in humans. In the next
section, preclinical evidence is reviewed to address the
neurobehavioral factors involved in individual differ-
ences and social influences in drug reward.

III. Preclinical Behavioral Neuropharmacology

Paralleling the work described in humans, there is
no doubt that drug use in laboratory animals involves
both genetic and environmental factors. Selective
breeding, recombinant inbred lines, knock-out, knock-
in, and gene silencing techniques are powerful tools for
examining genetic heritability of individual differences
in drug use. For example, selectively bred and recom-
binant inbred rats have been used to demonstrate that
individual differences in response to novelty or prefer-
ence for novelty are associated with individual differ-
ences in stimulant self-administration (Meyer et al.,
2010; Cummings et al., 2011). Genetic influences also
play a role in social behaviors, as illustrated by work
showing the influence of serotonin (5-HT) transporter
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polymorphisms on social intrusion in nonhuman
primates (Schwandt et al., 2010). The specific socially
relevant genes and transgenic processes are extensive
and are not covered in the current review. However,
this work sets the stage for studying the neuro-
behavioral mechanisms involved in key individual
differences and social influences underlying vulnera-
bility to drug abuse. For each individual difference
described in the next section, the following points are
covered: 1) measurement of the individual difference,
2) relation of the individual difference to the psychos-
timulant and rewarding effects of abused drugs, and 3)
the neurobiological mechanisms involved.

A. Individual Differences

1. Response to Novelty. The most reliable individual
difference predicting the psychostimulant and reinforc-
ing effect of drugs is the novelty “responder” test
characterized initially by Piazza et al. (1989) and sub-
sequently examined across many laboratories (Kabbaj,
2006). Rats are classified as high (HRs) or low re-
sponders (LRs) based on the amount of ambulatory
activity recorded in an inescapable novel environment.
The test is relatively brief, lasting 60 min or less, and
rats are categorized as HR or LR based on a median
split analysis. Since the initial report by Piazza et al.
(1989), several studies have confirmed that HR rats
show increased amphetamine-induced activity (Bevins
et al., 1997) and amphetamine self-administration
(Piazza et al., 1990, 2000; Pierre and Vezina, 1997;
Klebaur et al., 2001a; Cain et al., 2005, 2006, 2008)
compared with LR rats. The differences between HR
and LR rats in amphetamine self-administration are
similar for both males and females (Klebaur et al.,
2001a), and these individual differences generalize to
other stimulant drugs, including cocaine (Mantsch
et al., 2001; Sell et al., 2005; Kabbaj, 2006; Belin
et al., 2008, 2011; Walker et al., 2009) and metham-
phetamine (Bevins and Peterson, 2004; Gancarz et al.,
2011). Nicotine self-administration also is greater in HR
rats than in LR rats (Suto et al., 2001), although these
individual differences may not occur in nicotine-induced
hyperactivity (Coolon and Cain, 2009). Although in-
dividual differences have been reported for maintenance
across various unit doses in cocaine self-administration
(Piazza et al., 2000), they are most influential for
acquisition at low unit doses (0.25 mg/kg per infusion;
Mantsch et al., 2001), suggesting that HR/LR differ-
ences may be most closely associated with sensitivity to
drug reinforcement. The HR/LR difference probably is
due, at least in part, to genetic factors because inbred
lines possessing the HR and LR phenotypes also display
differences in the psychostimulant and reinforcing
effects of stimulants (Gingras and Cools, 1997; Davis
et al., 2008; Turner et al., 2008; Cummings et al., 2011).
A recently developed variation of the Piazza re-

sponder test was developed by Zahniser and colleagues

(Gulley et al., 2003). In this test, rats are categorized as
HR or LR based on their locomotor response to acute
cocaine. This individual difference is linked to dopa-
mine transporter (DAT) function (Sabeti et al., 2003;
Briegleb et al., 2004) and cocaine CPP (Allen et al.,
2007). However, in contrast to the HR/LR test, high
cocaine responders do not differ from low cocaine
responders in acquisition of cocaine self-administration
(Mandt et al., 2008, 2012).

One apparent exception to the general finding that
HR rats are more sensitive than LR rats to the
locomotor and reinforcing effects of stimulants has
been reported for methylphenidate. In the only study
to date, Wooters et al. (2006) reported that male and
female HR/LR rats do not differ in locomotor activity
after acute methylphenidate during either adolescence
or young adulthood. Although this conclusion from
a single study requires confirmatory work, methylphe-
nidate differs from cocaine and amphetamine by its
greater potency at the dopamine and norepinephrine
transporters relative to the 5-HT transporter (Han and
Gu, 2006). This suggests the possibility that differences
in 5-HT transporter function may play a role in the
difference between HRs and LRs. Consistent with this
possibility, tissue concentration of 5-HT is reduced in
HR prefrontal cortex (Thiel et al., 1999). Further, using
the conditioned place preference (CPP) paradigm in
which rats are allowed to choose between two contexts
paired previously with either drug or saline (Rossi and
Reid, 1976), a 5-HT2C antagonist differentially affects
cocaine reward in HR and LR rats (Capriles et al.,
2012) .

Differences between HR and LR rats also occur
among drugs outside the stimulant class. With opiates,
HR rats show enhanced morphine locomotion and self-
administration (Deroche et al., 1993; Kalinichev et al.,
2004). These effects are modulated by social context, as
the influence of social crowding on morphine hyperac-
tivity is evident in HR rats but not LR rats (Xigeng
et al., 2004). The locomotor effects of cannabinoids and
alcohol also are enhanced in HR rats compared with
LR rats (Galanopoulos et al., 2011). With alcohol, oral
intake is enhanced in HR rats using an FR3 schedule of
reinforcement (Nadal et al., 2002) but not using either
a free-access two-bottle test or an FR1 schedule of
reinforcement (Bisaga and Kostowski, 1993; Gingras
and Cools, 1995; Bienkowski et al., 2001; Hayton et al.,
2012), suggesting that HR rats are more motivated
than are LR rats to earn alcohol under high-effort
schedules. Other than alcohol, however, little is known
about HR and LR differences in response to anxiolytic
drugs. This is a notable gap in information because
individual differences in anxiety (or novelty seeking)
based on the elevated plus maze predict cocaine self-
administration, with low-anxiety rats showing en-
hanced responding for cocaine (Bush and Vaccarino,
2007). Nonetheless, because both low-anxious and HR
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rats show an increased propensity to self-administer
cocaine, these findings appear to rule out the possibil-
ity that the elevated activity in HR rats simply reflects
enhanced anxiety in the inescapable novel environment.
In addition to abused drugs, individual differences in

the novelty responder test are observed with nondrug
reinforcers such as palatable food. Operant responding
using sucrose pellet reinforcers is greater in HR rats
than in LR rats (Dellu et al., 1996; Klebaur et al.,
2001a; Cain et al., 2006), although this effect may not
generalize to less palatable reinforcers such as a stan-
dard food diet (Gulley, 2007). The ability of individual
differences to predict responding for both drug and
palatable nondrug reinforcers opens the possibility
that individual differences exist in learning generally,
rather than drug sensitivity specifically (Mitchell et al.,
2005). Alternatively, because both drug and nondrug
reinforcers involve overlapping neurocircuitry (Kelley
and Berridge, 2002), these individual differences may
be associated with common neural systems. Although
there is little information to address this issue directly,
Xu et al. (2001) found that individual differences in
performance in either the Morris water or Y maze are
not associated with the magnitude of morphine CPP.
Thus, individual differences in general learning do not
account readily for HR and LR differences in behaviors
reinforced by drug or palatable food.
In addition to food reinforcement, HR rats show greater

responding for novel visual stimulation. For example,
maintenance of amphetamine self-administration is dis-
rupted by novel stimuli, and this disruption is greater in
HR rats than it is in LR rats (Cain et al., 2004). HR rats
also show more responding than LR rats to earn novel
visual stimuli (cue light illumination; Gancarz et al.,
2011). These latter results are important because drug
self-administration studies often use cue light illumina-
tion to signal the drug infusion or a time-out period (no
drug availability) after the infusion. The enhanced
responding for visual stimuli observed in HR rats also
may have implications for cue-elicited effects associated
with drug, such as conditioned reinforcement and cue-
induced relapse. Thus, it is important to determine
whether the differences between HR and LR rats reflect
primary reinforcement associated with the drug or the
cue.
One somewhat puzzling feature of the novelty

responder test is that it does not reliably predict
drug-induced CPP. With cocaine CPP, HR rats have
been reported to be less sensitive or equally sensitive
compared with LR rats (Erb and Parker, 1994; Dellu
et al., 1996; Kosten and Miserendino, 1998; Shimosato
and Watanabe, 2003; Mathews et al., 2010). The lack of
difference between HR and LR rats may be specific to
cocaine, however, as HR rats are more sensitive to
amphetamine and morphine CPP (Zheng et al., 2003,
2004; Pelloux et al., 2004). Thus, individual differences
may predict only the direct primary reinforcing effect

of cocaine as measured by self-administration but not
the conditioned rewarding effect as measured by CPP
(Bardo and Bevins, 2000).

Regarding the neural mechanisms mediating HR
and LR differences (Fig. 1), a general view is that an
ascending mesolimbic dopamine projection emanating
from the midbrain ventral tegmental area to the
nucleus accumbens via the medial forebrain bundle
represents one important component of the neural
circuitry, thus overlapping with drug reward-relevant
circuitry (Wise and Rompre, 1989; Bardo et al., 1996;
Berridge and Robinson, 1998; Kelley and Berridge,
2002). Although experimenter-delivered electrical stim-
ulation of the medial forebrain bundle produces similar
reward in HR and LR rats (Antoniou et al., 2004), basal
firing of midbrain dopamine neurons is enhanced in
HR rats, perhaps as a result of subsensitivity to
impulse-regulating autoreceptors (Marinelli and White,
2000). HR rats also showmore persistent mesoaccumbal
impulse flow after withdrawal from cocaine self-
administration (McCutcheon et al., 2009). Several
downstream cellular changes also have been identi-
fied, including greater extracellular dopamine in
nucleus accumbens and striatum (Piazza et al., 1991b;
Hooks et al., 1992; Thiel et al., 1999), greater velocity of
dopamine uptake in nucleus accumbens (Chefer et al.,
2003), and greater mRNA levels for tyrosine hydroxy-
lase and dopamine D1 receptors (Saigusa et al., 1999).
Additionally, HR rats have a reduced density of
accumbal dopamine D2 receptors (Hooks et al., 1994b),
suggesting a decreased number of release-regulating
autoreceptors or a compensatory downregulation of
postsynaptic receptors in response to increased pre-
synaptic dopamine release.

Fig. 1. Schematic of brain changes in HR rats compared with LR rats.
Regions in blue represent primarily reward-relevant central structures,
regions in green represent primarily stress-related central structures,
and region in red is a peripheral stress-related gland. Brain regions:
ACe, central nucleus of amygdala; Hippo, hippocampus; mPFC, medial
prefrontal cortex; NAc, nucleus accumbens; VTA, ventral tegmental area.
Cellular changes: CORT, corticosterone; DA, dopamine; DAT, dopamine
transporter; NARP, neuronal activity-regulated pentraxin; FGFR1,
fibroblast growth factor receptor 1; TH, tyrosine hydroxylase.
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Individual differences in reward neurocircuitry also
extend to the mesocortical dopamine system. HR rats
have decreased dopamine transport function in the
medial prefrontal cortex (Kosten et al., 2005b), which
presumably results in increased basal extracellular
dopamine, similar to the results obtained in nucleus
accumbens. A role for the dopamine transporter also is
implicated by HR rats showing greater locomotor
activity after the DAT inhibitor GBR12909 compared
with LR rats (Hooks et al., 1994a). The immediate
early gene Narp is enhanced in prefrontal cortex of HR
rats (Lu et al., 2002). Since prefrontal cortical regions
are important for behavioral inhibition (Fuster, 2008),
these cellular differences may be involved in the
disinhibited responding observed in HR rats using
a differential reinforcement of low rate (DRL) schedule
(Stoffel and Cunningham, 2008). In a DRL schedule,
reinforcement is contingent on the occurrence of a re-
sponse separated from the preceding response by
a fixed time (e.g., 10 s), thus providing a measure of
inhibitory control during timed behavior (Hodos et al.,
1962).
The prefrontal cortex interconnects with amygdala

and hippocampal circuitry involved in affective disor-
ders, fear conditioning, and output modulation of the
hypothalamic-pituitary-adrenal (HPA) axis (Ressler
and Mayberg, 2007; Rodrigues et al., 2009). Activation
of the HPA axis involves triggering corticotrophin-
releasing hormone (CRH) from the hypothalamus,
which elicits release of adrenocorticotropic hormone
(ACTH) from the pituitary and subsequently elevates
corticosterone from the adrenals (Sapolsky et al., 2000).
The neurocircuitry involving hippocampal-prefrontal-
amygdala interconnections with the HPA axis may play
a role in individual HR and LR differences. Whereas
basal levels of corticosterone do not differ between HR
and LR rats (Piazza et al., 1991a; Mantsch et al., 2001),
HR rats have elevated corticosterone in response to
novelty and after repeated cocaine relative to LR rats
(Piazza et al., 1990; Dellu et al., 1996; Lucas et al.,
1997). These results implicate a differential HPA
sensitivity between HR and LR animals.
Blocking different components of the HPA axis can

reduce the differences between HR and LR rats. For
example, adrenalectomy reduces HR/LR differences in
morphine-induced hyperactivity (Deroche et al., 1993).
With regard to the hippocampal-prefrontal-amygdala
circuitry, inactivation of the central nucleus of the
amygdala with the GABAA agonist muscimol also
reduces the individual differences in amphetamine
self-administration and locomotor sensitization (Cain
et al., 2008, 2009). Whereas direct blockade of hippo-
campal or prefrontal activity has not been examined
directly in HR and LR rats, affinity of hippocampal type
I and II corticosteroid receptors is decreased in HR rats
(Maccari et al., 1991), likely because of a compensatory
response to excessive levels of corticosterone. HR rats

also have increased fibroblast growth factor expression
in hippocampus compared with LR rats (Turner et al.,
2008), although this difference is negated by repeated
cocaine. This last study indicates that individual differ-
ences interact with cocaine to regulate gene expression
in stress-relevant brain systems.

Since learning may be enhanced when glucocorti-
coids are elevated to some optimal level (de Quervain
et al., 2009), novelty- or drug-induced elevations in
corticosterone in HR rats may increase drug self-
administration as a result of enhanced learning of the
operant response. However, as indicated previously,
HR rats do not show superior performance over LR rats
when reinforced with a standard food diet (Gulley,
2007) or when tested in nonoperant tasks (Xu et al.,
2001), suggesting that the increase in drug self-
administration in HR rats does not simply reflect
improved learning. Instead, corticosterone may have
direct reinforcing effects alone (Piazza et al., 1991a,
1993), as well as potentiating the reinforcing effects of
stimulant drugs (Piazza et al., 1991a; Goeders, 2002).
The ability of corticosterone to potentiate drug re-
inforcement likely reflects an interaction with the
mesolimbic dopamine system (Gilad et al., 1987; Piazza
and Le Moal, 1997).

In summary, individual differences in activity in an
inescapable novel environment is a reliable predictor of
the stimulant and reinforcing effects of abuse drugs,
with HR rats showing greater sensitivity than LR rats.
This relation exists across each major drug class. HR
rats also show greater sensitivity to the reinforcing
effects of palatable food (sucrose) and novel visual
stimuli. At least two overlapping neural systems play
a role in the behavioral response to drugs in HR rats
compared with LR rats: 1) the reward-relevant meso-
limbic dopamine system and 2) the stress-relevant
HPA system regulated by a hippocampal-prefrontal-
amygdala loop.

2. Novelty Seeking. Although the novelty responder
test used to define HR and LR animals has sometimes
been referred to as a measure of “novelty seeking,” this
is inappropriate because it is unclear whether activity
in an inescapable novel environment reflects either
exploratory or escape behavior. Instead, novelty seek-
ing may be better measured as a preference for a novel
context compared with a familiar context, a measure
that is not correlated reliably with activity in the
novelty responder test (Pelloux et al., 2004). Thus,
novelty seeking should be defined by giving animals
a choice to either approach or avoid novelty.

The most common method used to measure in-
dividual differences in novelty seeking in rats is the
novelty place preference test. Rats are first habituated
to one distinct context of a CPP apparatus by being
placed in a side compartment for one or more sessions,
typically lasting 30 min each. Rats then are given free-
choice access to the entire apparatus and are
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categorized as either high or low novelty seekers based
on their preference for the novel compartment relative
to the familiar compartment (Hughes, 1968; Parker,
1992; Bardo et al., 1993). A variation of this method is
to allow rats a choice between novel or familiar objects.
This can be accomplished using either two objects (one
novel and one familiar; Ennaceur and Aggleton, 1997)
or multiple objects (one novel object and several
familiar objects; Nicholls et al., 1992). Regardless of
whether a two-object or a multiple-object test is used, it
is critical that rats are habituated to the context in
which the objects are presented. Thus, the only novel
feature on the test day is a single object.
In mice, a holeboard test also can be used to measure

individual differences in novelty seeking. In this test,
mice are placed in an open-field apparatus that has
a series of holes in the floor. The number of head dips is
used to measure novelty seeking (File and Wardill,
1975; Kliethermes and Crabbe, 2006). Although this
test has some features reminiscent of the novelty
responder test (i.e., it is inescapable), it is interpreted
typically as a measure of novelty seeking, and thus it is
included here.
Operant conditioning procedures also are useful for

measuring individual differences in novelty seeking.
Some classic work has shown that primates and
rodents will emit an operant response to obtain access
to novel stimuli (Marx et al., 1955; Fiske and Maddi,
1961). More recently, operant conditioning measures of
novelty seeking have been used to predict individual
differences in sucrose self-administration in mice (Olsen
and Winder, 2010). This measure of novelty seeking
overlaps to some extent with the novelty responder test,
as HR rats respond more for a novel visual reinforcer
compared with LR rats (Gancarz et al., 2011).
Compared with the novelty responder test of Piazza

et al. (1989), the predictive relation between individual
differences in novelty seeking and drug reward is
weaker (Table 1). Some reports show that high novelty
seekers are more sensitive than low novelty seekers to
the locomotor and reinforcing effects of amphetamine
(Bevins et al., 1997; Cain et al., 2005, 2006) and oral
nicotine self-administration (Abreu-Villaca et al.,
2006). However, other reports show no significant
relation between novelty seeking and stimulant activ-
ity induced by amphetamine or methylphenidate
(Klebaur and Bardo, 1999; Wooters et al., 2006) or
self-administration of amphetamine (Klebaur et al.,
2001a; Marusich et al., 2011), and the effects with oral
alcohol self-administration are mixed (Bienkowski
et al., 2001; Johansson and Hansen, 2002). The effects
with CPP are also mixed, as individual differences in
novelty seeking predict amphetamine CPP in some
studies (Klebaur and Bardo, 1999; Robinet et al., 1998),
but not in all studies (Pelloux et al., 2004). Given the
range of methodological differences among studies, it is
difficult to ascertain the critical variables that may

explain these mixed findings. However, most of these
studies examined only acquisition and/or maintenance
of behavior. In contrast, recent evidence indicates that
novelty seeking may be a better predictor of compulsive
self-administration (persistence of responding in the
absence of drug) compared with acquisition of self-
administration (Belin et al., 2011). “Compulsivity” is
defined operationally by various procedures, including
1) persistent responding when a cue signaling the drug
is no longer available; 2) high progressive ratio (PR)
breakpoints, determined by increasing the response
requirement after each reinforcer delivery until there
is a cessation of responding; and 3) resistance to
punishment (Belin et al., 2011). To the extent that
compulsivity models dysfunctional drug abuse, these
results suggest that novelty seeking may be useful for
identifying individuals at greatest risk.

Genetic models of novelty seeking yield mixed effects
on drug self-administration. In one study, mice bred
selectively for novelty seeking using the holeboard test
showed no differences in response to amphetamine
activity, CPP, or oral self-administration of methamphet-
amine or alcohol (Kliethermes et al., 2007). In contrast,
another study using inbred rat strains showed a relation
between novelty seeking using the place preference test
and i.v. amphetamine self-administration (Meyer et al.,
2010); no strain-dependent differences were observed
using the novelty responder test. These discrepant
findings do not likely relate to the different routes of
administration, as novelty seeking in the place preference
test also predicts oral amphetamine self-administration
in rats (Pelloux et al., 2004). Instead, the discrepant
results more likely reflect a difference in species (mouse
versus rat) and/or novelty test (holeboard versus place
preference) used between studies.

Further insight regarding the differences between
the novelty responder and novelty seeking tests were
revealed by Cain et al. (2005). In that report, a large
number of rats (n = 165) were tested in both the novelty
responder and novelty place preference tests before
being trained in amphetamine self-administration
across different FR schedules of reinforcement; the
large sample size afforded the opportunity to apply
analytic techniques normally reserved for large-sample
human studies. A hierarchical regression analysis of
these preclinical results indicated that the novelty
responder test was a better predictor than the novelty
seeking test for acquisition of amphetamine self-
administration. However, when each variable was en-
tered sequentially into the regression, novelty seeking
significantly improved the predictive power of the novelty
responder test. These latter results indicate that novelty
seeking is not redundant with the novelty responder test
and that individual differences in novelty seeking
contribute to drug self-administration.

Individual differences in novelty seeking also play
a role in the relation between reward cues and drug

262 Bardo et al.



self-administration. Rats showing the greatest ap-
proach to food-associated cues (“sign trackers”) show
the greatest novelty seeking (Beckmann et al., 2011)
and cocaine self-administration (Beckmann et al.,
2011; Saunders and Robinson, 2011). In contrast, no
relation is evident between sign tracking and the HR/
LR test, suggesting that novelty seeking may mediate
uniquely the relation between approach to reward-
related cues and cocaine reinforcement.
From a neurobehavioral perspective, one reason why

novelty seeking may be a weaker predictor of drug self-
administration than the HR/LR novelty responder test
is that it is mediated by only a portion of the circuitry
outlined in Fig. 1. Specifically, novelty seeking may
differ from the novelty responder test because it
involves primarily the mesolimbic dopamine system
(Bardo et al., 1996), rather than the stress axis that
modulates drug reward (Piazza and Le Moal, 1997).
Consistent with this, inescapable novelty, but not free-
choice novelty, elevates levels of corticosterone (Misslin
et al., 1982).
Considerable evidence indicates that free-choice ap-

proach to novelty activates directly the reward-relevant
mesocorticolimbic dopamine circuitry. Novelty place
preference is blocked by dopamine antagonists (Misslin
et al., 1984; Bardo et al., 1993) and by depleting
dopamine levels in nucleus accumbens and forebrain
with the neurotoxin 6-hydroxydopamine (Pierce et al.,

1990). When rats enter a novel compartment, there is a
rapid, transient surge in extracellular accumbal dopa-
mine measured by in vivo voltammetry (Rebec et al.,
1997a, 1997b), as well as a novelty-induced response in
accumbal single-unit electrophysiological activity (Wood
and Rebec, 2004). Thus, high novelty seekers may show
enhanced drug reward as a result of greater activation
of mesocorticolimbic dopamine systems.

Monoamines other than dopamine also play a role in
novelty seeking. For example, accumulating evidence
indicates that norepinephrine activity in the hippo-
campus is involved in novelty signal detection (Knight,
1996). Although no direct neural connections have been
found between the ventral tegmental area and the
hippocampus, the hippocampus sends projections to the
medial prefrontal cortex, nucleus accumbens, amygdala,
and septal area, which relay input to the ventral
tegmental area (Floresco and Grace, 2003; Lisman and
Grace, 2005; Luo et al., 2011). Similar to the novelty-
induced increase in mesocorticolimbic dopamine, expo-
sure to novel environmental stimuli increases the
concentration of extracellular norepinephrine in the
frontal cortex assessed by in vivo microdialysis (Feenstra
et al., 2000), which presumably reflects an increased
impulse flow of neurons in the locus coeruleus. In any
case, these results indicate that the ventral tegmental
area acquires information about stimulus novelty
via circuitry involving the prefrontal cortex and

TABLE 1
Representative studies showing relation between novelty seeking and drug reward

Reference Animal Predictor Variable Outcome Variable Drug Results

Stimulants
Abreu-Villaca

et al. (2006)
Female and male

C57/BL/6 mice
Head dips in hole

board
2-Bottle choice Nicotine

(0.01 mg/ml p.o.)
HiNS . LoNS

Belin et al. (2011) Male Sprague-
Dawley rats

Novel place preference SA on FR1 Cocaine
(0.8 mg/kg i.v.)

HiNS = LoNS
(acquisition)

HiNS . LoNS
(compulsivity)

Cain, et al.
(2005)

Male Sprague-
Dawley rats

Novel place and novel
object preference

SA on FR5 Amphetamine
(0.01–0.1 mg/kg i.v.)

HiNS . LoNS
(regression Analysis)

Klebaur and
Bardo (1999)

Male Sprague-
Dawley rats

Novel object preference CPP Amphetamine
(1–3 mg/kg s.c.)

HiNS . LoNS
(1 mg/kg)

Klebaur et al.
(2001a)

Female and male
Sprague-Dawley
rats

Novel place and novel
object preference

SA on FR5 Amphetamine
(0.03–0.16 mg/kg i.v.)

HiNS = LoNS

Marusich et al.
(2011)

Male Sprague-
Dawley rats

Novel place preference SA on FR5 and
PR

Amphetamine
(0.0056–0.1 mg/kg i.v.)

HiNS . LoNS
(linear mixed model)

Pelloux et al.
(2004)

Male Wistar rats Novel place preference CPP and SA Amphetamine CPP
(1.25–5 mg/kg i.p.)

Amphetamine SA
(10-50 mg/ml p.o.)

HiNS = LoNS
(CPP)

HiNS . LoNS
(SA of 15 mg/ml)

Robinet et al.
(1998)

Male Sprague-
Dawley rats

Novel place preference CPP Amphetamine
(0.4 mg/kg s.c.)

HiNS . LoNS

Vidal-Infer et al.
(2012)

Female and male
OF1 mice

Novel place preference CPP Cocaine
(1 mg/kg i.p.)

HiNS . LoNS

Opiates
Pelloux et al.

(2006)
Male Wistar

rats
Novel place preference CPP and 2-

bottle choice
Morphine CPP

(1.25–5 mg/kg i.p.)
Morphine 2-bottle

(25-50 mg/ml p.o.)

HiNS . LoNS
(CPP with 5 mg/kg)

HiNS . LoNS
(choice of 25 mg/ml)

Alcohol
Bienkowski

et al. (2001)
Male Wistar

rats
Novel object preference SA on FR1 Alcohol

(8% p.o.)
HiNS = LoNS

HiNS, high novelty seeker; LoNS, low novelty seeker; SA, self-administration.
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hippocampus, sites for memory storage and novelty
detection.
Both 5-HT and glutamate systems are also impli-

cated in novelty seeking. The 5-HT1A agonist 8-
OHDPAT produces a dose-dependent decrease in novel
object exploration in rats, whereas the 5-HT1A
antagonist WAY-100635 produces an increase in novel
object exploration (Carey et al., 2008). It is important
to note that these 5-HT-mediated effects are obtained
without any change in locomotor activity, thus demon-
strating that the effects are specific for approach to
novelty rather than general exploratory behavior.
Similarly, a role for glutamate has been illustrated in
rats conditioned to approach an environmental context
paired previously with a novel object (Bevins and
Bardo, 1999). The noncompetitive NMDA antagonist
MK-801 given during the conditioning phase blocks
this effect, thus implicating a role of NMDA receptors
in learning produced by stimulus novelty. Given the
importance of glutamate-dopamine interactions in
drug reinforcement and addiction (Kalivas, 2009),
a more complete investigation of glutamatergic sys-
tems mediating novelty seeking is warranted.
In summary, although individual differences in novelty

seeking measured in a free-choice preference test are not
as strongly predictive of drug self-administration as
individual differences in inescapable novelty (HR/LR
test), they predict drug self-administration using a large
sample size and may be especially predictive of compul-
sive drug self-administration. However, based on a lack
of information, it is unclear whether these conclusions
generalize beyond the stimulant class. In any case, in
contrast to the two overlapping neural systems (reward
and stress) involved in inescapable novelty, the reward-
relevant mesolimbic dopamine system is associated
primarily with individual differences in novelty
seeking.
3. Impulsivity. Impulsivity is a broad psychologic

construct that appears in virtually all major theories
of personality (Whiteside and Lynam, 2001), being
incorporated into various psychiatric diagnoses such as
anxiety and bipolar mood disorders, as well as conduct
disorder, attention deficit hyperactivity disorder, and
substance use disorders (American Psychiatric Associ-
ation, 2000). With preclinical models, although the
term disinhibition may be more appropriate because it
connotes a task-specific deficit or loss of an active
neurobehavioral process (inhibition), we use the more
commonly used broad term impulsivity. Individual
differences among laboratory animals in impulsivity
are measured by a host of behavioral tasks, including
delay discounting, fixed consecutive number, five-
choice serial reaction time task (5-CSRTT), go/no-go,
DRL, and stop-signal reaction time. A comprehensive
coverage of these tasks is provided in several excellent
reviews (Evenden, 1999; Winstanley et al., 2010;
Dalley et al., 2011). It is important to note that there

is little relation in performance among these various
tasks (Anker et al., 2009; Marusich et al., 2011),
suggesting that each task measures a different facet
of impulsivity. One nomenclature is to parse impulsiv-
ity tasks into three broad categories: 1) impulsive
choice, which is primarily decision making when
choosing between a small immediate reward and
a larger delayed reward; 2) impulsive action, which is
primarily motoric; and 3) impulsive reflection, which is
premature responding before adequate sensory pro-
cessing (Dalley et al., 2011). Regardless of the category,
individual differences in impulsivity do not correlate
with individual differences in either the novelty
responder test or novelty seeking (Bardo et al., 2006;
Marusich et al., 2011; Molander et al., 2011), thus
implicating dissociable neurobehavioral systems.

Among the various tasks, those categorized as
measures of impulsive choice using a delay of reward
are linked most closely to drug self-administration
(Table 2). Perhaps the best example is the delay
discounting task, which allows animals to choose
between an immediate small reward and a delayed
large reward, with impulsivity being defined as a pref-
erence for the small immediate reward (Rodriguez and
Logue, 1988). When screened initially on delay dis-
counting, rats that are high in impulsivity show faster
acquisition, escalation, and reinstatement of self-
administration with cocaine (Perry et al., 2005, 2008;
Anker et al., 2009), methylphenidate (Marusich and
Bardo, 2009), nicotine (Diergaarde et al., 2008, 2012),
morphine (Garcia-Lecumberri et al., 2011), and alcohol
(Poulos et al., 1995). The predictive effect of delay
discounting generalizes to amphetamine CPP (Yates
et al., 2012), indicating that lever pressing is not
a prerequisite to show a relation between individual
differences in impulsive choice and drug reward.
In contrast, this last study did not find any rela-
tion between impulsive choice and amphetamine-
stimulated activity. Similarly, rats that are high
or low in impulsive choice do not differ in cocaine-
induced hyperactivity (Perry et al., 2005), and mice that
are high in impulsivity are less sensitive to the
hyperactivity produced by acute alcohol (Mitchell
et al., 2006). Thus, impulsive choice specifically predicts
the reinforcing effect of abused drugs rather than
a nonspecific alteration in ongoing behavior.

In addition to delay discounting, individual differ-
ences in 5-CSRTT performance predict stimulant self-
administration (Dalley et al., 2007; Diergaarde et al.,
2008). 5-CSRTT involves detection of five visual
targets to earn food, with premature responding to a
target being punished by a time-out period (food
omission), thus defining impulsivity (Robbins, 2002).
In contrast to delay discounting, 5-CSRTT is a better
predictor of compulsive drug intake than regulated
intake (Dalley et al., 2011). For example, with 5-CSRTT
performance, rats that are high in impulsivity display
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greater cocaine seeking than rats that are low in
impulsivity, even when responding is punished (Belin
et al., 2008; Economidou et al., 2009). This conclusion
may not generalize beyond stimulants, however, be-
cause individual differences in 5-CSRTT performance do
not predict heroin self-administration (McNamara et al.,
2010; Schippers et al., 2012).
Lesion studies show that several brain regions are

associated with individual differences in impulsivity,
although the role of these regions varies across tasks.
In general, dopamine-mediated sensorimotor systems
involving the nucleus accumbens core and neostriatum
are implicated most strongly across various facets of
impulsivity. For example, impulsive choice measured
by delay of reward, impulsive action measured by stop-
signal reaction time, and impulsive reflection mea-
sured by 5-CSRTT and DRL are each increased with
damage to nucleus accumbens core or dorsal striatum

but not the nucleus accumbens shell (Cardinal et al.,
2001; Eagle and Robbins, 2003; Pothuizen et al., 2005).
The neostriatal brain system is also implicated in habit
formation after repeated drug exposure (Belin et al.,
2009; Goldstein et al., 2009; Balleine and O’Doherty,
2010). However, the task-dependent facets of impul-
sivity also are dissociable based on various lesion
studies showing that 1) impulsive choice is increased
by damage to medial prefrontal cortex and basolateral
amygdala (Weissenborn et al., 1997; Winstanley et al.,
2004; Gill et al., 2010); 2) impulsive action is increased
by damage to the orbitofrontal cortex and subthalamic
nucleus (Eagle et al., 2008); and 3) impulsive reflection
is increased by damage to anterior cingulate cortex,
infralimbic cortex, nucleus basalis magnocellularis,
and hippocampus (Muir et al., 1996; Bannerman
et al., 1999; Chudasama et al., 2003; Harati et al.,
2008). Although some discrepancies can be found in the

TABLE 2
Representative studies showing relation between impulsivity and drug reward

Reference Animal Predictor Variable Outcome
Variable Drug Results

Stimulants
Anker et al.

(2009)
Female Wister

rats
Delay discounting SA on FR1

and PR
Cocaine

(0.2–0.8 mg/kg i.v.)
HiI . LoI

(escalation)
Bird and Schenk

(2012)
Male Sprague-

Dawley rats
5-CSRTT SA on FR5 MDMA

(1.0 mg/kg i.v.)
HiI = LoI

(acquisition)
HiI . LoI

(reinstatement)
Broos et al.

(2012)
Male Wister rats Delay discounting SA on FR1 Cocaine

(0.015–0.5 mg/kg i.v.)
HiI . LoI

(resistance to
extinction)

Dalley et al.
(2007)

Male Lister rats 5-CSRTT SA on FR1 Cocaine
(0.25 mg/kg i.v.)

HiI = LoI
(acquisition)

HiI . LoI
(escalation)

Diergaarde
et al. (2008)

Male Wistar rats 5-CSRTT and
delay discounting

SA on FR1-25 Nicotine
(0.04 mg/kg i.v.)

HiI . LoI w/ 5-CSRTT
(acquisition)

HiI . LoI w/ delay
discounting
(reinstatement)

Marusich and
Bardo (2009)

Male Sprague-
Dawley rats

Delay discounting SA on FR5 Methylphenidate
(0.03–1.0
mg/kg i.v.)

HiI . LoI
(maintenance
of 0.1 mg/kg)

Marusich et al.
(2011)

Male Sprague-
Dawley rats

Delay discounting
and cued go/no-go

SA on FR5
and PR

Amphetamine
(0.0056–0.1
mg/kg i.v.)

HiI , LoI w/ delay
discounting
(linear mixed model)

HiI = LoI w/ cued
go/no-go

Perry et al.
(2005)

Female Wistar
rats

Delay discounting SA on FR1 Cocaine (0.2
mg/kg i.v.)

HiI . LoI
(acquisition)

Perry et al.
(2008)

Female and Male
Wister rats

Delay discounting SA on FR1 Cocaine (0.2
mg/kg i.v.)

HiI . LoI
(acquisition in female
and male)
(reinstatement
in female)

Yates et al.
(2012)

Male Sprague-
Dawley rats

Delay discounting CPP Amphetamine
(0.1-1.5 mg/kg
s.c.)

HiI . LoI
(0.5 and 1.5 mg/kg)

Opiates
McNamara

et al. (2010)
Male Lister rats 5-CSRTT SA on FR1 Heroin

(0.04 mg/kg i.v.)
HiI = LoI

(acquisition
and escalation)

Schippers et al.
(2012)

Female Wistar
rats

Delay discounting SA on FR4
and PR

Heroin
(0.1 mg/kg i.v.)

HiI = LoI

Alcohol
Poulos et al.

(1995)
Male N/NIH rats Delay discounting 2-Bottle choice Alcohol

(3%–12% p.o.)
HiI . LoI

(maintenance of 12%)

HiI, high impulsive; LoI, low impulsive; SA, self-administration.
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literature, this evidence supports the general conclusion
that dopamine-rich accumbal core and dorsal striatum
systems involved in different forms of behavioral
activation are modulated by multiple top-down cortical
inputs (Dalley et al., 2011).
It is uncommon to find lesion sites that decrease

impulsivity. In one exception, damage to the orbito-
frontal cortex decreases impulsivity in a delay dis-
counting task, although this effect may depend on
individual differences in baseline impulsivity (Zeeb
et al., 2010). This finding contrasts with other results
showing that an orbitofrontal cortex lesion increases
impulsivity in delay discounting (Mobini et al., 2002).
However, orbitofrontal cortex is not a homogeneous
structure, and the extent of the lesion site into medial
and lateral boundaries may provide an explanation for
these discrepant reports (Mar et al., 2011).
Given the lesion results showing roles of nucleus

accumbens core and striatal terminal regions, it is not
surprising that dopamine is implicated in impulsivity.
Positron emission tomography (PET) scans reveal that
rats showing high impulsivity on 5-CSRTT have
greater [18F]fallypride binding in nucleus accumbens
than rats showing low impulsivity, indicating that high
impulsivity is associated with greater D2-like dopa-
mine receptor availability (Dalley et al., 2007). Dopa-
mine release may also be altered, as electrically evoked
dopamine release is attenuated in accumbal tissue
slices obtained from rats that are high in impulsivity
based on either delay of reward or 5-CSRTT perfor-
mance (Diergaarde et al., 2008). Dopamine in the
medial prefrontal cortex is also involved in impulsive
choice, as electrically evoked dopamine release is
attenuated in this region in rats that are high in
impulsivity based on a delay of reward task (Dier-
gaarde et al., 2008).
In addition to mesocorticolimbic dopamine, in vivo

microdialysis results reveal an increase in 5-HT in
orbitofrontal cortex in rats performing the delay
discounting task relative to yoked controls (Winstanley
et al., 2006). These results are generally consistent with
work from nonhuman primates showing an inverse
relationship between impulsivity and 5-HT metabolites
in cerebrospinal fluid (Westergaard et al., 2003). In rats,
5-HT2A antagonists and 5-HT2C agonists also attenu-
ate impulsivity measured by either delay discounting or
5-CSRTT tasks (Paterson et al., 2012; Homberg, 2012).
More work is needed to identify the specific brain
regions involved in impulsivity modulated by 5-HT
systems, as well as other neurotransmitter systems
such as glutamate and the endocannabinoids (Pattij and
Vanderschuren, 2008).
In summary, impulsivity is a broad term that has

multiple facets that can be measured by a host of
behavioral tests. Among the various tests, individual
differences in impulsive choice measured by delay
discounting are perhaps the most reliable predictor of

self-administration of stimulants, opiates, and alcohol.
This relation also occurs with stimulant CPP but not
with hyperactivity. Brain microinjection, lesion, and
microdialysis studies have revealed intricate dopamine
and 5-HT neural systems involved in various facets of
impulsivity. Among the critical brain regions, impul-
sive choice involves the nucleus accumbens core,
neostriatum, medial prefrontal cortex, and basolateral
amygdala.

4. Other Individual Differences. Individual differ-
ences in consumption of highly palatable tastes (e.g.,
saccharin/sucrose) also predict various responses to
abused drugs (Carroll et al., 2008). High sucrose
consumers are more sensitive than low consumers to
the locomotor stimulant effect of amphetamine (Sills
and Vaccarino, 1994). In contrast, high consumers are
less sensitive to the locomotor stimulant effect of
morphine (Sills and Vaccarino, 1998). These latter
results may be explained by the biphasic effect of
morphine, which is characterized by an initial de-
pression, followed by rebound hyperactivity (Vasko and
Domino, 1978). Perhaps high sucrose consumers are
more sensitive to the depressant phase, as opposed to
being less sensitive to the hyperactive phase. In any
case, high sweet consumers also self-administer more
cocaine and alcohol compared with low consumers (Bell
et al., 1994; Gosnell, 2000; Carroll et al., 2002) and are
more impulsive on a delay discounting task using food
as a reinforcer (Perry et al., 2007). Thus, overlapping
neurobehavioral mechanisms exist in preference for
palatable tastes, drug intake, and impulsive choice.

Finally, individual differences in wheel-running
activity also are related to stimulant self-administration
in rats. High wheel runners self-administer more cocaine
than low wheel runners (Larson and Carroll, 2005),
although this difference does not generalize to cocaine-
induced locomotion. As with sucrose/saccharin preference,
however, the neural mechanisms linking wheel-running
behavior to drug reinforcement are largely unknown.

B. Social Influences

Social context associated with childhood develop-
ment (e.g., family social context, peer relations) and the
social context at the time of drug use influence
sensitivity to abused drugs, thereby impacting directly
the acquisition of drug-taking behavior. Early life
social experiences are critical to development, includ-
ing the development of reward and stress systems.
Consequently, a history of neglect or deleterious social
experiences can affect these systems and result in
increased vulnerability for abuse. Several animal models
have been used to capture various aspects of psychosocial
history and its impact on individual vulnerability to drug
abuse. These include maternal separation and rearing
conditions to capture early life stress and various social
and enriched living conditions that provide opportunity
for social interactions, including social hierarchies. Many
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of these topics have been reviewed previously (Miczek
et al., 2008) and are updated and further detailed here.
In some cases, the animal model or the observed social
influences vary depending on sex, perhaps because
males and females have different social roles and
interactions with each other. Social interactions likely
engage neural circuits involved in drug-taking and
drug-seeking behaviors in ways that are unique from
other environmental stimuli, thus highlighting the
importance of social context. For instance, unlike most
other stressors, animals fail to habituate to social defeat
stress (Nikulina et al., 2004; Engler et al., 2005;
Barnum et al., 2007). Furthermore, some neuropeptide
hormones mediate responses specifically to social
stimuli and not nonsocial stimuli (Nishimori et al.,
1996; Ferguson et al., 2000; Cushing and Kramer, 2005;
Veenema and Neumann, 2008). Because psychosocial
factors play a prominent role in human drug use and
dependence, it is important to study such factors using
laboratory animal models.
1. Maternal Separation. One animal model of early

life social stress is the maternal separation (MS) model
(Hofer, 1970; Smotherman et al., 1977). In the rodent
version of this model, neonatal pups are separated
from their dam for a period of time before weaning.
Studies of rodent maternal separation have used a
variety of experimental parameters that affect out-
come, including the duration and number of separa-
tions from the dam, the preweanling period when the
separations occur, whether pups are separated as
a litter or individually, litter composition, and the
age when testing occurs later in life. Maternal
separation has been described using different termi-
nology across laboratories, as reviewed previously
(Moffett et al., 2007); this review uses the MS notation
followed by a number that corresponds to the minutes
during which the separation occurs unless otherwise
specified (e.g., MS360 denotes maternal separation for
a 360-min period). Studies using this model also differ
in terms of the control groups used, with many
including animal facility-reared controls (AFR) that
are left undisturbed except for custodial cage changes,
nonhandled controls (NH) that are not handled or in
some cases are handled by the experimenters only for
cage changes, or MS0 that are briefly handled and
returned to the dam each time other MS groups are
separated from the dam for a specified period. For
comparison across studies, these group notations will
be used, even though in some cases they are not the
same or may even conflict with group notation used in
the references cited.
Effects of maternal separation on drug abuse later in

life occur across different pharmacological classes
(Table 3). In general, both increases and decreases in
sensitivity to drug reward occur depending on separa-
tion length, with separations of $60 min generally
increasing sensitivity, and brief separations of #15

min (handling controls) decreasing sensitivity. Inter-
estingly, minimal separation that occurs in AFR and
NH conditions is sometimes less protective against
drug abuse-related behaviors than MS15. One expla-
nation for the less-than-optimal protection in AFR and
NH groups is that having the dam and pups in the
same vicinity continuously may be stressful because
dams in a natural setting typically leave the nest
completely for brief periods (Moffett et al., 2007).
Another explanation is that brief (AFR or NH groups)
and longer (MS15 group) separations differentially
alter maternal behaviors toward the pups once they
are returned (Marmendal et al., 2004; Francis and
Kuhar, 2008; Der-Avakian and Markou, 2010).

The effects of long periods of maternal separation
($60 min) on locomotor activity produced by acute
stimulant administration later in life have been mixed.
Most studies show an increase (Zimmerberg and
Shartrand, 1992; Kehoe et al., 1996, 1998; Pryce
et al., 2001; Brake et al., 2004; Marin and Planeta,
2004; Kikusui et al., 2005) or no effect (Lehmann et al.,
1998; Li et al., 2003; Marmendal et al., 2004; Kosten
et al., 2005a,c; Hensleigh et al., 2011) compared with
stimulant effects in controls, whereas others show
a decrease (Matthews et al., 1996a; Moffett et al.,
2006). Factors that likely account for these differences
are drug history before acute stimulant administra-
tion, doses of stimulant tested, and sex. Effects of
repeated stimulant administration are also mixed,
although most studies have found that maternal
separation either decreases (Matthews et al., 1996b;
Li et al., 2003) or has no effect (Weiss et al., 2001;
Planeta and Marin, 2002; Brake et al., 2004; Muham-
mad and Kolb, 2011) on locomotor sensitization,
whereas one study found enhanced sensitization
(Kikusui et al., 2005). The age at which animals are
tested for sensitization may contribute to differences
observed across these studies as Weiss et al. (2001) and
Kikusui et al. (2005) tested animals during adoles-
cence, and in fact, the latter study found that the
sensitized response did not persist into adulthood in
female mice, although it did persist in male mice.
Another complicating factor is that a previous history
of saline injections can sensitize rats to acute amphet-
amine (Brake et al., 2004), potentially obscuring drug-
sensitization effects.

Prolonged maternal separation increases stimulant
reward, although not all studies support this conclu-
sion (Faure et al., 2009), and the effect appears more
reliable in males than in females. In males, maternal
separation increases intake of oral amphetamine
(Vazquez et al. (2006) and i.v. cocaine (Kosten et al.,
2000, 2004; Zhang et al., 2005; Moffett et al., 2006),
although one study using a 24-h discrete trial re-
inforcement schedule found no effect of maternal
separation in cocaine self-administration in either
male or female rats (Lynch et al., 2005). In females,
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increases in cocaine self-administration are obtained
(Matthews et al., 1999; Kosten et al., 2006; Moffett
et al., 2006); however, decreases in intake also have
been reported (Kosten et al., 2004; Matthews et al.,
1999). This sex dependency is corroborated by other
evidence showing that maternal separation increases
amphetamine reward as measured by intracranial
brain stimulation threshold in male rats (Der-Avakian
and Markou, 2010) but not in female rats (Matthews
and Robbins, 2003). In maternally separated females,
the D2 antagonist raclopride increases brain stimula-
tion reward threshold (Matthews and Robbins, 2003),
suggesting that females have enhanced anhedonia in
adulthood after prolonged maternal separation. The
reason for the discrepancies across studies using female
rats is unclear, but it likely relates to hormonal
fluctuations during the estrous cycle, which influence
stimulant self-administration and stimulant seeking in
female rats (Roth et al., 2004; Fuchs et al., 2005; Kippin
et al., 2005; Jackson et al., 2006; Feltenstein and See,
2007).
There is some support for a protective effect of brief

maternal separation on stimulant reward. Campbell
and Spear (1999) found that brief neonatal isolation

attenuates amphetamine CPP during early adulthood.
With cocaine self-administration, MS15 male and
female rats fail to acquire cocaine self-administration
with a unit dose (0.0625 mg/kg per infusion) that
supports self-administration in controls and MS180
rats (Moffett et al., 2006). Further, a protective effect of
brief maternal separation against cocaine self-
administration is obtained in MS10 males receiving
the separation during the first postnatal week, whereas
MS10 females separated briefly during the second,
but not the first, postnatal week self-administer more
cocaine (Flagel et al., 2003). Thus, sex- and time-
dependent differences exist in the protective effect of
brief maternal separation.

Other models of neonatal experience have examined
vulnerability to stimulant behavioral effects. Neonatal
sibling deprivation during the first 2–3 weeks of life
attenuates the locomotor and rewarding effects of
cocaine in male rats relative to controls reared in
a litter of four males and four females (Li et al., 2008).
Although no differences were reported in females, only
one conditioning regimen was examined, and thus it is
possible that sensitivity of females to stimulants may
be affected under different conditioning parameters. In

TABLE 3
Representative studies showing relation between maternal separation and drug reward

Reference Animal
Maternal
Separation

(Short #15 min
Long $60 min)

Outcome
Variable Drug Results

Stimulants
Campbell and Spear

(1999)
Female and male

Sprague-Dawley
rats

Short CPP Amphetamine
(1–5 mg/kg i.p.)

↓ CPP

Flagel et al. (2003) Female and male
Sprague-Dawley
rats

Short SA on FR1 Cocaine
(0.125–0.5
mg/kg i.v.)

↑ SA
(females)

↓ SA
(males)

Kosten et al. (2000) Male
Sprague-Dawley
rats

Long SA on FR1 Cocaine
(0.0625–0.5
mg/kg i.v.)

↑ SA
(acquisition)

Moffet et al. (2006) Female and male
Long-Evans rats

Short
and
long

SA on FR1 Cocaine
(0.0625–1.0
mg/kg i.v.)

↓ SA
(short separation)

↑ SA
(long separation)

Vazquez et al. (2006) Male
Long-Evans rats

Long 2-Bottle choice Amphetamine
(25 mg/liter p.o.)

Cocaine
(100 mg/liter p.o.)

↑ Preference

↔ Preference

Opiates
Michaels and Holtzman

(2008)
Female and male

Long-Evans rats
Long CPP Morphine

(3–10 mg/kg s.c.)
↑ CPP

Vazquez et al. (2006) Female and male
Long-Evans rats

Long 2-Bottle choice Morphine
(25 mg/liter p.o.)

↑ Preference

Alcohol
Barr et al.

(2004a)
Female Rhesus

macaques
Long Voluntary

consumption
Alcohol

(8.4% p.o.)
↑ Consumption

Cruz et al. (2008) CFW Male mice Long SA on FR3, PR and
3-bottle choice

Alcohol
(6–10% p.o.)

↑ SA
(on FR3 and
3-bottle choice)

Gustafsson et al. (2005) Female Wistar rats Short and
long

2-Bottle choice Alcohol
(8% p.o.)

↔ Preference

Huot et al. (2001) Male
Long-Evans rats

Long 2-Bottle choice Alcohol
(8% p.o.)

↑ Preference

Roman et al. (2003) Male alcohol-preferring
rats

Short Voluntary
consumption

Alcohol
(2–10% p.o.)

↓ Consumption

SA, self-administration; ↑, increase; ↓, decrease; ↔, no difference.
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any case, this sex-dependent effect is interesting in
light of other results showing increased vulnerability
to cocaine self-administration in male rats, but not
female rats, subjected to neonatal stress from cross-
fostering (Vathy et al., 2007). Increases in locomotor
activity to amphetamine also occur in male rats
artificially reared in isolation with low levels of
maternal-like stimulation, but not with high levels of
stimulation (Lovic et al., 2006). These findings corrob-
orate the general conclusion that males are more
susceptible than females to stimulant effects after the
loss of normal social interactions during the neonatal
period.
Prolonged maternal separation also enhances the

abuse-related effects of opiates. Locomotor sensitiza-
tion to repeated morphine is enhanced by maternal
separation in rats (Kalinichev et al., 2002). Maternal
separation also increases morphine CPP (Vazquez
et al., 2005b, 2007; Michaels and Holtzman, 2008).
Morphine CPP is enhanced in a model comparing
artificial rearing to mother rearing in male rats
(Lomanowska et al., 2006), and neonatally isolated
rats consume more morphine than controls when given
access via a two-bottle choice between morphine and
water (Vazquez et al., 2005b). Interestingly, conditioned
place aversion produced by a k-receptor agonist, spirado-
line, is attenuated by maternal separation in males but
not in females (Michaels and Holtzman, 2008). These
results suggest that, at least in males, early life stress
may enhance opiate abuse vulnerability by increasing
reward sensitivity, as well as by decreasing the aversive
effect produced at k-opiate receptors.
Surprisingly, there is little information about the effect

of maternal separation on opiate self-administration.
Using brain stimulation reward, neither morphine nor
naltrexone alters reward threshold after maternal
separation (Michaels et al., 2007). However, basal
stimulation response rates are attenuated by mater-
nal separation (Michaels et al., 2007), suggesting that
maternal separation may produce anhedonia during
adulthood, thus exacerbating drug self-administration.
Maternal separation alters alcohol reward as mea-

sured by voluntary alcohol consumption later in life,
although the precise conditions required for this out-
come are unclear. In general, studies reveal a U-
shaped time-dependent effect in which MS60-360 and
control (NH or AFR) groups show greater alcohol
intake relative to MS15 in both rats (Hilakivi-Clarke
et al., 1991; Ploj et al., 2003a; Roman et al., 2003;
Jaworski et al., 2005) and mice (Cruz et al., 2008).
However, Huot et al. (2001) failed to observe a differ-
ence between male MS15 and AFR controls, although
MS180 males did exhibit enhanced alcohol intake
relative to AFR controls. These last findings suggest
that the detrimental effects of prolonged maternal
separation are greater than the protective effects of
brief separation.

A number of studies failed to observe significant
effects of maternal separation on alcohol intake in
rodents (Marmendal et al., 2004; Roman et al., 2004,
2005; Gustafsson et al., 2005, 2007; Gustafsson and
Nylander, 2006; Marmendal et al., 2006; Advani et al.,
2007; Daoura and Nylander, 2011; Oreland et al.,
2011). Although the reason for the discrepancy is not
clear, because of the myriad of procedural differences
across studies, several tentative conclusions may be
drawn. First, the time of test is important, as rats are
more sensitive to maternal separation effects on
alcohol intake when tested in adulthood rather than
adolescence (Daoura et al., 2011). Since baseline
alcohol intake is greater in adolescent rats than in
adults, this difference may mask maternal separation
effects in adolescents. Second, sex differences likely
play a role because two studies examining female rats
failed to observe effects of prolonged maternal separa-
tion on alcohol consumption (Roman et al., 2004;
Gustafsson et al., 2005), although a protective effect
of brief maternal separation was observed in females
(Hilakivi-Clarke et al., 1991). In a study of alcohol-
preferring rats, no effect of maternal separation was
observed in females (Roman and Nylander, 2005).
Third, alcohol concentration is important because
preference varies for different concentrations across
different maternal separation conditions in male rats,
with MS15 rats preferring 5% alcohol and MS360 rats
preferring 20% alcohol (Gustafsson et al., 2007).

Altered vulnerability to alcohol use later in life
occurs in nonhuman primates using a model comparing
peer-reared to mother-reared rhesus monkeys. These
studies report an increase in alcohol consumption in
peer-reared monkeys (Barr et al., 2004b; Higley et al.,
1991, 1996; Fahlke et al., 2000; Zhang and Kosten,
2007; Newman et al., 2009). Although this effect has
been observed in both male and female monkeys, there
are likely sex differences in the genes that are involved.
Female peer-reared monkeys with the long/short allele
for the 5-HT transporter gene promoter exhibit higher
alcohol intake than peer-reared females with the long/
long allele, as well as higher alcohol intake than
maternal-reared females regardless of genotype (Hall
and Degenhardt, 2009). This finding suggests that
neither peer-rearing nor genotype alone influences
alcohol intake, but both are risk factors that interact
such that the environmental peer-rearing factor
increases vulnerability in individuals with the long/
short genotype. Similarly, vulnerability to cocaine
abuse is associated with a genotype x maternal rearing
interaction in mice (van der Veen et al., 2008). This
study showed that cross fostering two different strains
of mice, C57BL/6J and DBA/2J, with two other strains
of mice that exhibit high (C3H/HeN strain) versus low
(AKR stain) maternal licking resulted in a maternal
influence on the acquisition of cocaine self-administration.
The latter mice fostered by AKR dams self-administered
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less cocaine relative to those fostered by C3H/HeN
dams. Again, these findings suggest that genotype
makes a difference only under certain environmental
rearing conditions.
As with other abuse-related psychosocial differences,

dopamine systems play a key role in the effects of
maternal separation (Meaney et al., 2002). Prolonged
maternal separation increases extracellular dopamine
levels in striatum after both K+ and amphetamine
challenge (Hall et al., 1999), as well as increasing total
tissue levels of dopamine (Matthews et al., 2001; Brake
et al., 2004). Maternal separation also reduces DAT
levels in striatum (Meaney et al., 2002), which may
contribute to enhanced dopamine responses. In con-
trast, brief maternal separation decreases tail pinch-
induced dopamine release compared with controls;
dopamine D3 receptor binding and mRNA are also
decreased compared with controls (Brake et al., 2004).
5-HT systems also are linked to maternal separation-

induced changes in sensitivity to stress and abused
drugs (Miczek et al., 2008; Valentino et al., 2010). In
rats, maternal separation decreases 5-HT functioning in
amygdala, including reduced 5-HT levels, 5-HT1A
autoreceptors, and 5-HT transporters (Vicentic et al.,
2006; Oreland et al., 2009). In monkeys, peer-reared
adults have decreased 5-HT transporters measured by
PET in amygdala and related structures compared with
maternal-reared adults (Ichise et al., 2006). In addition,
peer-reared monkeys have decreased cerebrospinal fluid
(CSF) levels of the 5-HT metabolite 5-hydroxyindole-
acetic acid (5-HIAA), which is negatively correlated with
alcohol consumption (Higley et al., 1996; Ichise et al.,
2006). The decrease in limbic 5-HT function after
maternal separation may disinhibit dopamine reward
processes (De Deurwaerdere et al., 2004; O’Dell and
Parsons, 2004).
Since maternal separation is a powerful stressor in

neonates, it is not surprising that the HPA axis is
implicated as a key neurobiological factor associated
with the effects of maternal separation and abuse-
related behaviors. Maternal separation alters the HPA
axis, with reports of either hypersensitivity marked by
elevated basal and stress-induced blood corticosterone
measured later in life (Higley et al., 1991; Plotsky and
Meaney, 1993; Vazquez et al., 2005a) or hyposensitiv-
ity marked by lower basal and stress-induced blood
corticosterone levels (Greisen et al., 2005; Kim et al.,
2005; Roman et al., 2006); however, these latter studies
assayed blood after testing animals in different
behavioral tasks such as the elevated plus maze.
Despite these discrepant findings, prolonged maternal
separation blunts the negative feedback of glucocorti-
coids on the HPA axis (Ladd et al., 2004) and produces
a constellation of behavioral changes reflecting in-
creased anxiety and depressive symptoms (Zhang
et al., 2004; Faturi et al., 2010). Even more subtle
early life stress, such as being reared by a mother who

engages in low levels of licking and grooming her
offspring, engenders hypersensitivity and slower neg-
ative feedback of the HPA axis (Liu et al., 1997), thus
attesting to the long-lasting influence of early life
mother-infant interactions.

In relation to drug abuse–related behaviors, early
life levels of corticosterone are positively correlated
with alcohol intake later in life. Peer-reared monkeys
have higher cortisol levels than mother-reared mon-
keys, regardless of sex (Fahlke et al., 2000), and
consume more alcohol than mother-reared monkeys
(Higley et al., 1991). In addition to cortisol, peer-reared
monkeys have elevated blood levels of ACTH and CSF
levels of the norepinephrine metabolite 3-methoxy-4-
hydroxyphenylglycol (Higley et al., 1991). The effects of
maternal separation on the HPA axis are sex de-
pendent, as the alcohol-induced elevation in ACTH is
greater in peer-reared female monkeys compared with
peer-reared males (Barr et al., 2004a).

As another component of the stress system, m-opioids
are implicated in the effects of maternal separation on
drug abuse-related behaviors. When separated from
the dam, rat pups exhibit increased distress calling,
and on return they exhibit increased approach to the
dam; these behaviors are decreased and increased,
respectively, by m-opioid agonists and antagonists
(Carden et al., 1991; Agmo et al., 1997). m-Opiate
receptor knock-out mice fail to display preference for
mother-associated cues or vocalizations in response to
separation from their mothers (Moles et al., 2004).
Food-deprivation stress during adulthood in MS180
female rats is associated with decreased cocaine
amphetamine-related transcript (CART) and pro-
opiomelanocortin (Yoo et al., 2011), the latter being
the precursor for m-peptide b-endorphin and ACTH.
These peptides are decreased in the arcuate nucleus
of the hypothalamus, which is involved in feeding
behavior (Lopaschuk et al., 2010). These findings
suggest that maternal separation produces a long-
lasting dysregulation of the endogenous opioid com-
ponent of the stress system.

Central d-opioid systems also are altered by mater-
nal separation. Met-enkephalin and preproenkephalin
mRNA levels decrease in the nucleus accumbens
(Vazquez et al., 2005b), and this change is coupled
with a decrease in enkephalin metabolic enzymes
(Irazusta et al., 1999) and d-opioid receptors (Ploj
et al., 2003b) in amygdala. In contrast, met-enkephlin-
Arg6-Phe7 (MEAP), a marker of proenkephalin, is
increased in the prefrontal cortex, nucleus accumbens,
hypothalamus, and periaqueductal gray (Ploj et al.,
2001, 2003b). After a history of alcohol self-administration,
MEAP is decreased in medial prefrontal cortex and
periaqueductal gray area, although increases in
MEAP are evident in the striatum and hypothalamus
(Gustafsson et al., 2007). In addition, a history of
alcohol self-administration is linked to increases in
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MEAP in the hypothalamus, striatum, and amygdala
(Gustafsson et al., 2005, 2007), suggesting an overlap of
d-opioid-mediated effects of maternal separation and
alcohol exposure.
k-Opioid systems also play a role in maternal

separation. Dynorphin B, a marker of prodynorphin,
is increased in several regions, with more widespread
effects observed with brief maternal separation
(i.e., pituitary gland, striatum, periaqueductal gray,
hippocampus, substantia nigra, medulla) and more
restricted effects observed with prolonged maternal
separation (Ploj et al., 1999, 2003b). Findings in the
hypothalamus have been mixed, likely the result of sex
differences, as maternally separated females exhibit
a decrease in dynorphin B (Gustafsson et al., 2005),
whereas maternally separated males exhibit an in-
crease in dynorphin B (Ploj et al., 1999, 2003b).
Additionally, with brief maternal separation, dynor-
phin B is decreased in the frontal cortex and amygdala
(Ploj et al., 1999, 2001, 2003b). However, opposite
effects are observed in animals after alcohol self-
administration. For instance, in frontal cortex, hypo-
thalamus, and substantia nigra, alcohol-experienced
MS360 rats exhibit an increase in dynorphin B,
whereas MS360 nondrinkers show no change (Gus-
tafsson et al., 2005, 2007). Taken together, endogenous
opioid-mediated modulation of the HPA stress axis
during maternal separation appears especially suscep-
tible to long-lasting changes important for mediating
alcohol effects, although the implications of opioid
modulation of the HPA axis on other abused drugs are
less certain.
In summary, there is a vast literature on the

neurobehavioral effects of maternal separation during
development on later sensitivity to abused drugs. Some
inconsistencies have been reported, likely based on
how and when the maternal separation is applied, as
well as the methods used to measure drug sensitivity.
One overall conclusion from these studies is that brief
separation (#15 min per day) reduces drug sensitivity,
whereas prolonged separation ($ 60 min per day)
potentiates drug sensitivity. In cases where effects are
observed, these effects are relatively long-term, and
they tend to generalize across drug classes. The long-
term behavioral effects of prolonged maternal separa-
tion involve dopamine and 5-HT systems, as well as
enhanced sensitivity of the HPA axis. The altered HPA
axis may be due to long-term changes in m-, d-, and
k-opioid receptor systems.
2. Housing Conditions. Environmental enrichment

is a manipulation in which animals are exposed to
housing conditions that differ in the amount of
stimulus novelty and opportunity to engage in social
activity (Bennett et al., 1969). In the typical procedure,
rodents are housed in either an enriched condition (EC)
with novel objects and conspecifics or an isolated
condition (IC) without objects or conspecifics. To

determine the relative contribution of novel objects
and conspecifics, a separate group is often housed in
a social condition (SC) with conspecifics, but without
novel objects. Some studies have varied the number of
conspecifics with or without novel objects (Zakharova
et al., 2009). In general, neurobehavioral differences
are greater when comparing EC and IC rodents, with
SC rats falling intermediate between these two
extreme groups. Although enrichment is often applied
during the periadolescent period of development, it
produces effects across the life span, and these effects
are reversible (Renner and Rosenzweig, 1987). In the
current review, IC animals are considered the treated
group, and EC animals are considered the comparison
group because IC rats are most vulnerable to drug self-
administration, which is similar to animals that score
high on the novelty responder, novelty seeking, and
impulsivity tests described earlier.

The hyperactivity produced by acute stimulant
treatment is blunted in IC rats relative to EC rats
(Bowling et al., 1993; Bowling and Bardo, 1994; Bardo
et al., 1995); one exception, however, is that nicotine-
induced hyperactivity is increased in IC rats (Green
et al., 2003). In contrast to acute treatment, repeated
stimulant treatment, including nicotine, is increased in
IC rats relative to EC rats (Bardo et al., 1995; Funk
et al., 2005; Solinas et al., 2009; Wooters et al., 2011).
One caveat in these findings is that IC rats have higher
baseline activity than EC rats before any drug
treatment, which can complicate interpretation of the
findings (Smith et al., 2009). That is, similar to
inherent differences in activity between HR and LR
rats, the conclusions drawn for IC and EC rats may
differ depending on whether drug-induced hyperactiv-
ity is expressed as an absolute value or as a percent
change relative to the different baselines.

Similar to enhanced sensitization to repeated stimu-
lants, IC rats show greater propensity to self-
administer amphetamine and cocaine relative to EC
rats (Bardo et al., 2001; Miczek et al., 2008; Green
et al., 2010; Gipson et al., 2011a). This difference is
greater at low unit doses than at high unit doses
delivered on either FR or PR schedules. Although
baseline differences in lever pressing between IC and
EC rats need to be considered as described previously
(Smith et al., 2009), evidence indicates that differential
housing alters sensitivity to the reinforcing effects of
abused drugs independent of baseline rates of lever
pressing. For example, although IC rats have higher
baseline (nonreinforced) rates of lever pressing, they
acquire food-reinforced lever pressing at a slower rate
than do EC rats (Bardo et al., 2001). It is possible that
IC rats self-administer more drug in an attempt to
compensate for a relative insensitivity to the reinforc-
ing effect of stimulants, but this is unlikely because IC
rats respond for lower unit doses on an FR schedule
and show higher breakpoints on a PR schedule.
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Instead, isolation rearing likely enhances sensitivity to
stimulant reinforcement.
In contrast to the effects on self-administration,

isolation housing decreases amphetamine and co-
caine CPP (Bowling and Bardo, 1994; Bardo et al.,
1995). These findings seem paradoxical because
isolation housing decreases stimulant CPP and
increases stimulant self-administration. However, self-
administration and CPP measure different aspects of
reward, with self-administration measuring directly the
reinforcing effect of the drug and CPP measuring the
rewarding value of contextual cues associated with drug
(Bardo and Bevins, 2000). This suggests that isolation
housing may produce differential effects on the primary
and secondary reinforcement associated with abused
drugs. Alternatively, since isolation rearing increases
impulsive lever pressing (Engler et al., 2005; Perry
et al., 2008), this change may enhance the propensity to
lever press for drug specifically, without altering the
strength of CPP. Further, since isolation rearing also
disrupts contextual fear conditioning (Weiss et al., 2004;
Gresack et al., 2010), isolation-induced deficits in
general Pavlovian learning processes inherent in the
CPP paradigm cannot be ruled out.
In addition to the discrepancy between self-

administration and CPP results using either amphet-
amine or cocaine, isolated housing does not produce
consistent alterations in self-administration and CPP
using other drugs. For example, neither methamphet-
amine- nor morphine-induced CPP is altered reliably
by isolation housing (Smith et al., 2005; Thiriet et al.,
2011), although one study found that SC mice display
greater heroin CPP than EC mice (El Rawas et al.,
2009). In the case of alcohol, isolation housing reliably
increases free-access intake in both rats and rhesus
monkeys (Kraemer and McKinney, 1985; Procopio-
Souza et al., 2011), and similar results are obtained
with diazepam (Wolffgramm and Heyne, 1991). Self-
administration of oral alcohol also is higher in IC rats
compared with EC rats (Bienkowski et al., 2001); when
given a choice between response-contingent water or
10% alcohol, IC rats exhibit a preference for the alcohol
lever over the water lever. Free-access intake and PR
breakpoints also are higher in IC alcohol-preferring
rats (Bisaga and Kostowski, 1993), although an
isolation-induced increase is not obtained with stan-
dard outbred rats (Gingras and Cools, 1995), suggest-
ing a gene x environment interaction. In sum, although
isolation rearing increases self-administration of am-
phetamine, cocaine, and alcohol, this effect does not
generalize to all drug classes and does not generalize to
the reward accrued to drug-associated cues measured
by CPP.
To determine the influence of conspecifics per se,

several studies have compared IC and SC animals.
Early work indicated that IC rats display greater self-
administration and CPP relative to SC rats using

cocaine or heroin, but not amphetamine (Schenk et al.,
1983, 1985, 1988); however, more recent work indicates
that IC rats also self-administer more amphetamine
when a low unit dose (0.03 mg/kg per i.v. infusion) is
used (Bardo et al., 2001). IC rats also display a leftward
shift in the cocaine dose response curve compared with
SC rats (Howes et al., 2000), indicating that isolation
housing enhances sensitivity to stimulant reinforce-
ment compared with social housing. However, the
presence of novel objects also plays a role, as the
behavioral responses to stimulants, opiates, and alcohol
differ between SC and EC animals (Bardo et al., 2001;
Green et al., 2003; Coolon and Cain, 2009; El Rawas
et al., 2009; de Carvalho et al., 2010).

Isolation housing produces profound alterations in
various neural systems (Renner and Rosenzweig,
1987). Since much of the early work in this area
focused on learning and memory deficits, changes in
cortical function have been examined extensively. IC
rats have decreased cortical thickness compared with
EC rats (Diamond et al., 1964), primarily as a result of
decreases in astrocytic branching and in brain capil-
laries associated with a lowering of mitochondrial
metabolic activity (Sirevaag and Greenough, 1991).
Neuronal cytoarchitecture is altered, characterized by
a decrease in the number and size of dendrites, as well
as a decrease in dendritic branching and number of
dendritic spines (Rosenzweig and Bennett, 1996; Di-
amond, 2001). Although these changes are most
prominent in cortical regions, particularly the visual
and auditory cortices, subcortical regions also are
affected. For example, in the hippocampus, both nerve
growth factor and brain-derived neurotropic factor
(BDNF) are reduced by isolation housing (Torasdotter
et al., 1998; Thiel et al., 2012). There also is a decrease
in number of dendritic spines found on type I spiny
neurons in striatum (Comery et al., 1996), as well as
a decrease in dendritic arborization on spiny neurons
in the nucleus accumbens (Kolb et al., 2003). These last
results indicate that reward-relevant dopamine systems
may not function optimally after isolation housing.

As shown in Fig. 2, isolation housing alters the
dopamine systems involved in hyperactivity and drug
reward. The brain circuitry implicated in the behav-
ioral effects of isolation is remarkably similar to that
described previously in HR rats (see Fig. 1), suggesting
that isolated and HR rats share overlapping neural
mechanisms. One exception to this conclusion is that
DAT function in nucleus accumbens and medial
prefrontal cortex differs between isolated and HR rats
(see Figs. 1 and 2). Despite this, there is a similar
increase in accumbal dopamine in both isolated and
HR rats, which may explain the hyperactivity observed
in both groups.

Although initial in vitro studies did not observe
differences between IC and EC rats in electrically or
amphetamine-stimulated dopamine release in striatal
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or accumbal tissue slices (Bowling et al., 1993; Bardo
et al., 1995;), ex vivo and in vivo studies show
differences in accumbal function (Jones et al., 1992).
Isolation rearing increases dopamine in the nucleus
accumbens, striatum, and medial prefrontal cortex
(Bowling et al., 1993) and also increases the transcrip-
tion factor cAMP response element-binding in the
nucleus accumbens (Green et al., 2010), suggesting
an isolation-induced overactivity of basal mesolimbic
function. This overactivity may be due to a decrease in
DAT protein in the nucleus accumbens of IC rats
(Zakharova et al., 2009), thus potentiating trans-
ynaptic dopamine signaling. In contrast to the deficit
in DAT functioning in the nucleus accumbens, IC rats
have enhanced DAT function in the prefrontal cortex
as is evident by an increase in the maximum velocity of
[3H]dopamine uptake compared with EC rats (Zhu
et al., 2004), an effect that involves protein kinase C
(Wooters et al., 2011). In the prefrontal cortex, IC rats
also have more DAT protein at the cell surface
compared with EC rats (Zhu et al., 2005). As part of
a complex neurocircuitry, the medial prefrontal cortex
has direct inputs to the nucleus accumbens (Sesack et al.,
1989), as well as indirect inputs into other structures
within the mesocorticolimbic system (Tzschentke and
Schmidt, 2000). Thus, the isolation-induced increase in
dopamine reuptake via DAT in the prefrontal cortex may
diminish the influence of this inhibitory cortical structure
over limbic reward processes.
In addition to changes in basal dopamine function,

isolation housing alters drug-induced changes in
mesocorticolimbic function. After amphetamine, IC

rats have decreased levels of the dopamine precursor
dihydroxyphenylalanine (DOPA) in striatum and de-
creased levels of the dopamine metabolite dihydrox-
yphenylacetic acid (DOPAC) in striatum and the
medial prefrontal cortex compared with either EC or
SC rats (Bowling et al., 1993). In contrast, IC rats have
increased amphetamine-stimulated levels of extracel-
lular dopamine in striatum and the nucleus accumbens
using in vivo microdialysis compared with SC rats
(Jones et al., 1992), although this effect is not obtained
under chloral hydrate anesthesia (Bardo et al., 1999).
IC rats also show greater cocaine-stimulated release of
accumbal dopamine and greater alterations in the
immediate-early genes c-fos and zif-268 in striatum
and the central nucleus of the amygdala and, in some
cases, in the nucleus accumbens and frontal cortex
(Howes et al., 2000; Solinas et al., 2009; Thiel et al.,
2010). Housing-induced differences in neurochemical
response to stimulant drugs do not likely reflect pharma-
cokinetic changes, as brain levels of [3H]amphetamine are
similar in IC and EC rats after systemic injection (Bardo
et al., 1999). Instead, although biosynthetic and metabolic
processes are diminished, isolation housing likely enhan-
ces the readily releasable stores of dopamine from
vesicular or nonvesicular presynaptic pools.

Similar to abuse-prone HR rats, described earlier,
isolated animals have an overactive stress axis (Serra
et al., 2005). Basal corticosterone is higher in IC than
in EC rats, and the amphetamine-stimulated increase
in corticosterone is greater in IC rats (Stairs et al.,
2011). However, the ability of the glucocorticoid re-
ceptor antagonist RU-486 to reduce amphetamine self-
administration is blunted in IC rats (Stairs et al.,
2011), suggesting that chronic elevation of stress
hormones may desensitize glucocorticoid receptors.
Further, IC rats show reduced CB1 receptor mRNA
levels in the hypothalamus and basolateral amygdala
(El Rawas et al., 2011), suggesting that endocannabi-
noid systems may contribute to the enhanced response
to stress in IC rats. Regardless of the precise mecha-
nism, the isolation-induced increase in corticosterone
would be expected to increase stimulant reinforcement
(Piazza et al., 1991a; Goeders, 2002).

Beyond dopamine, other neurotransmitter systems
are affected by isolation housing. In the nucleus ac-
cumbens, IC rats have decreased 5-HIAA and de-
creased levels of the acetylcholine synthetic enzyme
choline acetyltransferase (Jones et al., 1991). 5-HT
levels in the medial prefrontal cortex and hippocampus
also are reduced by isolation housing (Brenes et al.,
2008), whereas hippocampal norepinephrine is in-
creased (Galani et al., 2007). Further, glutamate
signaling is blunted by isolation housing. For example,
IC rats have decreased glutamatergic tone mediated
via mGluR2 receptors in the dorsal medial prefrontal
cortex compared with EC rats (Melendez et al., 2004).
Amphetamine-stimulated extracellular glutamate levels

Fig. 2. Schematic of brain changes in isolate-housed rats compared with
socially enriched rats. Regions in blue represent primarily reward-
relevant central structures, regions in green represent primarily stress-
related central structures, and the region in red is a peripheral
stress-related gland. Note that the overlap in circuitry depicted pre-
viously in Fig. 1 suggests that HR rats (Fig. 1) and isolated rats (this
figure) share similar neural mechanisms. Brain regions: ACe, central
nucleus of amygdala; Hippo, hippocampus; mPFC, medial prefrontal
cortex; NAc, nucleus accumbens; VTA, ventral tegmental area. Cellular
changes: CAT, choline acetyltransferase; CORT, corticosterone; CREB,
cAMP response element binding; DA, dopamine; NE, norepinephrine;
NGF, nerve growth factor.
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in the nucleus accumbens also are blunted in IC rats
compared with EC rats (Rahman and Bardo, 2008).
Pretreatment with MK-801, a noncompetitive NMDA
receptor antagonist, prevents the acute amphetamine-
induced increase in extracellular glutamate levels in
the nucleus accumbens, thus implicating an accumbal
glutamatergic mechanism in the environment-
dependent effects of amphetamine.
In summary, isolate-housed animals are hypersen-

sitive to abused drugs relative to animals raised in
enriched or social housing conditions. Isolated rats self-
administer lower doses of stimulants compared with
EC rats. Isolation rearing also enhances the self-
administration of alcohol. Although these effects in-
dicate enhanced sensitivity to the primary reinforcing
effect of abused drugs, they do not generalize to con-
textual conditioning measured by CPP. The isolation-
induced changes in sensitivity to abused drugs are
associated with overactive dopamine and HPA systems.
Recent evidence also indicates that isolation rearing
blunts glutamate systems in the nucleus accumbens
and frontal cortex.
3. Social Reward. Initiation of drug taking nearly

always occurs in a social context in which peers provide
social reward for the behavior, yet surprisingly little
research has been conducted with animal models to
investigate the influence of social interactions at the
time of drug taking (i.e., social context). The presence
of a nonthreatening conspecific is highly salient and
rewarding, especially in adolescent rats (Vanderschu-
ren et al., 1997; Spear, 2000); for instance, nonthreat-
ening conspecifics 1) elicit approach (Panksepp et al.,
1984), 2) elicit ultrasonic vocalizations thought to be
indicative of positive affect (Burgdorf et al., 2008), 3)
are positive reinforcers (Angermeier et al., 1959;
Werner and Anderson, 1976; Evans et al., 1994), and
4) produce CPP (Calcagnetti and Schechter, 1992;
Crowder and Hutto, 1992; Douglas et al., 2004).
Research examining drug effects in a social context
suggests that this is an important variable that
influences sensitivity to the rewarding effects of drugs.
Social context (i.e., being with a conspecific at the

time of the drug experience) alters stimulant reward.
Social reward interacts synergistically with both co-
caine and nicotine to produce CPP in adolescent male
rats since conditioning parameters that fail to support
social or drug reward when given alone can produce
CPP when given together (Thiel et al., 2008, 2009).
Social reward competes with drug reward in young
male rats since pairing a conspecific with one com-
partment and cocaine with the other compartment fails
to produce CPP, even though either reward alone
produces CPP (Fritz et al., 2011b,d). After establishing
cocaine CPP, pairing a conspecific with the previously
saline-paired compartment shifts the preference away
from the cocaine-paired compartment in favor of the
social reward-paired compartment (Fritz et al., 2011b).

Further, young adult male mice show social enhance-
ment of methamphetamine CPP, but only when mice
paired together are both under drug influence and not
when one mouse is under drug influence and the other
is not (Watanabe, 2011). This last finding suggests that
sharing of the drug experience may be critical for drug-
social reward synergistic interactions.

The degree to which social context influences drug
effects and the degree to which drugs influence social
behavior appears to be related for some drugs but not
for others. For instance, 3,4-methylenedioxymetham-
phetamine (MDMA) increases social interactions in
rats (Thompson et al., 2009), and MDMA-induced
locomotor sensitization is greater in a social context
than in a nonsocial context (Procopio-Souza et al.,
2011). Under similar conditions, amphetamine has no
effect on social interaction, and amphetamine-induced
sensitization is not affected by social context (Procopio-
Souza et al., 2011). In contrast, morphine increases
social interactions, yet morphine-induced sensitization
is attenuated in a social context (Procopio-Souza et al.,
2011). Thus, the relationship between social context
and drug effects varies depending on the drug.

Some abused drugs may decrease the effects of social
interaction. For example, exposure to a conspecific or
methylphenidate alone produces CPP, whereas no CPP
is produced when these stimuli are combined (Trezza
et al., 2009), suggesting an inhibitory interaction
between social reward and methylphenidate. One
interpretation of these findings is that methylpheni-
date decreases social reward, perhaps by reducing play
behavior (Vanderschuren et al., 2008). However,
nicotine and cocaine also reduce play behavior, yet
enhance social CPP (Thiel et al., 2008, 2009), suggest-
ing that a reduction in play does not necessarily result
in an inhibitory interaction between all stimulants and
social reward. Further research is needed to investi-
gate whether drug x social reward interactions depend
on the drug or environmental determinants that vary
across studies.

Stimulant self-administration may be enhanced by
the presence of a nonthreatening conspecific. Acquisi-
tion of nicotine self-administration paired with oral
delivery of a sweet-scented solution is facilitated in
male and female adolescent rats when a conspecific
drinks the scented solution in an adjacent cage (Chen
et al., 2011). In that experiment, the divider between
the cages was perforated to allow the transfer of
olfactory cues. In the absence of the conspecific, rats
failed to increase licking on an active spout that resulted
in solution + nicotine delivery compared with an
inactive spout. The social facilitation of nicotine self-
administration was blocked by the nicotinic receptor
antagonist mecamylamine and was stronger in the
presence of a familiar rat versus a novel rat, suggesting
that social cues, rather than novel cues, drive the
receptor-mediated facilitation. Similarly, a conspecific
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in an adjacent cage sharing a clear Plexiglas wall with
the self-administration cage facilitates intake of a high
(0.1 mg/kg per infusion), but not a low (0.01 mg/kg per
infusion) unit dose of amphetamine (Gipson et al.,
2011b). This latter effect is selective for amphetamine,
as rats reinforced with sucrose pellets show a social-
induced disruption of intake.
In addition to stimulant drugs, opiate-induced

locomotor activity and reward are altered by social
context. Morphine facilitates social interaction, in-
cluding play behavior (Normansell and Panksepp,
1990), yet sensitization of morphine-induced locomotor
activity is attenuated in mice that receive morphine in
a social context (Procopio-Souza et al., 2011). Similarly,
using a highly social strain of mice (C57BL/6J), morphine
CPP is inhibited in male mice when conditioning occurs
in a social context compared with an isolated context
(Kennedy et al., 2012). No influence of social context is
observed in male mice that are socially housed.
There is strong support for modulation of alcohol

intake by social context, and in general, social context
facilitates alcohol intake and preference. Exceptions
where social context is protective against alcohol
consumption are studies comparing chronic isolation
versus social housing for an extended period, which
show that chronic isolation stress increases alcohol
consumption and preference for high concentrations of
alcohol compared with social housing (Wolffgramm,
1990; Wolffgramm and Heyne, 1991; Ehlers et al.,
2007). In contrast, studies have found social facilitation
of drinking using pre-exposure to a demonstrator rat
that had been exposed to alcohol (Hunt et al., 2001,
2000). Males are more sensitive than females to
familiarity of social partners, with a familiar demon-
strator rat being the best facilitator of drinking,
followed by a familiar sober rat. Less drinking occurs
with an unfamiliar demonstrator and sober rat. In
contrast, females exhibit comparable enhancements of
drinking after exposure to either familiar or unfamiliar
demonstrator rats (Maldonado et al., 2008). Adolescent
rats given access to alcohol (i.e., forced consumption)
consume more alcohol when pair-housed rather than
individually housed; however, when these groups are
later given a choice between alcohol and water, there
are no group differences in alcohol consumption
(Thorsell et al., 2005). Using highly social prairie voles,
alcohol preference is higher under duplex housing
(i.e., living quarters separated by mesh separation
barrier allowing some social contact) compared with
single housing, whereas there is no difference across
conditions for saccharin preference (Anacker et al.,
2011a). Voles predetermined to be high drinkers de-
crease alcohol intake when paired with a low drinker,
and the reduced drinking persists even if the previously
high drinker is isolated (Anacker et al., 2011b). Thus,
social influence can have protracted effects on alcohol
intake.

Social context also modulates the effects of alcohol-
associated cues. For instance, alcohol alone produces
conditioned place aversion, but if alcohol is given in the
presence of an intoxicated or sober conspecific, it fails
to produce conditioned place aversion (Gauvin et al.,
1994), suggesting that the social context attenuates the
aversive effects of alcohol. When an alcohol scent is
paired with either a conscious or unconscious rat,
conditioned approach occurs only to the scent paired
with the conscious rat (Fernandez-Vidal and Molina,
2004). Similarly, cues paired previously with social
interaction facilitate subsequent alcohol intake (Tomie
et al., 2004).

The facilitation of drug intake by social context can
be mediated by reduced stress reactivity compared
with that experienced in isolation. Blunted and
delayed plasma corticosterone levels are observed in
response to amphetamine in social versus isolate
housed rats (Stairs et al., 2011). Blunted plasma
corticosterone responses to nicotine also are observed
in adolescent male rats tested in a social context
relative to those tested in isolation (Pentkowski et al.,
2011), indicating that stress-related social influences
exist across different stimulants.

Neural processes associated with appetitive social
interactions overlap with those implicated in drug
abuse, including involvement of nucleus accumbens
and amygdala (Burgdorf and Panksepp, 2006; Alcaro
et al., 2007). Activation of accumbal shell, amygdala
(central and basolateral nuclei), and ventral tegmental
area as measured by expression of zif268 in response to
a cocaine-conditioned environment is blunted by the
presence of social reward–conditioned cues (Fritz et al.,
2011b). Lesion experiments also suggest dissociable
contributions of some of these regions to drug versus
social reward. Under CPP conditions in which social
interaction is paired with one compartment and
cocaine is paired with the other compartment, lesions
of accumbal core or basolateral amygdala produce
a preference for the social compartment, whereas
lesions of accumbal shell produce a preference for the
cocaine compartment (Fritz et al., 2011a).

Although the influence of abused drugs on social
behaviors has been examined extensively (e.g., for
review, see Vanderschuren et al., 1997; Burgdorf and
Panksepp, 2006), relatively little is known about the
neurobiology of appetitive social context at the time of
drug initiation on vulnerability to continued drug use.
However, some recent studies demonstrate a relation-
ship between dopamine, opiate, and oxytocin involve-
ment in social behavior and drug abuse–related
behaviors. In male prairie voles that have formed pair
bonds with their mates, amphetamine fails to produce
CPP under conditioning parameters that support
amphetamine CPP in sexually naïve males that have
not yet formed pair bonds (Liu et al., 2011), suggesting
that pair bonding reduces sensitivity to amphetamine
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reward. Amphetamine also increases D1 receptor
binding in the nucleus accumbens and produces CPP
in sexually naïve voles, but it has the opposite effect of
decreasing D1 receptor binding in pair-bonded voles
that also fail to acquire CPP (Liu et al., 2011).
Moreover, amphetamine CPP in sexually naïve voles
is altered by intra-accumbens manipulations of D1, but
not D2, receptors (Liu et al., 2011). As for opioid
systems, Burgdorf et al. (2007) found that stimulation
of brain reward pathways produces high-pitch (50 kHz)
ultrasonic vocalizations and that there is a relationship
between the ability of m-opiate receptor agonist ad-
ministration into the ventral tegmental area to support
CPP and to elicit ultrasonic vocalizations. Finally,
oxytocin systems play a role in various appetitive social
behaviors, including pair bonding, mother-infant bond-
ing, and social approach and recognition (Insel, 1992;
Young et al., 2001; McGregor et al., 2008; Young et al.,
2011). Male rats given oxytocin during early adoles-
cence later exhibit enhanced social behavior, less
anxiety-like behavior, and upregulated levels of oxyto-
cin and oxytocin mRNA (Bowen et al., 2011). After
oxytocin administration in adulthood, they also exhibit
less alcohol drinking (Bowen et al., 2011), suggesting
that upregulation of oxytocin may have a protective
effect against alcohol intake (Bowen et al., 2011). Such
systems are prime candidates for investigating the
neural basis of social context at the time of drug
initiation and on vulnerability to development of fur-
ther drug use and dependence.
In summary, social contexts are rewarding alone,

and they can alter the effects of abused drugs. In the
presence of social interactions, sensitivity to the
rewarding effects of abused drugs is enhanced using
either CPP or self-administration, and these effects are
observed with both stimulants and alcohol. In a choice
situation, a social context can reduce the preference for
a drug-paired context. Several neural systems appear
altered, including the HPA axis and dopamine systems
in nucleus accumbens and amygdala. Recent evidence
suggests that social reward also is influenced by
oxytocin systems.
4. Social Defeat. Social defeat (SD) is used to model

the effects of physical and psychologic stress on drug
abuse–related behaviors in animals. SD is typically
investigated in rodents selected as either dominant
or subordinate, or aggressive and nonaggressive, to
facilitate fighting and defeat during encounters
(Hilakivi-Clarke et al., 1991; Kudryavtseva et al.,
1991; Marrow et al., 1999; Shimamoto et al., 2011).
The resident intruder procedure is another common
method for examining SD effects on drug abuse–
related behavior (Yap and Miczek, 2007). In this
procedure, a male rodent (the intruder) is placed in
the cage of a resident male rodent that is pair-housed
with a female rodent without the female present. The
resident rodent attacks the intruder, and after meeting

a criterion of defeat, the intruder is removed. Some-
times before or after SD, the intruder is placed into
a smaller cage within the resident’s cage, which may
have small openings that allow transmittance of social
cues indicative of threat (i.e., vocalizations, smells).
In addition to housing with a female to stimulate
territorial aggression, the resident rat is often larger
(Miczek and Mutschler, 1996), from a more aggressive
strain (Kabbaj et al., 2001), or selected for aggressive
behavior toward intruders (de Jong et al., 2005). SD
has been studied in female rodents by using a lactat-
ing female as the resident and a nonlactating, less
aggressive female as the intruder (Haney et al., 1995).

In general, SD enhances subsequent effects of
stimulant drugs. For instance, acute or repeated SD
typically cross sensitizes animals to cocaine- and
amphetamine-induced locomotion (Nikulina et al.,
1998; Marrow et al., 1999; Miczek et al., 1999b;
Covington and Miczek, 2001; Nikulina et al., 2004;
Boyson et al., 2011; de Jong et al., 2005; Yap et al.,
2005; Yap and Miczek, 2007; Dietz et al., 2008;
Quadros and Miczek, 2009). In rats bred for low
responsivity to amphetamine-induced locomotion, SD
cross-sensitizes these animals to acute amphetamine-
induced hyperactivity such that these rats do not differ
from rats bred for high responsivity to amphetamine
(Dietz et al., 2008). These findings suggest that SD
eliminates the individual differences normally ob-
served between high versus low amphetamine res-
ponders. However, studies examining adolescent rats
and hamsters found either no effect or decreased
sensitivity to stimulant-induced locomotion after SD
(Kabbaj et al., 2002; Trzcinska et al., 2002; Burke et al.,
2011), suggesting that cross-sensitization with stimu-
lants occurs when SD is experienced in adulthood but
not when it is experienced during adolescence. The
time course of cross-sensitization between SD and
stimulants also differs across studies, with some
studies finding persistent effects (Nikulina et al.,
1998, 2004; Covington et al., 2005) and other studies
finding only transient effects (de Jong et al., 2005).
Further research directly comparing effects of SD in
adolescent versus adult rodents on stimulant-induced
locomotion tested at varying intervals is needed to
address these issues.

Sensitivity to stimulant reward also is enhanced as
a result of SD (Table 4). In contrast to the results with
locomotor activity, SD enhances sensitivity to stimu-
lant CPP in both adolescents and adults (McLaughlin
et al., 2006; Burke et al., 2011). The effect observed in
adolescents is specific to SD, as cross-sensitization is
not observed in adolescent rats pre-exposed to foot
shock stress (Burke et al., 2011). SD also enhances
cocaine-primed reinstatement of extinguished cocaine
CPP in mice (Ribeiro Do Couto et al., 2009).

Several studies have found that SD enhances the
stimulant self-administration. An increase in acquisition

276 Bardo et al.



of cocaine self-administration occurs with continuous
access to cocaine, with SD rats acquiring more rapidly
than controls (Tidey and Miczek, 1997). With short
access daily acquisition sessions, however, SD effects are
not reliably observed early during acquisition (Haney
et al., 1995; Covington and Miczek, 2001; Quadros and
Miczek, 2009), which may be due to individual differ-
ences. Rats classified as high responders to amphetamine
exhibit delayed self-administration acquisition on short
access sessions after SD compared with nondefeated high
responders (Kabbaj et al., 2001). During later acquisition
sessions, however, rats classified as low responders
exhibit an increase in cocaine intake after SD relative
to nondefeated rats (Kabbaj et al., 2001). A similar
increase in cocaine intake is observed during late
acquisition sessions in nonclassified male and female
rats that experience SD (Haney et al., 1995), indicating
that the effect of SD is most prominent with extended
self-administration training.
In animals that have acquired cocaine self-

administration, SD increases cocaine intake during
maintenance of self-administration (Boyson et al.,
2011), and this effect is greater when low doses of
cocaine (0.03–0.125 mg/kg per infusion) are available
(Miczek and Mutschler, 1996). An increase in cocaine
intake as a result of SD is observed consistently in
animals given binge access (i.e., 24 h) to cocaine
(Covington and Miczek, 2001, 2005; Covington et al.,

2005; Quadros and Miczek, 2009; Boyson et al., 2011;
Miczek et al., 2011b). This effect reflects a shortened
inter-reinforcer interval at high doses of cocaine (.0.25
mg/kg per infusion) earned during the late portion of
the binge, as well as a longer persistence of responding
before stopping the binge. Most studies find that SD
increases cocaine intake on a PR schedule of re-
inforcement in rats (Covington et al., 2005; Covington
and Miczek, 2005; Covington et al., 2008; Quadros and
Miczek, 2009), although this effect might not general-
ize to mice (Yap and Miczek, 2007).

Although relatively little is known about the effects
of SD on opiate abuse–related behaviors, some results
suggest that SD enhances sensitivity to opiates similar
to its effects on stimulant-induced behaviors. For in-
stance, SD cross-sensitizes rats to morphine- and heroin-
induced hyperactivity (Stohr et al., 1999; Cruz et al.,
2011), and acute SD reinstates extinguished morphine
CPP (Ribeiro Do Couto et al., 2006). Animals subjected to
SD also exhibit analgesia (Miczek et al., 1982), which is
reversed by a k-opiate receptor antagonist, demonstrat-
ing that opiate systems are affected by SD (McLaughlin
et al., 2006). It is unclear whether SD increases the
reinforcing effects of opiates, however, since intake of
heroin is not altered, but intake of a speedball mixture of
cocaine and heroin is increased (Cruz et al., 2011).
Further research is needed to address more thoroughly
the effects of SD on opiate self-administration.

TABLE 4
Representative studies showing relation between social defeat and drug reward

Reference Animal Predictor Variable Outcome Variable Drug Results

Stimulants
Boyson et al. (2011) Male Long-Evans rats Periodic SD

(4 times)
SA on FR5 and

PR
Cocaine

(0.75 mg/kg i.v.)
↑ SA

(acquisition and binge)
Burke et al. (2011) Male Sprague-Dawley

rats
Daily SD

(5 days)
CPP Amphetamine

(1 mg/kg i.p.)
↑ CPP

Covington and Miczek
(2001)

Male Long-Evans rats Periodic SD
(4 times)

SA on FR5 and
PR

Cocaine
(0.38–1.5
mg/kg i.v.)

↔ SA
(acquisition)

↑ SA
(binge)

Haney et al. (1995) Female and male
Sprague-Dawley rats

Periodic SD
(4 times)

SA on FR1 Cocaine
(0.32 mg/kg i.v.)

↑ SA

McLaughlin et al.
(2006)

Male C57Bl/6 mice Daily SD
(3 days)

CPP Cocaine
(15 mg/kg s.c.)

↑ CPP

Quadros and Miczek
(2009)

Male Long-Evans rats Periodic SD
(4 times)

SA on FR3 and
PR

Cocaine
(0.75 mg/kg i.v.)

↔ SA
(escalation)

↑ SA
(breakpoint and binge)

Tidey and Miczek
(1997)

Male Long-Evans rats Daily SD
(4 days)

SA on FR1 Cocaine
(0.75 mg/kg i.v.)

↑ SA
(acquisition)

Opiates
Cruz et al. (2011) Male Long-Evans rats Periodic SD

(4 times)
SA on FR3 and

PR
Heroin

(0.03 mg/kg i.v.)
↔ SA

Alcohol
Croft et al. (2005) Male C57BL/10 mice Daily SD

(5 days)
2-Bottle choice Alcohol

(8% p.o.)
↑ Preference

Funk et al. (2005) Male Wistar rats Acute SD
(before
session)

SA on FR3 Alcohol
(12% p.o.)

↓ SA
(maintenance and
extinction)

↔ SA
(reinstatement)

van Erp et al. (2001) Male Long-Evans rats Daily SD
(5 days)

SA on FR4 Alcohol
(10% p.o.)

↓ SA

SA, self-administration; ↑, increase; ↓, decrease; ↔, no change.
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The effects of SD on alcohol abuse–related behaviors
are more complex than with other drugs, likely as
a result of variation across studies in the duration
between SD and drug treatment, as well as the
influence of individual differences. Alcohol intake
decreases when rats are tested immediately after SD
or when the threat of SD is present for 6 h postdefeat
(van Erp et al., 2001; Funk et al., 2005), although one
study found no change when the threat of SD occurred
continuously in the normal housing condition (Keeney
and Hogg, 1999). The decrease in alcohol consumption
is consistent with the general suppressant effects that
stressors have on ongoing behavior in rats (e.g., Meerlo
et al., 1996). In contrast, when access to alcohol is
delayed 2 h post-SD, rats exhibit an increase in alcohol
intake (Caldwell and Riccio, 2010), in contrast to the
decrease in alcohol consumption immediately after SD.
Also, Croft et al. (2005) found a delayed increase in
alcohol preference in mice with a history of repeated
SD that emerged about 2 weeks after the last defeat.
This study used mice that had a low alcohol preference,
and it is unclear whether an increase in preference also
would be observed in high alcohol-preferring mice.
Similarly, CRH knock-out mice lacking CRH1 recep-
tors exhibit a delayed increase in alcohol consumption
weeks after repeated SD episodes (Sillaber et al.,
2002). Individual differences in the effects of SD on
alcohol consumption involve genetic influences, as SD
increases alcohol consumption in C57BL/J6 mice but
not in CBA/Lac mice (Kudryavtseva et al., 1991).
Individual differences in fighting experience also in-
fluence SD effects on consumption, as increases in
alcohol intake are observed in mice that are defeated
but not in mice that are successful in defeating another
mouse (Kudryavtseva et al., 1991; Hilakivi-Clarke and
Lister, 1992). Finally, Funk et al. (2005) found
a transient increase in alcohol consumption in animals
deprived of alcohol before SD, suggesting that alcohol
deprivation interacts with SD effects on alcohol
consumption.
Among the various mechanisms of action, the HPA

axis has received considerable attention. SD increases
plasma corticosterone (Pich et al., 1993; Ribiero Do
Couto et al., 2006), in some cases for several hours
(Koolhaas et al., 1997). SD also enhances corticoste-
rone release in response to subsequent mild stressors,
such as exposure to a novel environment. This effect is
observed in both male and female rats, although SD
females exhibit a higher initial increase in corticoste-
rone than female controls, whereas SD males exhibit
a longer lasting elevation of corticosterone relative to
male controls (Haney et al., 1995). With repeated ex-
posures to SD, corticosterone release does not habitu-
ate, unlike that typically observed with nonsocial
stressors (Covington and Miczek, 2005). Enhanced
activation of the HPA axis also is involved in SD-
induced increases in cocaine self-administration, and

this increase is blocked by a CRH1 receptor antagonist
administered either systemically or into the ventral
tegmental area (Boyson et al., 2011). By contrast,
a blunted response of the HPA axis is observed in rats
that experience SD during adolescence and then are
tested for amphetamine-induced elevation in cortico-
sterone as adults (Burke et al., 2010), suggesting that
SD produces differential effects on the HPA axis across
the life span.

The mesocorticolimbic dopamine system also is
implicated in the SD-induced increase in stimulant
abuse–related behaviors. SD or exposure to a cage
where social defeat has been experienced previously
increases dopamine in nucleus accumbens and enhan-
ces cocaine-induced increases in dopamine in the
nucleus accumbens (Tidey and Miczek, 1997; Miczek
et al., 1999a, 2011a). The enhancement of cocaine-
induced dopamine may be related to the accelerated
acquisition of cocaine self-administration and in-
creased intake during a binge (Tidey and Miczek,
1997; Miczek et al., 2011a), perhaps because of an SD-
induced elevation in BDNF in the ventral tegmental
area (Miczek et al., 2011a). BDNF is thought to
facilitate dopamine release (Altar et al., 1992; Cordeira
et al., 2010), and BDNF in mesolimbic dopamine
neurons has been linked to increased cocaine-taking
and cocaine-seeking behaviors (Grimm et al., 2003;
Graham et al., 2007).

The SD-induced changes in dopamine D2 receptors
also are related to behavioral changes in response to
stimulants. As mentioned previously, HR rats show
greater sensitization to amphetamine and lower
dopamine D2 receptor binding in striatum compared
with LR rats. However, LR rats exposed to SD exhibit
cross-sensitization to amphetamine and have D2 re-
ceptor levels similar to HR rats exposed to SD (Dietz
et al., 2008). Thus, SD appears to reduce HR and LR
individual differences in sensitivity to amphetamine,
perhaps as a result of downregulation of striatal
dopamine D2 receptors. In contrast, when SD is
experienced during adolescence, amphetamine chal-
lenge later in life no longer downregulates dopamine
D2 receptors (Burke et al., 2011), even though the SD
treatment produces enhanced dopamine levels in
nucleus accumbens tissue samples (Burke et al.,
2010). Further research is needed to determine
whether altered responses of mesocortical dopamine
neurons play a role in the different behavioral out-
comes of SD when experienced during adolescence
versus adulthood.

Glutamate systems also are implicated in the effects
of SD on stimulant abuse-related behaviors. For
instance, SD cross-sensitization with amphetamine,
but not amphetamine sensitization alone, is blocked by
pretreatment with the glutamate mGluR5 receptor
noncompetitive antagonist MPEP during induction
(Yap et al., 2005), suggesting a dissociation between
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the mechanisms involved in SD and drug sensitization
effects. SD cross-sensitization with amphetamine-
induced locomotion and enhanced cocaine self-
administration on a PR schedule or during binge
access are blocked by either MK-801 or the a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor antagonist AP-5 given during induction before
SD episodes (Yap et al., 2005; Covington et al., 2008).
These effects are mimicked by administration of AP-5
into the ventral tegmental area, suggesting that AMPA
receptors are involved in SD-induced increases in
cocaine intake (Covington et al., 2008). Further
support for this idea is that SD increases AMPA GluR1
receptor subunits, but it has no effect on NMDA NR1
receptor subunits (Covington et al., 2008). Glutamate
NMDA NR2 receptor subunit upregulation has been
implicated in SD-induced increases in alcohol con-
sumption in CRH1 receptor knock-out mice (Sillaber
et al., 2002). Further research is needed to determine
the role of NR2-containing NMDA receptors in SD-
induced vulnerability to drug abuse–related behaviors.
The effect of SD on alcohol intake has been

dissociated from its anxiogenic effects. Croft et al.
(2005) examined two different anxiolytics given before
SD and found that a cholecystokinin B receptor
antagonist blocked SD effects on alcohol consumption,
whereas the benzodiazepine receptor agonist diazepam
had no effect.
Studies examining immediate early gene expression

support a role for activity in mesocorticolimbic struc-
tures, as well as other brain regions. Amphetamine
challenge increases zif268 mRNA in the medial
amygdala of nonstressed rats but decreases it in SD
rats (Covington et al., 2005). SD also increases zif268
mRNA relative to nonstressed controls in the central
nucleus of the amygdala, and this effect is reversed by
an amphetamine challenge. In the infralimbic pre-
frontal cortex, SD decreases zif268 mRNA, whereas
amphetamine challenge has no effect. After an acute
cocaine challenge before a single SD episode, the
immediate early gene protein Fos and its related
antigen (i.e., Fos-Li) are attenuated in the periaque-
ductal gray, dorsal raphe, and locus coeruleus compared
with nonstressed, cocaine-challenged controls (Nikulina
et al., 1998). This time point corresponds to the time of
induction of cocaine sensitization. Interestingly, acute
cocaine administration or SD increases Fos-Li in the
periaqueductal gray, but when given together, a de-
crease is observed, suggesting that Fos likely plays
a role in plasticity underlying interactions between
these two stressors (Miczek et al., 1999b). When either
cocaine or amphetamine challenges are given 7 days
after SD, there is an increase in Fos-Li in the
periaqueductal gray and locus coeruleus, and when
given 17–70 days later, there is an increase in ventral
tegmental area as well (Miczek et al., 1999b; Nikulina
et al., 2004). There also is an increase in Fos-Li in the

central amygdala 17–70 days after SD, regardless of
amphetamine challenge (Nikulina et al., 2004). Collec-
tively, these findings suggest that plasticity in response
to SD within cell bodies of monoamine neurons, as well
as within the defense-relevant periaqueductal gray, is
likely involved in subsequent changes in responsivity to
stimulants.

In summary, social defeat is a profound stressor that
produces long-lasting effects of sensitivity to abused
drugs, most notably with stimulants and alcohol. SD
produces cross-sensitization to the locomotor and re-
warding effects of stimulant drugs. In contrast, repeated
SD reduces alcohol self-administration, indicating phar-
macological specificity. The increase in stimulant reward
likely reflects enhanced CRF1 function within the HPA
axis, although alterations in dopamine and glutamate
systems also are implicated.

5. Social Rank. Social dominance or subordination
can be viewed as either a state or trait. In the previous
section, social defeat was considered a state induced
when an animal interacts with a dominant conspecific,
thus leading to a transient alteration in drug effect in
the defeated animal. In the present section, social
dominance or subordination is considered a trait that
alters drug effects across multiple domains. As a trait,
social dominance generally increases resource alloca-
tion (food, water, mating opportunities) compared with
social submission. In rodents, social dominance can be
measured by various behaviors, including aggressive
attacks and threatening postures relative to submis-
sive rodents (Blanchard et al., 1993). With nonhuman
primates, dominance also is measured by fighting and
posturing, as well as increases in general activity, the
amount of grooming received, and the latency to
approach a novel object (Miczek and Gold, 1983; Czoty
et al., 2010).

Social submission is a known risk trait for drug
abuse in laboratory animals. In rats and mice, sub-
ordinate individuals consume more alcohol and di-
azepam than dominant individuals (Ellison and
Potthoff, 1984; Hilakivi-Clarke and Lister, 1992;
Pohorecky, 2006). The elevated intake in subordinate
rats is not due to state-based defeat from dominant
rats because the same relationship holds when rats are
tested after long-term isolation (Wolffgramm and
Heyne, 1991). Similarly, subordinate monkeys show
greater activity and reinforcement with cocaine or
amphetamine (Miczek and Gold, 1983; Morgan et al.,
2000, 2002). The difference between subordinate and
dominant monkeys is blunted by chronic cocaine self-
administration, but the difference re-emerges with
abstinence (Czoty et al., 2010), demonstrating the
stability of this trait. Subordinate monkeys also
consume more alcohol than dominants (McKenzie-
Quirk and Miczek, 2008). However, consumption of
sucrose fluid is not altered by dominance rank
(McKenzie-Quirk and Miczek, 2008), demonstrating
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that the effect is specific to abused drugs rather than
a nonspecific alteration in sensitivity to reinforcement.
Relatively little is known about the precise neural

mechanisms underlying differences in social rank.
Whereas state-based social defeat activates the HPA
axis (Pich et al., 1993; Ribeiro Do Couto et al., 2006),
trait-based differences between dominant and sub-
ordinate animals are not associated with serum
corticosterone levels (Morgan et al., 2000; Stavisky
et al., 2001; Ribeiro Do Couto et al., 2006; Czoty et al.,
2009; Riddick et al., 2009). Platelet monoamine oxidase
(MAO) levels are reduced in subordinate rhesus
monkeys (Fahlke et al., 2002). Since MAO is the major
enzyme that metabolizes monoamine neurotransmit-
ters such as dopamine and 5-HT, these results suggest
that the activity of monoamine brain systems may
differ between dominant and subordinate individuals.
However, this conclusion is speculative since platelet
MAO activity is not a reliable index of MAO activity in
brain (Young et al., 1986).
Tied more closely to brain function, CSF assays

suggest that altered brain activity is associated with
social rank. In monkeys, the CSF level of the dopamine
metabolite homovanillic acid is reduced in subordi-
nates (Kaplan et al., 2002), whereas 5-HIAA is in-
creased (Howell et al., 2007; Riddick et al., 2009).
These CSF metabolite differences between dominant
and subordinate monkeys may be greater in males
(Kaplan et al., 2002), although females also exhibit this
relationship (Riddick et al., 2009). Regardless of any
sex differences, the enhanced vulnerability for drug
abuse in subordinate individuals may reflect enhanced
dopamine activity (lower metabolism), combined with
blunted 5-HT activity (higher metabolism). This con-
clusion is consistent with evidence in humans suggest-
ing that low levels of impulsive aggression, which
typifies subordinate behavior, is associated with the
combined effect of dopamine hyperfunctioning and 5-
HT hypofunctioning (Seo et al., 2008).
More direct analyses of postmortem monoamine

neurochemistry also reveal region-specific alterations
in brain function related to social rank. A study in
birds revealed that steady-state levels of striatal
dopamine are decreased in subordinates compared
with dominants (McIntyre and Chew, 1983); however,
this dominance-subordination difference is not ob-
served in rodents (Blanchard et al., 1991). More
important, indices of functional brain activity are
altered by social rank in rodents. Consistent with the
results from CSF sampling, subordinate rats show
elevated 5-HIAA levels in several brain regions, in-
cluding the preoptic area, basal hypothalamus, hippo-
campus, and amygdala, although no changes in DOPAC
are evident (Blanchard et al., 1991). In contrast to the
5-HT–associated effects observed in rodents, PET
evidence from monkeys shows a decrease in dopamine
D2-like receptor availability in subordinates, with no

change in 5-HT transporter availability (Morgan et al.,
2002; Riddick et al., 2009). The decrease in D2 receptor
availability may be related to the enhanced sensitivity of
subordinates to the reinforcing effect of cocaine compared
with dominants (Morgan et al., 2002). However, PET
technology using D2 selective radiotracers such as [11C]
raclopride or [18F]fluoroclebopride for imaging does not
readily distinguish between receptor levels and alter-
ations in dopamine release, nor does it readily distin-
guish between autoreceptors and heteroreceptors. In any
case, an important aspect of these preclinical findings is
that they parallel studies in humans showing that
decreased D2 receptor availability is associated with
drug reinforcement and abuse (Volkow et al., 1999, 2009).

In summary, social subordination enhances the
sensitivity to abused drugs, including stimulants,
benzodiazepines, and alcohol; however, little is known
about social submission and dominance with opiates.
The neural mechanisms of dominance and subordina-
tion have been explored primarily using nonhuman
primates. These studies reveal that social subordination
is associated with decreased D2 receptor availability.

IV. Implications for Prevention and Treatment
of Drug Abuse

The current review focuses primarily on the basic
neurobehavioral mechanisms involved in individual
differences and social influences that alter response to
abused drugs. Although a few studies have examined
the interactive effects of individual differences and
social influences, the vast majority of studies have
examined individual and social-based differences sep-
arately, and thus these factors are reviewed separately
here. The basic research findings covered may have
important clinical implications for preventing and
treating substance-use disorders among various pop-
ulations. Although information is limited in this area,
some examples illustrate how such findings may be
applied in the field and clinic.

In the case of individual differences in facets such as
novelty seeking and impulsivity, these traits may serve
as useful targeting variables to identify those at
greatest risk. To the extent that risk-related traits
become stable early in life, they may be useful
predictors of vulnerability to drug experimentation
before the first drug experience. This would allow for
maximizing prevention resources toward those indi-
viduals. Although it is difficult to capture and analyze
experimentally the first drug experience in real time in
humans, the first experience may have a profound
influence on the subsequent abuse trajectory. For
example, substance abusers report greater “liking” of
the first experience compared with nonabusing experi-
menters, and this effect is observed across all drug
classes (Haertzen et al., 1983). Although these results
are retrospective, cross-sectional results support the idea
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that risk-related traits (e.g., sensation seeking) predict
the reinforcing effects of amphetamine (Kelly et al.,
2006). Thus, prevention efforts among these individuals
should be oriented toward reducing or delaying early
experimentation, such as through peer-refusal skills and
providing alternative nondrug reinforcers.
Nondrug alternative reinforcers decrease drug self-

administration using either choice procedures or non-
contingent direct exposure to an alternative rewarding
stimulus (Carroll et al., 1989; Woolverton and Anderson,
2006). In humans, prosocial behaviors such as physical
activity and engaging in high sensation experiences may
be effective in reducing drug use. These findings parallel
those observed in rats (Klebaur et al., 2001b; Smith and
Pitts, 2011), and results from monkeys suggest that
enriching stimuli may decrease drug reinforcement
(Nader et al., 2008). Not only do alternative appetitive
stimuli reduce drug self-administration generally, the
effectiveness of alternative stimuli may be greatest
among individuals prone to addiction. For example,
novel stimulation decreases amphetamine self-
administration to a greater extent in HR rats than
in LR rats (Cain et al., 2004). Targeting the applica-
tion of novel, enriching, and physically invigorating
stimulation toward those at highest risk may be
especially effective in preventing or delaying the
initiation and acquisition of drug use.
Some of the social experiences discussed in the

current review also are relevant to prevention and
treatment. Deviant peer influence is known play a key
role in drug use in humans. In a controlled laboratory
setting, the mere presence of peers increases the
incidence of risky behavior among adolescents (Albert
and Steinberg, 2011). Similarly, in laboratory animals,
the presence of social peers produces a transient
increase in cocaine self-administration (Gipson et al.,
2011b). Thus, it is not surprising that the presence of
social peers, combined with access to drugs, provides
an especially risky environment for some individuals.
In contrast to this risky social situation, evidence

suggests that social influences can also influence drug
use, with the outcome to some extent dependent on
whether a social encounter is positive or negative and
whether it occurs in or outside of the drug taking
context as reviewed elsewhere (Neisewander et al.,
2012). Examples of social influences ameliorating
desire for drug may involve the opportunity for social
interaction during the later stages of drug abuse. As
discussed earlier, cocaine CPP is reversed in rats that
are given social interaction episodes after the estab-
lishment of CPP (Fritz et al., 2011b). Cocaine CPP
established in isolate housed mice also is reversed by
a period of living in enriched housing before the CPP
test (Solinas et al., 2008). Similarly, when rats that
have been trained to self-administer cocaine while
isolate housed and are then are moved to enriched
housing, they show an attenuation in cocaine-seeking

behavior induced by drug-associated cues and stressors
(Chauvet et al., 2009; Fritz et al., 2011c; Thiel et al.,
2011). These social and environmental enrichment
experiences also reverse immediate early gene expres-
sion throughout mesocorticolimbic circuits, suggesting
that these experiences inhibit brain activation that
motivates cocaine-seeking behavior (Thiel et al., 2010,
2011a; Chauvet et al., 2011; Fritz et al., 2011b). Trans-
lation of these results to humans will be important,
especially given that drug treatment strategies often
emphasize socially oriented professional and self-help
support groups to promote abstinence.

Finally, despite the recent advances in our un-
derstanding of the neural mechanisms underlying
individual differences and social influences in sensi-
tivity to abused drugs, several notable gaps exist that
may be addressed in future investigations. First,
relatively few studies have examined individual differ-
ences or social influences on the sensitivity to tetrahy-
drocannabinol, perhaps because laboratory animal
models of tetrahydrocannabinol reward are lacking.
This is unfortunate because marijuana use during
adolescence and young adulthood is a health concern
(Hall and Degenhardt, 2009). Second, relative to
monoamine and HPA systems, there is only limited
information about the potential role of amino acid
neurotransmitters such as GABA and glutamate in
mediating individual differences and social influen-
ces. Given the important role of GABA and glutamate
homeostasis in stimulant reward (Mansvelder and
McGehee, 2000; Carroll et al., 2002; Kalivas, 2009),
more information in this area is needed. Lastly, the
vast majority of preclinical studies in this area have
examined either individual differences or social
influences as separate independent predictors of
sensitivity to abused drugs. Although this approach
has yielded predictive relations and key neural
mechanisms, it does not capture the multifaceted
nature of drug abuse vulnerability in humans. A
major challenge will be to identify what combination
of individual differences and different social contexts
influences the neurobehavioral pharmacology of
abused drugs. Moreover, the interactive effects of
individual and social-based differences remain an
understudied area.
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