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SUMMARY

Recent developments in RNA-sequencing (RNA-seq) technology have led to a rapid increase in gene
expression data in the form of counts. RNA-seq can be used for a variety of applications, however, identi-
fying differential expression (DE) remains a key task in functional genomics. There have been a number of
statistical methods for DE detection for RNA-seq data. One common feature of several leading methods is
the use of the negative binomial (Gamma–Poisson mixture) model. That is, the unobserved gene expression
is modeled by a gamma random variable and, given the expression, the sequencing read counts are mod-
eled as Poisson. The distinct feature in various methods is how the variance, or dispersion, in the Gamma
distribution is modeled and estimated. We evaluate several large public RNA-seq datasets and find that the
estimated dispersion in existing methods does not adequately capture the heterogeneity of biological vari-
ance among samples. We present a new empirical Bayes shrinkage estimate of the dispersion parameters
and demonstrate improved DE detection.
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1. INTRODUCTION

The recent developments in RNA-sequencing (RNA-seq) technology have led to a rapid increase in gene
expression data in the form of counts. RNA-seq enables some applications not achievable by microarrays,
including discovering novel transcripts and alternative splicing. One fundamental question in functional
genomics, however, remains the regulation of gene expression under the different conditions (treatments,
genotypes, environments, or developmental stages). Therefore, identifying differential expression (DE) is
still a key task in transcriptomics research.
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The measurement of expression in RNA-seq is the number of sequenced fragments that can be mapped
to a genomic unit of interest, which can be a gene, an exon, or any region of interest. We use gene thereafter
for convenience. One major difference in the DE detection methods for RNA-seq and microarray data is
that data from microarrays are often modeled as a Gaussian distribution after proper preprocessing. These
methods do not take into account the discrete nature of RNA-seq data and thus may not be directly applica-
ble. There are nonetheless some common features between the two technologies. For example, the advance-
ment in technology does not eliminate biological variability, which early applications of RNA-seq often
neglected (Hansen and others, 2011). In fact, the much higher dynamic range of RNA-Seq data makes the
heteroskedasticity, i.e. the gene-specific dispersion, even more important than it was with microarrays.

In both types of gene expression data, there are two sources of variation: technical variation, which rep-
resents the measurement error inherent to the technology and sample preparation, and biological variation,
which represents the heterogeneity among samples in the same treatment group or population. If all subjects
within the same group have an identical expression level for a given gene, i.e. lacking biological variation,
the counts for that gene can be modeled as a Poisson random variable, as done by Marioni and others
(2008) and Wang and others (2010). The earliest tests for DE essentially tested for whether the difference
of average counts in two groups exceeds what is expected by Poisson sampling error. However, since gene
expression is a stochastic process, biological replicates in the same treatment group do not share identical
expression levels. The presence of biological variation leads to the “over-dispersion” problem, e.g. the read
counts show variation greater than expected from Poisson random variables.

A common approach to address the over-dispersion problem is to use the negative binomial (NB)
model. The NB model is a Gamma–Poisson mixture and can be interpreted as the following: the Gamma
distribution models the unobserved true expression levels in each biological sample, and condition-
ing on the expression level, the measurement from the sequencing machine follows a Poisson distri-
bution (Robinson and Smyth, 2007; Anders and Huber, 2010; Hardcastle and Kelly, 2010). The variance
from an NB distribution depends on the mean μ in the relationship:

var =μ+ μ2φ, (1.1)

where the first term represents variance due to Poisson sampling error and the second term represents
variance due to variation between biological replicates. The parameter φ is referred to as the dispersion
parameter. Note that φ is the reciprocal of the shape parameter in the Gamma distribution, and thus is the
squared coefficient of variation (CV). Therefore, φ represents the variation of a gene’s expression relative
to its mean.

Most statisticians agree that the over-dispersion problem needs to be addressed. The difference is
how the dispersion is modeled, estimated, and used in inference. Robinson and Smyth (2008) assume a
common dispersion for all genes and use information from all genes to estimate a global φ. This sta-
bilizes the estimation for φ but a common dispersion means an identical CV for all genes, while it is
known that some genes are more tightly controlled (e.g. housekeeping genes) and other genes vary much
more relative to their means (e.g. immune-modulated and stress-induced genes (Pritchard and others,
2001)). The gene-specific biological variation is reproducible across technologies (Hansen and others,
2011) and is not reflected by a common dispersion. As a result, genes that are naturally more variable
are more likely to be reported as DE due to an underestimation of their dispersion. Anders and Huber
(2010) introduce DESeq, another method based on the NB model. Instead of assuming the second term
in (1.1) to be proportional to μ2 with a dispersion φ, they let the variance be a smooth function of the
mean (with proper offset accounting for the sequencing depth). However, the model in Anders and Huber
(2010) still assumes that conditioning on the mean expression, the variance is constant. That is, two
genes with the same mean expression level also has the same variance. There have been many updates
of the DESeq package and the current version uses the greater value between the empirical gene-specific
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dispersion and the mean-dependent fitted value. Robinson and Smyth (2007) modify the common dis-
persion model and introduce an empirical Bayes shrinkage estimate using weighted conditional log-
likelihood. This new estimate shrinks the sample dispersion for each gene toward a common prior instead
of shrinking them completely to the common dispersion. The method is implemented in the widely used
R/Bioconductor package edgeR (Robinson and others, 2010), with recent extensions to multifactor exper-
iments (McCarthy and others, 2012). Hardcastle and Kelly (2010) use NB distribution for the counts in a
Bayesian hierarchical model setting. Non-parametric prior distributions for the NB parameters are empiri-
cally determined. This is a much more computationally intensive method and, possibly for this reason, not
as widely applied as edgeR and DESeq.

Since these publications, many RNA-seq studies have emerged and the accumulated RNA-seq datasets
with a reasonable number of replicates encourage us to re-evaluate the estimation of dispersion in RNA-seq.
We find that existing methods often capture the overall level of dispersion but do not adequately reflect
the heterogeneity in dispersion among genes. In this paper, we propose a new empirical Bayes method
to shrink the dispersion parameter. We demonstrate using real data-based simulation that the proposed
method provides a better estimate for the gene-specific dispersion and improves DE detection. The rest of
the paper is organized as follows. In Section 2, we describe the datasets that provide both the motivation
for this research and the basis for the evaluation of DE detection. In Section 3, we demonstrate the limita-
tion of current estimation of the dispersion parameter and motivate our model for the prior distribution of
the dispersion parameter. In Section 4, we present the hierarchical model, estimation, and testing proce-
dure. In Section 5, we compare the DE detection using the proposed method with the leading alternatives.
Finally, in Section 6, we discuss the interpretation of the dispersion, the connection with microarray data,
and future directions.

2. DATA DESCRIPTION

Two real RNA-seq datasets are used in the paper for estimating simulations parameters and showing
motivational plots. The first is from Cheung and others (2010), which quantifies the expressions of lym-
phoblastoid cell lines from 41 CEU individuals in International HapMap Project (Gibbs and others, 2003).
The second is from Blekhman and others (2010), which includes six liver samples from both males and
females. These datasets are referred to as “Cheung data” and “Gilad data”, respectively, thereafter. For
both datasets, the sequence reads are summarized into counts within genes from Ensembl 61 annotation.
The gene counts are obtained from the ReCount webpage presented by Frazee and others (2011). Samples
in both datasets include biological replicates, so the variance in observed data is a result of both biological
variation and technical variation.

We also use data from the MicroArray Quality Control Project (MAQC) (Shi and others, 2006) phase
III, also known as Sequencing Quality Control. Two biological samples, human brain and universal human
reference sample, are assayed using seven lanes each. The MAQC data use samples from the same library
preparation protocols, and thus represent data with technical replicates only. This dataset provides an
extreme case in which the biological variation reaches the lower bound.

3. MOTIVATION

The NB distribution is widely used in modeling sequence count data because the Gamma–Poisson mix-
ture provides a natural hierarchy for the generation of sequencing counts. The Gamma distribution is a
flexible continuous distribution that characterizes the expression rate for a gene. Given the expression rate
in a biological sample, the sequencing technology provides a count from a Poisson process with the mean
proportional to the expression rate and an offset related to sequencing depth and possibly other factors
affecting the detection efficiency (Hansen and others, 2012). When there are a large number of replicates,
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Fig. 1. Estimated versus true dispersion from (a) edgeR, (b) DESeq and (c) DSS, based on simulation. Simulated
data were generated for 20 000 genes and two treatment groups with four replicates in each group. The dispersions
were randomly simulated from log-normal distribution with mean −1.72 and standard deviation 1.07, which match
those parameters observed from the Cheung data. Different colors represent genes with different levels of average read
counts. A figure showing the genes in different color strata in separate panels is included as supplementary material
available at Biostatistics online, Figure S2.

the dispersion parameter can be estimated from the data and over-dispersion is a well-addressed problem
in the generalized linear model framework. The challenge in RNA-seq data is that there are often very
limited replicates, such that the sample estimate of gene-specific dispersion is unstable. In this case, it is
often useful to combine information from other genes to improve the estimation. DESeq and edgeR are
the most widely used methods that provide shrinkage estimates of the dispersions by borrowing infor-
mation across genes. To assess how well the dispersions are estimated from these methods, we conduct
a simulation based on real data. First the gene-specific means and dispersions are estimated from the
Cheung data. Pseudo-datasets of 20 000 genes, in two treatment groups with four replicates each, are con-
structed under the NB model with parameters taken from the real data. The mean expressions are directly
sampled from estimated gene-specific means non-parametrically. The dispersions are generated from log-
normal(−1.72, 1.072), which well approximates the empirical distribution of the dispersion observed in
the Cheung data (supplementary material available at Biostatistics online, Figure S1).

DESeq function estimateDispersions with the default settings (sharing
Mode="maximum" and fitType="parametric") and edgeR functions estimateCommon
Disp followed by estimateTagwiseDisp with the default settings (trend="movingave",
prop.used=0.3, method="grid") are applied to the simulated counts to obtain estimated
dispersions. Figure 1(a) and (b) shows the estimated versus true dispersions from both methods. Clearly,
the estimates do not correlate well with the truth. Although both edgeR and DESeq estimate the central
magnitude of the dispersions well, they fail to capture the variations in dispersions among genes.
Changing the settings in the edgeR function estimateTagwiseDisp leads to different estimates
(supplementary material available at Biostatistics online, Figure S4), but does not appear to substantially
increase the accuracy of the estimated dispersion. The near horizontal clusters of points show that the
dispersion of many genes are estimated to be approximately the same, which indicates over-shrinkage of
the dispersions.

Since the dispersion parameter represents biological variation, having a good estimate of φ is crucial to
finding the DE that is beyond natural biological variation. In order to account for gene-specific dispersion,
we take advantage of real RNA-seq datasets with replicates and note that the distribution of the logarithm
of sample dispersion, log(φ), is approximately Gaussian as shown in Figure 2. In the next section, we
describe a novel shrinkage estimator for φ using a log-normal prior and an NB likelihood. In Section 5,
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Fig. 2. Histogram for the logarithm of estimated gene-specific dispersions (φg) from (a) Gilad and (b) Cheung data.
Only female samples are used for the Gilad data. The solid lines are density curves for normal distribution with
parameters estimated from log(φg). It can be seen that φg can be approximately modeled as a log-normal distribution.

we show that the proposed method greatly improves the estimation of φ and leads to better detection of
the DE.

4. METHODS

Denote the observed counts from gene g in sample i by Ygi , and the unobserved expression rate by θgi .
We assume the following hierarchical model:

Ygi |θgi ∼ Poisson(θgi si ),

θgi |φg ∼ Gamma(μg,k(i), φg),

φg ∼ log-normal(m0, τ
2).

Here the Gamma distribution is parameterized with mean and dispersion (φg is the reciprocal of the shape
parameter in the common parameterization); k(i) denotes the treatment group of sample i ; and si represents
the normalizing factor, such as the relative library size, for sample i . This normalization factor could
also be a gene-specific factor, taking into account the varying sequencing efficiency due to the guanine-
cytosine content and/or length (Hansen and others, 2012; Risso and others, 2012), but would nonetheless
be treated as a known constant. Based on the hierarchical model, the marginal distribution of Ygi given
μg,k(i) and φg is NB with mean νgi =μg,k(i)si and dispersion φg . In the simplest setting where there are
only two groups, the goal of DE detection is to test, for each gene, whether the mean expressions are
identical in both groups, e.g. μg,1 =μg,2, as noted by other researchers (Robinson and Smyth, 2007, 2008;
Anders and Huber, 2010; Robinson and others, 2010).

Estimating φg is a crucial step in DE detection and shrinkage estimators have been shown to
be useful in typical RNA-seq experiments with a small number of replicates (Anders and Huber,
2010; Hardcastle and Kelly, 2010; Robinson and others, 2010). As discussed in previous works
(Robinson and Smyth, 2007), there is no conjugate prior for φg to ease the computation of a posterior
distribution. Thus, we decide to use a prior that approximates the φg in real RNA-seq data. We choose the
log-normal distribution, motivated by Figure 2.
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For gene g, the conditional posterior distribution of φg given all observed counts and means,
p(φg|Ygi , νgi , i = 1, . . . , n) satisfies (detailed derivation can be found in supplementary material avail-
able at Biostatistics online):

log[p(φg|Ygi , νgi , i = 1, . . . , n)] ∝
∑

i

ψ(φ−1
g + Ygi )− nψ(φ−1

g )− φ−1
g

∑
i

log(1 + νgiφg)

+
∑

i

Ygi [log(νgiφg)− log(1 + νgiφg)]

− [log(φg)− m0]2

2τ 2
− log(φg)− log(τ ), (4.1)

where ψ(.) is the log gamma function and n is the number of samples. To obtain a point estimate of φg , we
could compute the posterior mean by using numerical methods such as importance sampling. It is, however,
too computationally intensive to be practical for RNA-seq data. Instead, we compute the posterior mode
by maximizing an approximate of (4.1) and denote the estimate by φ̃g .

Specifically, we substitute νgi by ν̂gi ≡ μ̂g,k(i)si where μ̂g,k(i) = (
∑

j :k( j)=k(i) Ygj/s j )/nk(i), and nk(i) is
the number of samples in the same treatment group as i . The estimate μ̂g,k(i) is the same as the sample
estimate of true concentration in Anders and Huber (2010). We plug in the hyper-parameters m0, τ

2 esti-
mated from the data, and maximize the approximated Equation (4.1) using the Newton–Raphson method.
In practice, we use “optimize” function in R , which provides excellent computational performance.

The hyper-parameters m0, τ
2 are estimated from the data by pooling information from all genes (details

in the next subsection). The estimate φ̃g is therefore an empirical Bayes estimate shrunken toward the com-
mon prior. It can also be viewed as an estimate that maximizes a penalized pseudo-likelihood, as we are
maximizing an approximate of the penalized likelihood (4.1), with penalty −[log(φg)− m0]2/(2τ 2)−
log(φg), by replacing the nuisance parameter νgi by its estimate ν̂gi . The first term in the penalty,
[log(φg)− m0]2/(2τ 2), penalizes values that deviate far from the common prior m0 and the second term
adds an additional penalty for large values of φg . As mentioned in Section 1, φg has the interpreta-
tion of the squared CV. Based on RNA-seq data from human populations (Cheung and others, 2010;
Pickrell and others, 2010), we observe that around 70% of the genes have a CV less than 0.5. The CV
in inbred animal models or established cell lines are likely even lower. Thus, penalizing larger φg appears
a desirable feature.

Estimating hyper-parameters. We start with a simple dispersion estimate for each gene motivated
by the method of moments. Define a new random variable zgi ≡ (Y 2

gi − Ygi )/s2
i ; we have E[zgi |φg] =

μ2
g,k(i)(φg + 1), which is identical for every sample in a certain treatment group. Using the sample mean

to estimate the first moment of zgi and pooling data from different treatment groups together, one can
obtain an estimator φ̂g = ∑

i zgi/
∑

i μ̂
2
g,k(i) − 1 (detailed derivation in supplementary material available

at Biostatistics online).
Next we estimate m0 and τ using the empirical distribution of φ̂g . We use the median of log(φ̂g)’s, m̂0,

to estimate m0. The estimation of τ 2 is less straightforward as the sample variance of log(φ̂g) overestimates
τ 2. The sample variance of log(φ̂g) comprises two parts: τ 2, the variance representing the heterogeneity
of log(φg)’s among genes, and var{log(φ̂g)| log(φg)}, the variation due to estimating log(φg). Even when
τ 2 = 0 (all genes share common dispersion,φg = φ0 ∀g), we still observe non-zero var{log(φ̂g)}. Therefore,
it is important to take into account this inflation in sample variance of log(φ̂g). We use an ad hoc adjustment
that behaves well in practice evaluated by extensive simulation. Specifically, we create a pseudo-dataset
with τ 2 = 0 by simulating Y ′

gi from NB(ν̂gi , φ̂0), where φ̂0 = exp{m̂0} is used as common dispersion for

all genes. We then compute the sample dispersion φ̂′
g for each gene, and estimate var{log(φ̂g)| log(φ0)} as
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S2 = [IQR{log(φ̂′
g)}/1.349]2. From a number of pseudo-datasets, we obtain the mean S̄2 as the baseline.

Lastly, we estimate τ 2 as τ̂ 2 = max([IQR{log(φ̂g)}/1.349]2 − S̄2, c0). Here c0 is the lower bound for τ̂ 2.
In practice, we use c0 = 0.01.

Note that φ̂g is only used in estimating the hyper-parameters and not directly used to obtain the shrinkage
estimate φ̃g . Although each φ̂g is a rather crude estimate of the dispersion, especially for a small number
of samples, the large number of genes in RNA-seq data allows us to obtain stable estimates of the hyper-
parameters. Once the prior is established in the empirical Bayesian method, our shrinkage estimate φ̃g

directly comes from maximizing (4.1).
Test statistic and false discovery rate. With all parameters estimated, a hypothesis testing for the com-

parison of any two groups can be carried using a Wald test or exact test. Bullard and others (2010) show
that the likelihood ratio test and the exact test perform similarly. Our simulation show that the exact test
and the Wald test provide similar performance (supplementary material available at Biostatistics online,
Figure S9). We choose to use the Wald test for its simplicity.

The Wald test statistic for two-group comparison is constructed as

tg = μ̂g,1 − μ̂g,2√
σ̂ 2

g,1 + σ̂ 2
g,2

,

where σ̂ 2
g,1 ≡ (1/n2

1)[μ̂g,1(
∑

j :k( j)=1(1/s j ))+ n1μ̂
2
g,1φ̃g], is the estimated variance for μ̂g,1 (detailed

derivation in supplementary material available at Biostatistics online), and σ̂ 2
g,2 similarly defined. When

there is no need for normalization (s j = 1 ∀ j), σ̂ 2
g,1 reduces to (μ̂g,1 + μ̂2

g,1φ̃g)/n1, an estimate of the
variance in (1.1), standardized by the sample size in group 1.

It is not trivial to derive the null distribution for the test statistic and the asymptotic distribution is
irrelevant for most RNA-seq data. However, the empirical distribution of tg is Gaussian-like (Figure 5(a))
and we can estimate a local false discovery rate (FDR) based on the empirical null (Efron, 2004) estimated
from the data.

We implemented the proposed method in an R package titled “DSS", standing for Dispersion Shrinkage
for Sequencing. The package is available from Bioconductor.

5. RESULTS

We compare results from the proposed method with two most widely used software packages, edgeR
(version 2.6.2) and DESeq (version 1.8.2) using their latest release versions. For DESeq, we call the func-
tions estimateDispersions and nbinomTest with default settings. For edgeR, we call functions
estimateCommonDisp followed by estimateTagwiseDisp to estimate the dispersion parameter,
and exactTest to test for DE.

First, we show an improvement in estimating the gene-specific dispersion parameter φg . All three meth-
ods use the common NB model, and estimating φg is the key challenge and what determines the ability
to rank the truly DE genes above the null genes. In Figure 1(c), we show the estimates φ̃g plotted against
true φg . It is clear that the shrinkage estimates from DSS track the real dispersion much better than those
from edgeR or DESeq. Note that the dispersion parameter estimates are shrunk more for genes with lower
counts, as expected, since for those genes there is little information about φ in the data.

To quantify the improvement,we further use a similar approach as done in Robinson and Smyth (2007)
to compare φg estimation. The mean squared error (MSE) of the estimates, in the scale of φg/(1 + φg),
were calculated from 50 simulations. Instead of using fixed mean expressions as in Robinson and Smyth
(2007), we use a more realistic approach and randomly sample from mean expressions computed from
the Cheung data. DSS has the lowest MSE in both settings (Figure 3), and in all strata of mean expression
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Fig. 3. Boxplots comparing the distribution of MSE for dispersion estimations from edgeR, DESeq and DSS over 50
simulations. In all simulations, dispersions φg are randomly generated from Gamma distribution with shape 0.85 and
scale 0.5. The mean expressions are randomly sampled from the means calculated from Cheung data. Simulations are
performed under different sample sizes: (a) 4 replicates, and (b) 10 replicates. All simulations are for 2000 genes.

(supplementary material available at Biostatistics online, Figure S3). We next compare the ability to
detect the DE under a variety of situations. To evaluate DE detection under known truth, and to conduct
the comparison under the most realistic scenario encountered in RNA-seq experiments, we simulated
data semi-parametrically based on real RNA-seq datasets. In all simulations, the mean expressions were
randomly sampled from the means calculated from the source dataset, Cheung or Gilad. The dispersion
parameters were generated from parametric distributions, in which the parameters were computed from
the source dataset (details in supplementary material available at Biostatistics online). To demonstrate
robustness to distributional assumption, we simulated φg from both log-normal and Gamma distribution.
In all simulations, 5% of all genes were true DE genes as this proportion is expected to be low in most gene
expression experiments (Smyth, 2004). The logarithm of fold changes for the DE genes were randomly
sampled from N (0, 1).

First, we evaluate the ability to rank true DE genes above non-DE genes. Since DE detection is often
used as a hypothesis generating tool, and the goal is to have as many true positives as possible in the
top-ranked genes, we compare the percentage of true DEs (i.e. 1 − false discovery proportion) in the
top-ranked genes up to top 1000. DSS shows a much higher proportion of true positives among the top-
ranked genes when the dispersion is based on biological replicates as seen in the Gilad and Cheung data
(Figure 4). All three methods provide identical performances when the biological variations are near zero
transcriptome wide, as expected in technical replicates such as MAQC data in supplementary material
available at Biostatistics online, Figure S11.

To further evaluate the performance of DSS in ranking genes under different dispersion patterns, we
performed additional simulations with dispersion from different distributions. We found that in general
when the variation in dispersions is large, DSS provides better performance. The average dispersion level
does not cause much differences among the results from the three methods. This is consistent with the
findings that DESeq and edgeR provide reasonable estimates for the average dispersion, but underesti-
mate the variations in dispersion due to over-shrinkage. The results for these simulations are presented in
supplementary material available at Biostatistics online (Section 10, Figures S6 and S7).

In addition to better sensitivity/specificity, another important task in DE detection is to provide a
measure of statistical significance to guide the choice of a cut-off. In genomics, this is typically done using
the FDR or some variant of the FDR. The Wald statistic in DSS is Gaussian-like in the center (Figure 5(a))
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Fig. 4. DE detection accuracies from DSS, edgeR and DESeq for top 1000 ranked genes. Genes are ranked by
the absolute Wald-statistic, from high to low, for DSS; ranked by p-values, from low to high, for edgeR and
DESeq. The proportion of true discovery among top-ranked genes is plotted against the number of top-ranked genes.
(a) The dispersion parameter simulated from log-normal distribution, with parameters estimated from the Gilad data.
(b) The dispersion parameter simulated from log-normal distribution, with parameters estimated from the Cheung data.
(c) The dispersion parameter simulated from Gamma distribution, with parameters estimated from the Gilad data. (d)
The dispersion parameter simulated from Gamma distribution, with parameters estimated from the Cheung data.

and satisfies the assumption in local FDR calculation (Efron, 2004). Based on the connection between
the local FDR and the FDR (Efron, 2004), we convert the local FDR to the scale of the classical FDR
for comparison. For edgeR and DESeq, we use the FDR reported from the packages. Figure 5(b) plots
the reported (dashed lines) and true FDRs (solid lines) for the top-ranked genes from the simulation. The
simulation settings are the same as those used in Figure 4(b). The curves are averaged from 50 simulations.
For DSS, the reported FDR curve is close to the true FDR. In contrast, both edgeR and DESeq give mis-
leading FDR estimations. The underestimation of the FDR in the top-ranked genes gives an over-optimistic
certainty in the reported DE. Supplementary material available at Biostatistics online, Figure S8, shows
the comparison of the FDR under more simulation settings.

6. DISCUSSION

We present a new shrinkage estimator for the dispersion parameter in the NB model for RNA-seq data.
We show that this new estimator better captures the variation in gene-specific dispersion and, as a result,
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leads to a better detection in the DE compared with two most popular DE detection softwares DESeq and
edgeR. In addition, the nominal FDR based on the local FDR method is much closer to the actual FDR.
We do not include another method, baySeq, in the comparisons because the computational time becomes
formidable for the large number of simulations we perform.

We find that a good estimate of φg is critical in DE detection when biological replicates are involved.
This is not surprising as we have seen in the past decade that improving the estimation of the gene-specific
variance in microarray data has greatly improved DE detection by using moderated Wald tests, including
the most widely used methods LIMMA (Smyth, 2004) and SAM (Tusher and others, 2001). In fact, we
find that φg has a similar interpretation as the gene-specific variance in microarray data. Let Y represent an
untransformed expression level in microarray data. It is often assumed that log(Y )|μ∼ N (μ, σ 2), whereμ
and σ 2 are the mean and variance for the log scale expression measure, respectively. In the original scale,
the squared CV CV(Y )2 = eσ

2−1 ≈ σ 2 for σ 2 
 1, which is satisfied in most genes (McCall and others,
2011). Thus, σ 2 is approximately the squared CV in the untransformed scale. In comparison, RNA-seq
data are often modeled by the NB distribution, i.e. a Gamma–Poisson mixture, in which the Gamma distri-
bution models the biological variation and the Poisson distribution models the variation due to the counting
process in sequencing. The dispersion parameter φg is the squared CV of the Gamma distribution, i.e. φg

represents the gene-specific biological variation, and is directly linked to σ 2
g in log-transformed microarray

expression data.
This interpretation explains several findings in our analysis of RNA-seq data with biological replicates.

It has been well established that genes have different biological variance, and thus we should not expect
a constant φg for all genes. In experiments with a small number of replicates, an empirical Bayes method
that combines the information from the observed sample and shrinks toward a common prior of φg helps
stabilize the estimate of φg . However, the extent of shrinkage should not be uniform as the amount of
information about φg varies between genes. The variation of counts from genes with low expression is
dominated by the Poisson counting error, and provides less information of φg (supplementary material
available at Biostatistics online, Figure S10); thus the estimates of φg for these genes should be shrunken
more heavily . DSS does exactly what we desire, shrinking φg less for high-expression genes and more for
low-expression genes (Figure 1(c)).
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It has been reported that the biological variation, thus the dispersion parameter, may depend on the
expression level. DESeq and EdgeR allow trended estimation of the dispersion depending on the mean
level. To account for this dependence, we also provide an option in DSS by letting the hyper-parameter
m0 be a smooth function of expression. The details of the trended estimation is provided in supplementary
material available at Biostatistics online.

Some datasets are generated to investigate technical reproducibility and do not capture the biological
variation in a population. Even in these cases with technical replicates only, such as the MAQC data, we find
that analysis assuming a not-too-small dispersion provides improvement in DE detection (supplementary
material available at Biostatistics online, Figure S12). When biological replicates are from established cell
lines or inbred animal models, the variance among replicates may be lower than the variance in a random
human population. However, the result on MAQC data with technical replicates suggests that even when
there is no strong evidence for over-dispersion in the data, it is beneficial to analyze the data under a
positive dispersion model.

We find that most of the improvement obtained in DSS is due to the different dispersion estimate, as
passing the DSS estimates to edgeR/DESeq yields very similar results as in DSS (supplementary material
available at Biostatistics online, Figure S9). Both the edgeR and the DESeq methods have been expanded
to now accommodate multiclass comparisons. Our test is currently limited to two-class comparison and it
is our immediate plan to extend the dispersion estimators to multifactor designs. With an estimate of the
dispersion, one can use generalized linear models as done in McCarthy and others (2012).

In all comparisons presented here, we use semiparametric simulation based on real RNA-seq datasets
for lack of real data example with known truth. Although the NB model is the current predominant choice
for RNAseq data, most models only approximate reality. Real data with a reasonable number of known
DE, for example, using spike-in genes, will enable better comparison.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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