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ABSTRACT
Background Genetic studies require precise phenotype
definitions, but electronic medical record (EMR)
phenotype data are recorded inconsistently and in a
variety of formats.
Objective To present lessons learned about validation
of EMR-based phenotypes from the Electronic Medical
Records and Genomics (eMERGE) studies.
Materials and methods The eMERGE network
created and validated 13 EMR-derived phenotype
algorithms. Network sites are Group Health, Marshfield
Clinic, Mayo Clinic, Northwestern University, and
Vanderbilt University.
Results By validating EMR-derived phenotypes we
learned that: (1) multisite validation improves phenotype
algorithm accuracy; (2) targets for validation should be
carefully considered and defined; (3) specifying time
frames for review of variables eases validation time and
improves accuracy; (4) using repeated measures requires
defining the relevant time period and specifying the most
meaningful value to be studied; (5) patient movement in
and out of the health plan (transience) can result in
incomplete or fragmented data; (6) the review scope
should be defined carefully; (7) particular care is required
in combining EMR and research data; (8) medication data
can be assessed using claims, medications dispensed, or
medications prescribed; (9) algorithm development and
validation work best as an iterative process; and (10)
validation by content experts or structured chart review
can provide accurate results.
Conclusions Despite the diverse structure of the five
EMRs of the eMERGE sites, we developed, validated, and
successfully deployed 13 electronic phenotype algorithms.
Validation is a worthwhile process that not only measures
phenotype performance but also strengthens phenotype
algorithm definitions and enhances their inter-institutional
sharing.

INTRODUCTION
Electronic medical records (EMRs) hold abundant
phenotype data, and government interest and pro-
motion is driving their widespread use and adop-
tion.1 However, EMRs are designed to serve
healthcare providers and patients by documenting
patient–provider interactions and clinical observa-
tions, and generating billing documentation.2 3 By
contrast genetics research has developed predomin-
antly within the controlled environment of research
study populations with phenotypes specific to a

disease domain. Thus, the EMR may be a useful
tool for accelerating clinical and genetic research.
Understanding the challenges of using EMR data as
a source of clinical phenotypes (the presence of a
specific trait, such as height or blood type, the pres-
ence of a disease, or the response to a medication)
is critical to furthering the goal of repurposing
EMRs for genetic research.

BACKGROUND AND SIGNIFICANCE
Genetic association studies of common clinical phe-
notypes require large numbers of cases and controls
for adequate power,4 5 6 and correct classification of
cases (those with the trait) and controls (those
without the trait) is critical for unbiased association
estimates. EMR data can identify large numbers of
clinical phenotypes such as disease (cases) and non-
disease (controls), and quantitative traits of medical
importance, with sufficient validity to power
genome-wide association studies (GWAS) and other
emerging types of genetic studies.7 This has been
demonstrated by the Electronic Medical Records and
Genomics (eMERGE) network, created and funded
by the National Human Genome Research Institute
(NHGRI) to develop, disseminate, and apply
approaches to combining DNA biorepositories with
EMR systems for large-scale genomic studies.
Successful eMERGE GWAS have included studies
on red8 and white9 blood cell traits, atrioventricular
conduction (ie, PR interval),10 erythrocyte sedimen-
tation rate,11 and primary hypothyroidism12 among
others. Thus, EMRs linked to genetic data have the
potential to shift the research focus from research-
driven patient enrollment to high-throughput pheno-
typing in large patient populations, but EMRs are
imperfect instruments for this use given the chal-
lenges extracting accurate phenotypes from them.13

Phenotype validation across multiple EMR
systems, preferably in different institutions, is a crit-
ical step in characterizing the types of phenotypes
that the EMR can reliably provide, and establishing
the utility of the EMR for GWAS. In this report we
discuss lessons learned about phenotype validation
during the eMERGE study and summarize the
results of our validation efforts. The eMERGE
Network was initiated and funded by NHGRI,
with additional funding from NIGMS through the
following grants: U01-HG-004610 (Group Health
Cooperative); U01-HG-004608 (Marshfield Clinic);
U01-HG-04599 (Mayo Clinic); U01HG004609
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(Northwestern University); U01-HG-04603 (Vanderbilt University,
also serving as the Coordinating Center), and the State of
Washington Life Sciences Discovery Fund award to the
Northwest Institute of Genetic Medicine.

MATERIALS, METHODS, AND RESULTS
The five eMERGE sites are Group Health, Marshfield Clinic,
Mayo Clinic, Northwestern University, and Vanderbilt
University (table 1). Group Health and Marshfield Clinic are
integrated care delivery systems that use commercial EMR
systems, while the other three sites are fee-for-service systems
that employ internally developed EMRs for inpatient and out-
patient care. Detailed information about each site’s data and
biobank are available elsewhere.7 14 15 Northwestern University
uses one EMR system for inpatient and another for outpatient
care. EMR system designs vary, but all sites’ EMRs employ
structured and semi-structured data, and free text (see defini-
tions below). How specific data elements are captured varies
among sites. For example, some sites have electronic pharmacy
data and others collect it using natural language processing
(NLP) applied to free text. At Group Health and Marshfield
Clinic, additional data were collected through enrollment ques-
tionnaires and research studies, and these sites collect data from
both their EMR and through billing databases when patients are
seen by providers outside the healthcare system.

Data characterization
Over its first 4 years the eMERGE network selected, defined,
and validated 13 phenotype algorithms (table 2). Phenotype
algorithms with validation metrics are publicly available at
http://www.PheKB.org. These examples were a mix of primary
phenotypes identified by each site at the beginning of the study,
and additional phenotypes selected by the network during the
initial phase of the eMERGE study. We first identified similar-
ities and differences of the EMR systems used at the eMERGE
sites to provide an understanding of potential limitations in our
ability to identify phenotypes across the five network sites.16 We

identified categories of data common to all sites (eg, age, sex,
race/ethnicity, height, weight, blood pressure, inpatient/out-
patient diagnosis codes, laboratory tests, medications), using the
primary phenotypes to generate measures of data completeness
and adequacy. To identify comparable cohorts across EMRs, we
included only patients enrolled within each site’s biobank with
at least two recorded in-person visits. We defined data complete-
ness as the percentage of the cohort with at least one recorded
entry within each data category. This was critical to creating
phenotype definitions with a reasonable likelihood of success.
We further categorized the data in each category as structured
(numeric or text data captured and stored in a predefined
format), semi-structured (eg, section headers over free text), or
free text (eg, text captured in a free form without predefined
structure). We classified data as coded (structured) or not coded
(free text or semi-structured text, and text found within
images), using the latest definitions of Meaningful Use1 to iden-
tify recommended national standards for EMR data capture. We
also analyzed the constituent data elements of the eMERGE
phenotyping algorithms, including logic use, and temporal char-
acteristics.17 We found that although the surface forms of these
algorithms differed significantly, there was homogeneity in
terms of the underlying logic used, including reliance on nested
Boolean logic, temporality, and International Classification of
Diseases-9-Clinical Modifications (ICD-9-CM) codes.

Phenotype selection
Each eMERGE site led the work on at least one phenotype
(primary site). The network selected the first phenotypes
for analysis based on the investigators’ expertise and interests,
the scientific importance of GWAS for the phenotype, and the
feasibility of clearly identifying the phenotype within the EMR.
As work progressed, additional phenotypes were suggested
and considered, with the site that suggested the phenotype
acting as the primary site. All sites eventually identified in their
study population the presence or absence of every eMERGE
phenotype.

Table 1 Comparison of electronic data available at eMERGE institutions*

EMR vendor or
development (year
initiated)

Group Health Marshfield Clinic Mayo Clinic Northwestern University Vanderbilt University

Epic (2003)
Internally developed:
CattailsMD 1985

GE Centricity with
internally developed
modules (1995)

Epic (1998)
Cerner (1998)

Internally developed:
(StarChart) (1990s)

Data availability*
Pharmacy 1977 1992 1995 2002 1998 (inpatient)
Medications 1977 1992 1995 1998 1990
Laboratory 1988 1985 1978 2002 1995
Procedures 1977 1985 1907 1998 1990

Inpatient diagnosis
codes

1972 1960 1907 2002 1990

Outpatient
diagnosis codes

1984 1960 1907 1996 1990

Billing codes 1990 1985 1985 1977
Unique features/
comments

eMERGE sample
drawn from a
study cohort

Structured data from EMR and
insurance company is integrated
into the Enterprise Data
Warehouse

Vascular laboratory
database is part of the
EMR

Data are aggregated into an
Enterprise Data Warehouse with data
from Epic, Cerner, and multiple other
data sources

DNA samples are linked to a
de-identified version of the
EMR, the Synthetic Derivative

Number of patients
with genome-wide
genotyping

2790 3964 3412 1932 8909

*At some study sites electronic data were available in billing and clinical databases before the adoption of an integrated electronic medical record.
eMERGE, Electronic Medical Records and Genomics; EMR, electronic medical record
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Validation approach
For each phenotype, the primary site developed the phenotype
algorithm as a collaborative exercise between clinicians, clinical
content experts, informaticians, epidemiologists, geneticists, and
data experts. The clinical data within the algorithms included
laboratory values, ICD-9-CM and Current Procedural
Terminology (CPT)-4 codes, medications, and physical findings
such as weight, height, and blood pressure. Given the differ-
ences across institutions, the developed algorithm was repre-
sented as ‘pseudocode’ to guide other sites in phenotype
implementation, as opposed to providing source code that could
be executed directly. The pseudocode was a written document
that included and defined all variables needed to identify a
phenotype, and the rules to combine them (ie, temporal condi-
tions between two observations, number of observed diagnoses).
The pseudocode thus provided a detailed map for data extrac-
tion. Each site then implemented the pseudocode based on their
EMR structure.

Primary sites initially validated the phenotype algorithm per-
formance (the success of the algorithm in identifying cases and
controls, and meeting eligibility criteria) for their site-specific
phenotypes and distributed phenotyping algorithms to other
eMERGE sites for implementation. Validation reviews were
accomplished via manual record review of paper or electronic
records to confirm the correctness of the variables used to
create the phenotype algorithm. The decision about how many
cases and controls to review, and which sites would participate,
was made on a case by case basis. For dementia (Group Health)
and peripheral arterial disease (Mayo Clinic), a large number of

cases had been confirmed for other studies. For cataract, both
cases and controls had been previously reviewed at Marshfield
Clinic. We supplemented these reviews with reviews at other
sites. Because of an institutional interest in algorithm validation,
Marshfield Clinic participated in validation for almost every
algorithm. For the other algorithms, sites volunteered to review
50–200 subjects (persons enrolled at the institution and classi-
fied by the algorithm as having or not having the trait). The
number reviewed was determined based on the collective per-
ception of the complexities of the algorithm—a greater number
of reviews was done for more complex algorithms—but in
truth, this decision was somewhat arbitrary and evolved with
the investigator’s experience in algorithm validation.

Lessons learned from phenotype algorithm development
and validation
Variable selection and definition
Selection of variables for validation
For some phenotypes (cataract, dementia, type 2 diabetes, per-
ipheral arterial disease, hypothyroidism, resistant hypertension,
and diabetic retinopathy) the goal of validation was to confirm
the accuracy of case and control status. Thus, our targets for val-
idation were the characteristics of, and inclusion and exclusion
criteria for, cases and controls. For other phenotypes (QRS, low
low-density lipoprotein, white blood cell count, red blood cell
(RBC) count, height, lipids) the goal of the GWAS was to iden-
tify differences within normal ranges of values; controls were
unnecessary, and the goal of validation was to ensure that the
algorithm appropriately included those who were eligible.

Table 2 Electronic Medical Records and Genomics: validated phenotypes, participating sites, and validation approach by site

Phenotype EMR categories to define phenotype Challenges

Cataract ICD-9 codes, eye exam, problem list, text, and
scanned documents

Not all sites had adequate detail in EMR. Optical character recognition required
for scanned records was not available at all sites

Dementia ICD-9 codes, medications Primary site had research-quality Alzheimer’s diagnosis while others did not,
compromising dementia as phenotype. Some sites had pharmacy database,
others relied on NLP for pharmacy

Type 2 diabetes ICD-9 codes, medications, laboratory tests Difficulty handling repeated measures, differentiating type 1 from type 2
diabetes, abstracting medications from orders versus pharmacy versus NLP

Diabetic retinopathy ICD-9 codes, laboratory tests, eye exam, problem
list, text

Detailed data from eye exams not available at all sites

Resistant hypertension* Systolic and diastolic blood pressure, medications,
ICD-9 codes, free text, laboratory tests, ejection
fraction

Difficulty with timing around blood pressure measures and handling repeated
measures

Peripheral arterial disease ICD-9 and CPT-4 codes, text, vascular lab criteria
(ankle brachial index)

Ankle brachial index not in retrievable format in all EMRs

Primary hypothyroidism ICD-9 and CPT-4 codes, medications, laboratory
tests, text

Large number of exclusions posed challenges in developing chart review form.
Person-level (lifetime) exclusion criteria were complicated by transience and
time-frame limitations of the EMR (older records on paper)

Low levels of high-density lipoprotein
cholesterol and baseline lipid values

Laboratory tests, medications, ICD-9 codes Difficulty in handling repeated measures

Red blood cell indices Laboratory tests, ICD-9 and CPT-4 codes,
medications

Difficulty in handling repeated measures. Phenotype had a large number of
exclusions

White blood cell indices Laboratory tests and location of draw (eg, hospital
vs clinic), ICD-9, CPT-4, and HCPCS codes,
medications

Difficulty in handling repeated measures

Normal cardiac conduction (PR and
QRS intervals)

Electronic ECG data, medications, NLP, ICD-9 and
CPT codes, laboratory tests

Locating and mining electronic ECG data from vendor systems was difficult.
Challenge asserting absence of heart disease (eg, excluding family history) or
electrolyte abnormalities at the time of the ECG

Height Height measurements, ICD-9 codes, medications,
laboratory tests

Difficulty determining the normal range and handling repeated measures

All completed algorithms are available for download from http://PheKB.org.
The challenges discussed here are new observations that complement those in an earlier publication.17

*Genome-wide analysis not yet completed.
EMR, electronic medical record; HCPCS, health care common procedure system; NLP, natural language processing.
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We found that some phenotype algorithms were more inher-
ently prone to error than others. Algorithms for phenotypes
such as type 2 diabetes and resistant hypertension, which
included a large number of variables (ICD-9-CM codes, labora-
tory measures, medications), required validation by review of
clinical charts to understand the final determination of the diag-
nosing physician. In contrast, phenotypes for quantitative traits
such as blood pressure and laboratory measurements were
accepted as recorded in the EMR without review, except for a
focused review of outliers. While extraction of quantitative
traits was straightforward, validation of the patient population
from whom the values were drawn could be difficult, and the
validation focused on ascertaining that the patient population
did not have any of the exclusion diagnoses, which could be
numerous. Decisions about outliers can sometimes be made
without medical record review (eg, ‘serum’ potassium of
50 mEq/l is incompatible with life and likely represents urine
potassium). We learned that each element in the phenotype def-
inition needed to be reviewed to determine which should be
included in the validation and which could be accepted as accur-
ately recorded in the EMR. For example, for the Mayo Clinic
phenotype of RBC indices we developed an algorithm to iden-
tify trait values that could be affected by comorbidity, trauma,
or drugs.8 The algorithm was based on ICD-9 codes for hema-
tologic disorders, solid organ malignancies, bone marrow/solid
organ transplantation, hereditary anemia, and major surgery or
recent trauma, as well as an NLP definition for relevant medica-
tion use.

Time periods for review of validated items
The time periods for available data varied across sites. For
example, Group Health had an elderly cohort taken from a
study on aging (age 65 at study entry) and electronic medication
data since 1977, while Northwestern had a younger population
(mean age 52) and medication data since 1996. Furthermore,
institutions and departments within institutions differed in
when they began using EMRs, and many patients had both
paper records and EMRs. Events that occur before EMR imple-
mentation may be missed if no associated electronic data
element exists. For example, at the Mayo Clinic, thyroidec-
tomies that predated the EMR were identified during validation
of the hypothyroidism phenotype. More advanced NLP would
have been able to identify many of these cases.

It was important to specify for each item in the algorithm the
range of dates to be included in the review, setting the time
period (eg, days, weeks, months) before and after the date the
item was identified in the EMR. Again using the example of
RBC indices, our validation included evidence of prescription
for several medications that might affect RBC indices, specifying
a timing of 2 months before or after the traits were measured.
However, we reviewed the entire record for presence of heredi-
tary anemia, because this could be noted at any time in the
EMR. Timing should also be considered for logic checks—for
example, pregnancy is not expected in women over age
65 years, but was found in some records because of coding
errors. When examining long periods, the algorithm must
specify the minimum follow-up required and how to handle
deaths and health plan disenrollment.

Repeated measures
Many phenotypes, for example, blood pressure and laboratory
measures, are recorded repeatedly. This presents opportunities
and challenges. The presence of multiple measures allows longi-
tudinal studies such as progression of renal disease based on

increase in serum creatinine over time. Repeated measures may
also provide a more accurate representation of the trait than a
single measure. Challenges to using these values include defining
the relevant time period and specifying the most meaningful
value to be studied (eg, overall median or mean, annual median
or mean, age-adjusted median mean or median, change in value
over time, highest value in each year).

Transience in the EMR
Individuals move in and out of medical systems or may be seen
only for specialty care. Some institutions assign a lifetime identi-
fication number while others assign a new identification number
with each episode of enrollment, making it difficult to link
records across time, and resulting in incomplete or fragmented
EMR data. Transience can have important repercussions for
phenotype algorithms in the types of data elements used, the
data sources interrogated, and the performance of the algo-
rithm. Using hypothyroidism as an example, subjects were
excluded based on a prior history of thyroidectomy as defined
in the algorithm using diagnosis and procedure codes. However,
validation at the Mayo Clinic identified several instances of thyr-
oidectomy at another medical facility and thus not identified by
the EMR algorithm. Algorithms may need to include specific
considerations for enrollment as well as for patients who die
during the study period. The Mayo Clinic site studied the role
data fragmentation between medical centers played in identify-
ing type 2 diabetics and found that using data from both
medical centers improved both recall and precision.7

Review parameters
Scope of review
As EMR data accumulate, this issue is increasingly important.
The scope of review can profoundly impact review time and
thus project costs. Some factors (eg, evidence of cancer) may
require review of the entire record, but for others (eg, chemo-
therapy receipt 1 year before or after a particular RBC value) a
more reasonable and equally sound approach is to specify
windows of interest. In the latter case, exclusions are applied at
the sample level rather than the person level. Some variables
will be absolute inclusions or exclusions regardless of when they
occur, whereas others are applied to every repeated value (eg,
blood pressure).

Combining research and EMR data
We usually chose to review only EMR data because these data
are typically available when designing a study, and because the
validation method was then consistent across eMERGE study
sites. However, Group Health’s participants were selected
because they were enrolled in a longitudinal study of aging, and
research data were available in addition to EMR data. Research
data were far more detailed than EMR data because participants
were seen in a research clinic every 2 years. We were thus able
to use a research-quality dementia diagnosis to develop and val-
idate the EMR-based phenotype algorithm. We found that
ICD-9-CM code 331 had a positive predictive value of 79%
when compared to a gold standard research-quality dementia
diagnosis.16

Utility of pharmacy claims data
The Marshfield Clinic examined the relative contributions of
insurance (claims) and EMR data for identifying the phenotype
of resistant hypertension and controls without resistant hyper-
tension. Subjects (n=3178) were selected from Marshfield
Clinic’s Personalized Medicine Research Project cohort who had
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at least one primary care visit at Marshfield and had continuous
insurance membership in Security Health Plan (a Marshfield
Clinic owned HMO) from January 2005 through December
2009. Of the 3178 study subjects, 99.3% had at least one claim
during the study period.

The resistant hypertension phenotype definition had two case
groups7; only one could be evaluated using health plan data
because blood pressure measurements were not available from
the Security Health Plan data. The resistant hypertension defin-
ition that could be evaluated required the documented simultan-
eous use of four or more classes of blood pressure lowering
medications on two separate occasions that were more than
1 month apart. Using both data sources, 32 subjects were identi-
fied, with 26 identified solely from the EMR, 5 identified solely
from insurance claims, and 1 appearing in both data sources.
Thus, using only EMR data would have reduced the number of
identified cases by 15%, and using only insurance data would
have reduced the case yield by 80%. However, since the insur-
ance data source did not have blood pressure data, it could not
be used for identifying cases using blood pressure measurements
or for either of the two control definitions for resistant
hypertension.

Validation steps
The value of iterative algorithm development
The development of phenotype pseudocode and phenotype val-
idation worked best as iterative processes that involved informa-
ticists, clinical content experts, epidemiologists, and geneticists.
The value of validation went far beyond confirming that the
phenotype was accurate. Information obtained at each step was
used to fine-tune and improve the final phenotype algorithm
and pseudocode (figure 1). The process had two phases. First,
the primary site developed the pseudocode, which was reviewed
by secondary sites, and then the process was tested at the
primary site. In the second phase the phenotype was validated
at secondary sites. Abstraction form development was also itera-
tive, with one site drafting a form and all sites reviewing, giving
input, pilot testing, and revising until the form was finalized.
Making decisions about the validation process and conducting
validation reviews is time-consuming. Pilot testing the algorithm
or validation tool could require additional chart abstraction for
each iteration (to avoid bias in final results). However, we found
that the process was well worth the time and frequently identi-
fied unintended errors. Ultimately the time spent developing
validation approaches contributed to more robust phenotype
definitions.

Structured chart review versus physician review
Participating sites used one of two types of chart review. Some
(Vanderbilt, Northwestern) used physicians to review charts for
validation, with a written guide listing eligibility and exclusion
criteria for cases and controls. Northwestern used two clinical
researchers for chart review, with a physician reviewing results
that differed between reviewers or from the outcome chosen by
the pseudocode. Other sites (Group Health, Marshfield Clinic,
and Mayo Clinic) developed chart abstraction forms based on
the eligibility and exclusion criteria, and provided codebooks to
define situations that might require interpretation. Marshfield
also used clinical domain experts to assist with interpretation if
the trained abstractors could not determine a specific status.
Trained medical abstractors searched the clinical notes to record
objective measurements and dates and interpreted the intent of
the provider for the existence of a condition. Some sites
reviewed the entire medical record (paper and EMR) while

others reviewed only the electronic portion of the EMR
(without paper records). Distinctions between materials
reviewed depended in part on the amount of data available in
the EMR at a particular institution.

Validation results
Once reviews were completed, we calculated the positive pre-
dictive value (PV+) for being a case (number of algorithm cases
confirmed as true cases divided by the total number of algo-
rithm cases), the PV+ for being a control (number of algorithm
controls confirmed as true controls divided by the total number
of algorithm controls), or the PV+ for meeting algorithm eligi-
bility criteria (table 3). This approach was taken because we
sought to identify for GWAS those persons who did and did not
have the phenotype of interest or who met algorithm-derived

Figure 1 Phenotype development and validation. In this two-stage
process a primary site first develops and executes the phenotype
(boxes), and then secondary sites execute the phenotype (ovals). At
each step feedback to primary and secondary sites may lead to
revisions in the methods (arrows).
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eligibility criteria. Often, being a control was not simply the
absence of being a case. For example, to be a control for
primary hypothyroidism required the presence of a normal
thyroid stimulating hormone test. Those without this test would
meet neither the case nor the control criteria. For phenotypes
such as height or laboratory values, which are easily obtained
from the EMR, the critical point was the selection of subjects
who met strict eligibility criteria. Our approach was thus unlike
the validation of a simple test result where one is deemed posi-
tive or negative, and where sensitivity, specificity, predictive
value positive and negative, and receiver operating curves are
generated. Rather we validated separately our case and control
definitions, and phenotype eligibility.

Most algorithms performed well, with PV+ values of 67.7–
100%. Among 51 algorithm reviews across five sites, almost
three quarters of the reviews yielded PV+ values of 90% or
greater, and only three reviews yielded PV+ values less than
80%. For dementia, validation was poorer at Group Health
because we compared research-quality, and research based ascer-
tainment of dementia to the medical record. But even algo-
rithms that performed less well at a particular site performed
well overall.

DISCUSSION
Genetic research requires precise phenotype definitions, but EMR
phenotype data is recorded inconsistently, in a variety of formats,
and at times with biases. For example, blood pressure is recorded
more frequently among people with hypertension, and people
with chronic diseases have more frequent visits than those without
them—both of which could lead to ascertainment bias. We
observed great heterogeneity across the five EMRs of the
eMERGE network sites, which included academic medical centers
(Vanderbilt, Northwestern), health maintenance organizations
(HMOs) (Group Health, Marshfield Clinic), and a large private
health plan (Mayo Clinic). Network membership requires both
EMR data and a large DNA biobank for genotyping. Phenotype
algorithms across sites covered a variety of disease states and quan-
titative traits, and used billing codes, multi layer perceptron
(MLP) structured diagnoses, medications, laboratory tests, and
measures such as blood pressure, height, and weight. Despite dif-
ferent EMR infrastructures, we were able to develop and validate
13 diverse phenotypes, and algorithms typically performed well at
each site tested. We have summarized our observations from this
experience and offer specific recommendations for generation
and validation of EMR phenotypes algorithms (table 4).

Table 3 Positive predictive value for phenotype case and control algorithms, and for phenotype eligibility algorithms across Electronic Medical
Records and Genomics sites

Phenotype
Number
validated

Positive predictive value

Group
Health (%)

Marshfield
Clinic (%)

Mayo
Clinic (%)

Northwestern
University (%)

Vanderbilt
University (%)

Validated for case/control status and eligibility
Cataract

Case* 3234 97.7 96.0
Control* 3184 97.7

Dementia
Case* 3778 73.0 89.7 84.0
Control 505 96.7

Type 2 diabetes
Case 300 99.0 98.2 100
Control 143 98.0 100 100

Diabetic retinopathy
Case 229 80.0 67.6

Control 80 98.0 100
Resistant hypertension

Case 354 90.0 100 84.4
Control 144 91.0 100 93.8 84.0

Peripheral arterial disease
Case* 11504 87.5 90.7 95.0
Control 100 100

Chronic autoimmune hypothyroidism
Case 389 92.0 91.3 82.0 98.1 98.0
Control 290 100 100 96.0 100 100

Validated for eligibility
Low level of high density

lipoprotein
440 81.6

Lipids* 1054 78.8 92.3
Red blood cell indices 391 96.4 98.0 98.0
White blood cell indices 365 89.6 85.0
QRS duration 245 100 96.9 97.0
Height 579 86.9 95.1

Blank cells if did not participate in validation of that phenotype.
*Number large due to pre-existing study with validation.
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A major effort of eMERGE has been generating and validat-
ing electronic phenotype algorithms. Table 3 demonstrates that
the majority of these algorithms ported well to diverse sites.
These data confirm what has been shown in prior eMERGE and
Pharmacogenomics Research Network studies regarding algo-
rithm transportability in primary hypothyroidism,12 type 2 dia-
betes,18 cataracts,19 and rheumatoid arthritis.20 It is important
to note that these evaluations cross different EMR implementa-
tions, different NLP systems, and different fundamental types of
algorithms, from deterministic to logistic regression. eMERGE
algorithms are posted on PheKB.org, which hosts the original
versions and implementation data for completed algorithms. As
other sites deploy and evaluate algorithms, other users can post
this data as well.

While an EMR increases efficiency, using it correctly requires
effort. One approach to streamline phenotype definitions
might be structures that facilitate creation of algorithms using
standard terminologies. By representing covariates and algo-
rithm components with standard terminologies, developers
increase the ease with which algorithms can be compared and,
potentially, reused. This is especially true for the outputs and
covariates resulting from them. One such tool is eleMAP, which
was developed by eMERGE investigators. This free, online tool
allows researchers to harmonize their local phenotype data dic-
tionaries to existing metadata and terminology standards such as
the caDSR (Cancer Data Standards Registry and Repository),
NCIT (NCI Thesaurus), and SNOMED-CT (Systematized

Nomenclature of Medicine-Clinical Terms). eleMAP can be used
to search and browse metadata related to different studies,
create new studies (and the related metadata), and export meta-
data in Microsoft Excel format.21

Proposed data infrastructures, such as PhenX,22 offer cata-
logs of standard measures to be used in GWAS. The adoption of
such standard measures might, in principle, have made the
eMERGE studies and phenotype validation easier. However,
the success of common data infrastructures will require commu-
nication between parties using EMRs for different purposes.
Research needs are not the highest priority for those developing
and using EMRs, and standards such as PhenX are often pro-
posed with researchers rather than clinicians in mind. The
evolving standards for interoperability that are part of the
Health Information Technology for Economic and Clinical
Health (HITECH) Act may improve EMR data representation
and quality.

Another approach that can streamline phenotype definition is
demonstrated by the HMO Research Network’s (HMORN)
Virtual Data Warehouse (VDW).23 The HMORN, of which
Group Health and Marshfield Clinic are members, is an organ-
ization of 19 HMO-based research programs whose mission is
to use their collective capabilities to integrate research and prac-
tice to improve health and healthcare. The VDW consists of par-
allel databases set up identically at each HMORN site that can
be merged across sites. The databases were constructed by
extracting data directly from the local electronic data systems

Table 4 Considerations and recommendations for phenotype validation

Issue Considerations and recommendation

Validation approach Have one site lead development of validation instructions and distribution to other sites for review before validation
Variables
Selection of variables for validation ▸ Consider validating each variable in the phenotype definition or pseudocode:

– Phenotype itself
– Inclusion and exclusion criteria
– Covariate information

▸ Consider variable consistency—validation is more important for subjective variables and variables that are particularly
important to the analysis

Time frame for each variable ▸ Specify the time period of interest for each variable
▸ Be clear about intervals to be reviewed before and after the phenotype definition date

Repeated measures ▸ Define measures to be used
▸ Define measures consistently with phenotype definitions. For example, apply similar time restrictions

Transience in the EMR When developing the validation instrument, consider that individuals move in and out of the system, or may enter only for
specialty care. Some systems assign a new identification code with each enrollment, complicating longitudinal follow up.
Individuals may have events (surgeries, diagnoses) before enrollment that are identifiable only through EMR review. Don’t
assume codes are sufficient

Review parameters
Scope of review ▸ Remember that scope profoundly impacts the time to review a record

▸ Consider important time windows rather than reviewing the entire EMR
Combining research and EMR data Be consistent: If a phenotype is selected from the EMR, use only the EMR for validation. Using additional sources such as

more thorough research data can falsely raise the predictive power of the phenotype algorithm. Exceptions must be well
justified

Review of claims versus medications
dispensed

▸ Determine data provenance: Will medications be based on orders, fills or claims?
▸ In multisite studies all data may not be available at every site. Define acceptable gaps
▸ Determine how each source will be accessed for validation
▸ Decide if medications need to be validated

Validation steps
Iteration ▸ Use an iterative process, prepared in advance (figure 1)

▸ Refine phenotype definitions and improve through validation
▸ Choose more informative multisite validation over single-site validation

Type of validation (content expert vs
structured chart review)

▸ Either can be used, but strive for consistency in the two approaches when both are used
▸ Make guidelines for content expert reviews as specific as possible
▸ Simultaneously develop content expert and structured review guidelines

EMR, electronic medical record.
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and reconfiguring them to use standard variable names and
coded values. A project analyst writes a program based on the
VDW data dictionary that is sent to participating sites to be run
locally, and output files are transferred securely. We have found
that even with this resource, validating and confirming VDW
components that are subject to practice variation (eg, ICD
coding choices, prescriptions) is critical.

Efforts to use EMR data for research depend on the ability of
heathcare institutions to establish and maintain an effective
EMR.2 This requires a team with expertise in technology, clin-
ical, process redesign, management, and informatics. Resources
for standardizing collections of clinical data are available from
the federal government. For example, the Surgeon General’s
Family Health History Initiative 201124 provides a simple, web-
based tool for patients to enter family history in a standardized
format, for inclusion in an EMR. The Office of the National
Coordinator for Health Information Technology provides infor-
mation and assistance on meaningful EMR use, including
coding standards for key data elements.

EMRs cannot capture all nuances of patient–provider interac-
tions, but they are extremely useful resources for well designed,
informative clinical studies. Accurate EMR capture of diagnosis,
laboratory, and medication data, supplemented with text-mining
tools and NLP, can provide excellent phenotype data for genomic
studies, including GWAS. However, even with advances and new
approaches, the heterogeneity in EMRs means that phenotype val-
idation will remain an important aspect of their use.

Our approach had limitations. Ideally, validation methods
would be cross-validated using external reviewers to ensure con-
sistent phenotype assessment. This cross-validation was beyond
our resources, and could create challenges with local IRBs and
system access restrictions. However, using standard validation
forms and processes may serve as a surrogate to reduce variation.
A second limitation was the use of both expert physician reviewers
with written guidelines and medical chart abstractors with a struc-
tured abstraction form. Our belief is that such a combination of
review techniques may actually be a strength; reviewing physicians
may note factors that exclude a person as a case not envisioned in
a chart abstraction, and formal chart abstraction may identify
logical inconsistencies with a more meticulous review. Though we
did not formally evaluate whether these two approaches gave dif-
ferent validation answers, no sizeable differences in validation out-
comes were seen across sites.

CONCLUSIONS
Despite the diverse structure of the five EMRs of the eMERGE
sites, we developed, validated, and successfully deployed 13
electronic phenotype algorithms. Validation is a worthwhile
process that not only measures phenotype performance but also
strengthens phenotype algorithms and enhances their inter-
institutional sharing.
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