
A unified framework for addiction: Vulnerabilities in the decision
process

A. David Redish,
Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455,
redish@umn.edu, http://umn.edu/~redish/

Steve Jensen, and
Graduate Program in Computer Science, University of Minnesota, Minneapolis, MN 55455,
jens0491@umn.edu

Adam Johnson
Graduate Program in Neuroscience and Center for Cognitive Sciences, University of Minnesota,
Minneapolis, MN 55455, john5726@umn.edu

Abstract
The understanding of decision-making systems has come together in recent years to form a unified
theory of decision-making in the mammalian brain as arising from multiple, interacting systems (a
planning system, a habit system, and a situation-recognition system). This unified decision-
making system has multiple potential access points through which it can be driven to make
maladaptive choices, particularly choices that entail seeking of certain drugs or behaviors. We
identify 10 key vulnerabilities in the system: (1) moving away from homeostasis, (2) changing
allostatic set points, (3) euphorigenic “reward-like” signals, (4) overvaluation in the planning
system, (5) incorrect search of situation-action-outcome relationships, (6) misclassification of
situations, (7) overvaluation in the habit system, (8) a mismatch in the balance of the two decision
systems, (9) over-fast discounting processes, and (10) changed learning rates. These
vulnerabilities provide a taxonomy of potential problems with decision-making systems. Although
each vulnerability can drive an agent to return to the addictive choice, each vulnerability also
implies a characteristic symptomology. Different drugs, different behaviors, and different
individuals are likely to access different vulnerabilities. This has implications for an individual’s
susceptibility to addiction and the transition to addiction, for the potential for relapse, and for the
potential for treatment.
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1. Introduction
Addiction can be operationally defined as the continued making of maladaptive choices,
even in the face of the explicitly stated desire to make a different choice (see the Diagnostic
and Statistical Manual of Mental Disorders [DSM-IV-TR], American Psychiatric
Association 2000; International Classification of Diseases [ICD-10], World Health
Organization 1992). In particular, addicts continue to pursue drugs or other maladaptive
behaviors despite terrible consequences (Altman et al. 1996; Goldstein 2000; Koob & Le
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Moal 2006; Lowinson et al. 1997). Addictive drugs have been hypothesized to drive
maladaptive decision-making through pharmacological interactions with neurophysiological
mechanisms evolved for normal learning systems (Berke 2003; Everitt et al. 2001; Hyman
2005; Kelley 2004a; Lowinson et al. 1997; Redish 2004). Addictive behaviors have been
hypothesized to drive maladaptive decision-making through interactions between normal
learning systems and the reward distribution of certain behaviors (Custer 1984; Dickerson &
O’Connor 2006; Dowling et al. 2005; Parke & Griffiths 2004; Redish et al. 2007; Wagenaar
1988). However, how those interactions drive maladaptive decision-making remains a key,
unanswered question.

Over the last 30 years, a number of theories have been proposed attempting to explain why
an agent might continue to seek a drug or maladaptive behavior. These theories can be
grouped into the following primary categories: (1) opponent processes, based on changes in
homeostatic and allostatic levels that change the needs of the agent (Becker & Murphy
1988; Koob & Le Moal 1997; 2001; 2005; 2006; Solomon & Corbit 1973; 1974); (2)
reward-based processes and hedonic components, based on pharmacological access to
hedonically positive signals in the brain (Kalivas & Volkow 2005; Volkow et al. 2003;
2004; Wise 2004); (3) incentive salience, based on a sensitization of motivational signals in
the brain (Berridge & Robinson 1998; 2003; Robinson & Berridge 1993; 2001; 2003; 2004);
(4) non-compensable dopamine, based on a role of dopamine as signaling an error in the
prediction of the value of taking an action, leading to an overvaluation of drug-seeking
(Bernheim & Rangel 2004; Di Chiara 1999; Redish 2004); (5) impulsivity, in which users
make rash choices, without taking into account later costs (Ainslie 1992; 2001; Ainslie &
Monterosso 2004; Bickel & Marsch 2001; Giordano et al. 2002; Odum et al. 2002); (6)
situation recognition and categorization, based on a misclassification of situations that
produce both gains and losses (Custer 1984; Griffiths 1994; Langer & Roth 1975; Redish et
al. 2007; Wagenaar 1988); and (7) deficiencies in the balance between executive and habit
systems, in which it becomes particularly difficult to break habits through cognitive
mechanisms either through over-performance of the habit system (Robbins & Everitt 1999;
Tiffany 1990) or under-performance of flexible, executive, inhibitory systems (Gray &
McNaughton 2000; Jentsch & Taylor 1999; Lubman et al. 2004) or a change in the balance
between them (Bechara 2005; Bickel et al. 2007; Everitt et al. 2001; Everitt & Wolf 2002).
(See Table 1.)

Although each of these theories has been attacked as incomplete and unable to explain all of
the addiction data, the theories are not incompatible with each other. We argue, instead, that
each theory explains a different vulnerability in the decision-process system, capable of
driving the agent to make an addictive choice. Thus, the set of theories provides a
constellation of potential causes for addictive choice behavior. Each different drug of abuse
or maladaptive behavior is likely to access a subset of that constellation of potential
dysfunction. Individual differences are likely to define the importance of each vulnerability
for an individual’s dysfunction. Successful treatment depends on treating those
vulnerabilities that are driving the individual’s choice. The identification of addiction as
vulnerabilities in the biological decision-making system means that understanding addiction
will require an understanding of how animals (including humans) make decisions.

The understanding of decision processes has come together in recent years to form a unified
theory of decision-making arising from multiple interacting systems (Cohen & Squire 1980;
Daw et al. 2005; Dickinson 1980; 1985; Nadel 1994; O’Keefe & Nadel 1978; Packard &
McGaugh 1996; Redish 1999; Squire 1987). Briefly, a decision can arise from a flexible
planning system capable of the consideration of consequences or from a less flexible habit
system in which actions are associated with situations (Daw et al. 2005; Redish & Johnson
2007). Behavioral control can be transferred from one system to the other depending on the

Redish et al. Page 2

Behav Brain Sci. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



statistics of behavioral training (Balleine & Dickinson 1998; Colwill & Rescorla 1990;
Killcross & Coutureau 2003; Packard & McGaugh 1996). Both systems also require a
recognition of the situation in which the agent finds itself (Daw et al. 2006; Redish et al.
2007; Redish & Johnson 2007). These processes provide multiple access points and
vulnerabilities through which the decision process can be driven to make maladaptive
choices.

2. Scope of the work
Addiction is a complex phenomenon, with causes that can be identified from many
perspectives (Volkow & Li 2005a; West 2001), including social (Davis & Tunks 1991),
environmental (DeFeudis 1978; Dickerson & O’Connor 2006; Maddahian et al. 1986;
Morgan et al. 2002), legal (Dickerson & O’Connor 2006; Kleber et al., 1997; MacCoun
1993), as well as psychological and neurobiological (Goldman et al. 1987; 1999; Heyman
1996; 2000; Koob & Le Moal 2006; Redish 2004; Robinson 2004; Robinson & Berridge
2003; Tiffany 1990), economic (Ainslie 1992; 2001; Becker & Murphy 1988; Bernheim &
Rangel 2004; Hursh 1991; Hursh et al. 2005), and genetic (Crabbe 2002; Goldman et al.
2005; Hiroi & Agatsuma 2005) perspectives. All of these perspectives have explanatory
power as to the causes of addiction, and all of them provide suggested methods of treatment
of addiction. However, a thorough treatment of addiction from all of these perspectives is
beyond the scope of a paper such as this one. In this target article, we address an explanation
for addictive decisions based on animal learning theory, the neuroscience of learning and
memory, human decision-making, and neuroeconomics, which we argue have converged on
a unified theory of decision-making as arising from an interaction between two learning
systems (a quickly learned, flexible, but computationally expensive-to-execute planning
system and a slowly learned, inflexible, but computationally inexpensive-to-execute habit
system).

2.1. Our goals
The goal of this target article is to lay out a novel explanation for addiction as
“vulnerabilities” in an established decision-making system. Although many of the
vulnerabilities that we describe can be identified closely with current theories of addiction
(see, e.g., Table 5), those theories have generally arisen from explanations of specific
experiments and have all been attacked as incomplete. Our article is the first to identify them
as “failure points” in a unified decision-making system. This theory has implications for the
taxonomy of addiction, both drug-related and behavioral, as well as implications for
prevention and treatment. These implications are addressed at the end of the article.

Although we do not directly address the social, environmental, or policy-level theories, we
believe that our proposed framework will have implications for these viewpoints on
addiction. For example, changes in drug price, taxes, legality, and level of policing can
change the costs required to reach the addictive substance or behavior (Becker et al. 1994;
Grossman & Chaloupka 1998; Liu et al. 1999). The presence of casinos can provide cues
triggering learned associations (Dickerson & O’Connor 2006). Acceptability of use and
punishments for use will affect the relationship between rewards and costs (Goldman et al.
1987; 1999). Genetics will shape the person’s vulnerabilities to the potential failure points
noted further on and will have to be an important part of the individual’s treatment plan
(Goldman et al. 2005; Hiroi & Agatsuma 2005).

Before proceeding to the implications of this theory, we first need to lay out the unified
model of the decision-making system (sect. 3). As we go through the components of this
system, we point out the identifiable vulnerabilities as they arise. In section 4, we then return
to each identified vulnerability in turn and discuss the interactions between that vulnerability
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and specific drugs and problematic behaviors. In section 5, we discuss the implications of
this theory for individual susceptibility to addiction, for multiple pathways to relapse, and
for the necessity of making available multiple appropriately guided treatment regimens. In
section 6, we turn to social, political, and clinical implications, lay out open questions, and
suggest future directions for addiction research. Finally, we include an appendix reviewing
the known effects of six drugs and problematic behaviors, discussed in the light of the
vulnerabilities identified in this article (A: cocaine; B: opiates; C: nicotine; D: alcohol; E:
caffeine; and F: gambling).

3. Making decisions
Theories of how animals make decisions have been developed over the last 50 years in the
fields of economics (Ainslie 1992, 2001; Becker & Murphy 1988; Bernheim & Rangel
2004; Bickel & Marsch 2001; Glimcher & Rustichini 2004; Petry & Bickel 1998),
psychology and neuroscience (Daw 2003; Glimcher 2003; Hastie 2001; Herrnstein 1997;
Heyman 1996; Kahneman et al. 1982; Kahneman & Tversky 2000; Sanfey et al. 2006;
Slovic et al. 1977), and machine learning (Sutton & Barto 1998). These literatures have
converged on the concept that decisions are based on the prediction of value or expected
utility of the decision.1 These terms can be defined as the total, expected, future reward,
taking into account the probability of receiving the reward and any delay before the reward
is received. In these analyses, costs are typically included as negative rewards, but they can
also be included separately in some formulations. If the agent can correctly predict the value
(total discounted2 reward minus total expected cost) of its actions, then it can make
appropriate decisions about which actions to take. The theories of addiction that have been
proposed (Table 1) all have the effect of changing the prediction of value or cost in ways
that make the agent continue to repeatedly return to seeking of the addictive drug or
maladaptive behavior.

There are two potential methods from which one can derive the value of taking some action
(Bernheim & Rangel 2004; Daw et al. 2005; Redish & Johnson 2007; Sutton & Barto 1998):
forward-search and caching. In the first case (forward-search), one considers the possible
consequences of one’s actions – the agent realizes that if it takes this action in this situation,
this will occur, and it will get this reward, but if it does something else, there will be
different consequences, and it will get a different reward. In the other case (caching), the
agent has learned to associate a specific action with a given situation – over time, the agent
has learned that the best thing to do in this situation is to take this action. The forward-
search system takes time to execute (because one has to mentally trace down possible paths),
but is very flexible. That flexibility means that it is safe to learn quickly. Learning potential
consequences of one’s actions does not commit one to an action; rather it opens the
possibility of considering the consequences of an action before selecting that action. In
contrast, the caching system is very fast to execute (because one simply has to retrieve the
best action for a given situation), but is very rigid. That inflexibility means that it would be
dangerous to learn the stimulus-action relationships stored in the habit system too quickly.

1Some literatures have suggested that the value used is subjective value or subjective expected utility, in which the expected value is
modified by (usually concave) functions (Glimcher & Rustichini 2004; Kahneman & Tversky 2000; Kahneman et al. 1982). Although
this can explain changes in risk-seeking and risk-aversion, it does not have a major effect on the failure-points proposed in this article.
Other literatures have suggested an importance of additional parameters such as risk and uncertainty (Hastie 2001; Preuschoff et al.
2006; Rapoport & Wallsten 1972).
2The farther an event is in the future, the more likely it is that unexpected events can disrupt the predicted event (Sozou 1998;
Stephens & Krebs 1987). Thus, the farther an event is in the future, the more potential there is for error and the less value one should
assign to the event. The reward value of future events should therefore be discounted as a function of the time before reward is
expected to be received. Additionally, the more quickly one receives a reward, the more one can invest it, presumably providing a
positive return (whether in terms of money, energy, or offspring) – again, providing for the necessity of a discounting function
(Frederick et al. 2002; Stephens & Krebs 1987). See Madden et al. (in press) for review.
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This dichotomy can be related to the question of when to stop a search process (Nilsson et
al. 1987; Simon 1955). Incomplete search processes may be available in which temporarily
cached values are accessed to cut off parts of the search tree, similar to heuristic search
processes studied in the classic artificial intelligence literature (Nilsson et al. 1987; Rich &
Knight 1991; Russell & Norvig 2002). Similarly, one can imagine that only some of the
potential paths are searched in any decision. Finding an optimal solution takes time, and
there is a tradeoff between search time and the optimality of the solution found (Simon
1955). From an evolutionary perspective, a quickly found, acceptable solution may be more
efficient than a slowly found optimal solution (Gigerenzer 2001; Gigerenzer & Goldstein
1996; Simon 1955). A true caching system, however, does not entail a search process and
should not be considered to be equivalent to a single step of the search process (Daw et al.
2005; Gigerenzer 2001). A single step of the search process would identify the consequence
of that step, allowing changes in that consequence to change performance without
relearning. In contrast, the caching system compares a stored value with an action taken in a
given situation and does not identify the consequence during performance, which means that
it cannot change its reactions to changes in the value of that consequence. This distinction
can be seen in the devaluation literature, discussed further on.

A number of literatures have converged on a division between learning systems that match
these two systems. In the animal navigation literature, these two systems are referred to as
the cognitive map and route systems,3 respectively (O’Keefe & Nadel 1978; Redish 1999).
In the animal learning-theory literature, these systems can be identified as three separate

systems, a Pavlovian learning system (situation-outcome, ), an instrumental learning
system (action-outcome, ), and a habit learning system ( ).4

They have also been referred to as cognitive and habit learning systems (Mishkin &
Appenzeller 1987; Poldrack & Packard 2003; Saint-Cyr et al. 1988; Yin & Knowlton 2006),
and match closely the distinction made between declarative and procedural learning (Cohen
& Eichenbaum 1993; Cohen & Squire 1980; Redish 1999; Squire 1987; Squire et al. 1984)
and between explicit and implicit learning systems (Clark & Squire 1998; Curran 1995;
Doyon et al. 1998; Ferraro et al. 1993; Forkstam & Petersson 2005; Knopman & Nissen
1987; 1991; Nissen et al. 1987; Willingham et al. 1989), as well as between controlled and
automatic processing theories (Kahneman & Frederick 2002; Schneider & Chein 2003;
Schneider & Shiffrin 1977). We argue that these diverse literatures have converged on a pair
of decision-making systems, which can be understood as (1) a flexible, cognitive, planning
system and (2) a rigid, automatic, habit-based system.

This dichotomy is related to the historical debate on “expectancies” in the classic animal
learning theory literature (Bolles 1972; Hull 1943; 1952; Munn 1950; Tolman 1938; 1939;
1948). Tolman (1938; 1939; 1948) argued that animals maintain an expectancy of their
potential future consequences (including an expectancy of any rewarding component), and
that this provided for latent learning effects as well as fast changes in choices in response to
changes in provided needs, whereas Hull (1943; 1952) argued that animals learn simple
associations of stimuli and responses, allowing for the slow development of automation

3The route system has also been termed the taxon system (O’Keefe & Nadel 1978; Schöne 1984) or the response system (Packard &
McGaugh 1992; Poldrack & Packard 2003).
4The S-A system has been termed the S-R (stimulus-response) system (Dickinson 1985; Domjan 1998; Hull 1943; 1952), but we

prefer to use the term , which prevents confusion with R as indicating reward. In addition, much of the psychology literature is
phrased in terms of “stimulus” rather than “situation,” but we prefer the term situation because that indicates the recognition of
context, cue, and interactions between cues, all of which are critical for appropriate behavior. In the machine learning literature,
“situation” is referred to as “state” (Daw et al. 2006; Sutton & Barto 1998), but we prefer the term situation because in other
literatures, “state” refers to internal parameters of the agent (e.g., “motivation states”; Domjan 1998). The categorization of situation
includes both internal and external parameters.
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(Carr & Watson 1908; Dennis 1932). As noted by Guthrie (1935; see Balleine & Ostlund
2007; Bolles 1972), one implication of Tolman’s cognitive expectancies theories would be a
delay in choosing. Just such a delay is seen in early learning, particularly in tasks that
require the planning system. At choice points, rats faced with difficult decisions pause and
vicariously sample the different choices before committing to a decision (Brown 1992;
Meunzinger 1938; Tolman 1938; 1939). This “vicarious trial and error” (VTE) behavior is
abolished with hippocampal lesions (Hu & Amsel 1995), and is related to hippocampal
activity on hippocampal-dependent tasks (Hu et al. 2006). Recent neural ensemble recording
data have found that hippocampal firing patterns transiently represent locations ahead of the
animal at choice points during VTE-like behaviors (Johnson & Redish 2007). Once tasks
have been overtrained, these VTE movements disappear (Hu et al. 2006; Munn 1950;
Tolman 1938), as do the forward representations (Johnson & Redish 2007), suggesting that
VTE may be a signal of the active processing in the planning system (Buckner & Carroll,
2007; Johnson & Redish 2007; Tolman 1938; 1939).

These two systems mirror the classical two-process theory in psychology (Domjan 1998;
Gray 1975) and the more recent distinction between stimulus-stimulus (SS, S → O),
stimulus-outcome (SO, SAO, ), action-outcome (AO, ), and stimulus-response or
stimulus-action (SA, ) (Balleine & Ostlund 2007; Dickinson 1985) (see Table 2). The
first (S → O) entails the recognition of a causal sequence but does not entail an actual
decision. The second ( ) is classical Pavlovian conditioning and entails an action taken
in response to a situation in anticipation of a given outcome (Domjan 1998; Pavlov 1927;
Rescorla 1988). The third ( ) is classical instrumental conditioning (Balleine & Ostlund
2007; Domjan 1998; Ferster & Skinner 1957) and entails an action taken to achieve an
outcome, even in the absence of an immediate stimulus. It is important to note, however,
that action-outcome associations do still include stimuli in the form of the context (actions
are not taken at all times but rather only within certain facilitating contexts).5 The fourth
( ) entails an association between a situation and an action and denotes habit learning
(Domjan 1998; Hull 1943; 1952).

These four associations can be differentiated in terms of their expectancies (Table 2). S → O
associations entail an expectancy of an outcome, but with no decision, there is no necessary
further processing of that outcome, although there is likely to be an emotional preparation of
some sort. If an animal can do something to prepare for, produce, or change that outcome,
then the association becomes one of situation-action-outcome ( ). If there is no
immediate stimulus triggering the action, then the association becomes an  association.
Because  associations continue to include a contextual gating component, the 
association is truly an  association. Although there are anatomical reasons to separate

 from  associations (Balleine & Ostlund 2007; Ostlund & Balleine 2007; Yin et
al. 2005), for our purposes, they can be treated similarly: they both entail an expectancy of
an outcome that must be evaluated to produce an expectancy of a value. This means they
both require a planning component and can be differentiated from habit learning in which
situations are directly associated with actions ( ). In the  association, situation-action
pairs entail a direct expectancy of a value, which can then drive the action, even in the
absence of a recognition of the outcome.

5Because actions selected via  associations only occur within a context, they too contain situation S components and should

probably also be identified as . Contexts can be differentiated from cueing stimuli in that contextual information changes
slowly relative to the time-course of action-selection, whereas conditioning stimuli change quickly. Thus, contextual stimuli cannot be
seen as driving actions, but actions are still only taken from within identified situations. We do not explore this issue further here, but
note that our concept of situations includes categorizations derived from both contextual and driving stimuli.
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Following this distinction, we categorize these four association systems into three decision
systems: an observation system, which does not make decisions and will not be discussed
further; a planning system, which takes a given situation (derived from stimuli, context, or a
combination thereof), predicts an outcome, and evaluates that outcome; and a habit system,
which takes a given situation (derived from stimuli, context, or a combination thereof) and
identifies the best remembered action to take.

These systems, of course, exist within overlapping and interacting structures (Balleine &
Ostlund 2007; Corbit et al. 2001; Dayan & Balleine 2002; Devan & White 1999; Kelley
1999a; 1999b; Voorn et al. 2004; Yin et al. 2006; Yin & Knowlton 2006). The flexible
planning system involves the entorhinal cortex (Corbit & Balleine 2000), hippocampus
(O’Keefe & Nadel 1978; Packard & McGaugh 1996; Redish 1999), the ventral and
dorsomedial striatum (Devan & White 1999; Martin 2001; Mogenson 1984; Mogenson et al.
1980; Pennartz et al. 2004; Schoenbaum et al. 2003; Yin et al. 2005), prelimbic medial
prefrontal cortex (Jung et al. 1998; Killcross & Coutureau 2003; Ragozzino et al. 1999), and
orbitofrontal cortex (Davis et al. 2006; Padoa-Schioppa & Assad 2006; Schoenbaum et al.
2003; 2006a; 2006b; Schoenbaum & Roesch 2005). The habit system involves the
dorsolateral striatum (Barnes et al. 2005; Packard & McGaugh 1996; Schmitzer-Torbert &
Redish 2004; Yin & Knowlton 2004; 2006), the infralimbic medial prefrontal cortex
(Coutureau & Killcross 2003; Killcross & Coutureau 2003) as well as the parietal cortex
(DiMattia & Kesner 1988; Kesner et al. 1989) (see Table 3).

3.1. Transitions between decision systems
Behavior generally begins with flexible planning systems but, for repeated behaviors, can
become driven by the less-flexible (but also less computationally expensive) habit systems.
Examples of this development are well known from our experiences. For example, the first
time we drive to a new job, we need a travel plan; we pay attention to street-signs and other
landmarks. But after driving that same trip every day for years, the trip requires less and less
attention, freeing up resources for other cognitive processes such as planning classes, papers,
or dinner. The flexible system, however, generally remains available, as when road
construction closes one’s primary route to work and one now needs to identify a new route.
Errors can exist within both systems, as for example, a misjudged plan or a trip so
automatic, that if one is not paying attention, one might accidentally find oneself having
driven to work even though one planned to go somewhere else. This interaction is well-
studied in the animal literature, including the overlaying of planning by habit systems
(Dickinson 1980; Hikosaka et al. 1999; Packard & McGaugh 1996; Schmitzer-Torbert &
Redish 2002), restoration of planning in the face of changes (Gray & McNaughton 2000;
Isoda & Hikosaka 2007; Sakagami et al. 2006), and conflict between the two systems (Gold
2004; McDonald & White 1994; Packard 1999; Poldrack & Packard 2003; Redish et al.
2000).

Four well-studied examples in the animal literature are the transfer of place strategies to
response strategies in the plus-maze (Chang & Gold 2004; Packard & McGaugh 1996; Yin
& Knowlton 2004), the development of the regularity of behavioral paths (Barnes et al.
2005; Jog et al. 1999; Schmitzer-Torbert & Redish 2002), the disappearance of devaluation
in animal learning studies (Adams & Dickinson 1981; Balleine & Dickinson 1998; Colwill
& Rescorla 1985; Tang et al. 2007), and the inhibition of habitual responses in go/no-go
tasks (Gray & McNaughton 2000; Husain et al. 2003; Isoda & Hikosaka 2007).

In the plus-maze, animals are trained to take an action that can be solved either by going to a
specific place (Tolman et al. 1946) or by taking an action in response to being placed on the
maze (Hull 1952). These algorithms can be differentiated by an appropriately designed
probe trial (Barnes et al. 1980; Packard & McGaugh 1996; Restle 1957). Rats on this task
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(and on other similar tasks) first use a place strategy, which then evolves into a response
strategy (McDonald & White 1994; Packard & McGaugh 1996; Yin & Knowlton 2004).
Place strategies depend on hippocampal, as well as ventral and dorsomedial striatal integrity,
while response strategies depend on dorsolateral striatal integrity (Packard & McGaugh
1996; Yin & Knowlton 2004; 2006; Yin et al. 2005).

In tasks in which animals are provided a general task with specific cases that change from
day to day or session to session, animals can learn the specific instantiations very quickly. In
these tasks, behavioral accuracy improves quickly, followed by a slower development of a
regularity in the actions taken by the animal (rats, Jog et al. 1999; Schmitzer-Torbert &
Redish 2002; monkeys, Hikosaka et al. 1999; Rand et al. 1998; 2000; humans, Nissen &
Bullemer 1987; Willingham et al. 1989). In these tasks, the early (accurate, flexible, and
slower) behavior is dependent on hippocampal integrity and correlated to hippocampal
activity (Ferraro et al. 1993; Johnson & Redish 2007; Knopman & Nissen 1987), whereas
later (also accurate, but inflexible and faster) behavior is dependent on dorsolateral striatal
integrity and correlated to dorsolateral striatal activity (Barnes et al. 2005; Doyon et al.
1998; Hikosaka et al. 1998; Jackson et al. 1995; Jog et al. 1999; Knopman & Nissen 1991).

The implication of multiple decision-making systems on the calculation of value can also be
seen in the effect of these two decision systems on changes in the valuation of a reward
(Adams & Dickinson 1981; Balleine & Dickinson 1998; Colwill & Rescorla 1985;
Dickinson 1980; 1985). Classically, these differences are measured by (1) training an agent
to take an action (or a sequence of actions) to receive a reward R, and then, (2) changing the
value of reward R to the agent, usually in a different context. The value of a reward can be
changed by providing excess amounts of the reward (satiation, Balleine & Dickinson 1998)
or by pairing the reward with an aversive stimulus, such as lithium chloride (devaluation,
Adams & Dickinson 1981; Colwill & Rescorla 1985; Holland & Rescorla 1975; Holland &
Straub 1979; Nelson & Killcross 2006; Schoenbaum et al. 2006a). Finally, (3) the agent is
provided the chance to take the action. If the action-selection process takes into account the
current value of the reward, then the agent will modify its actions in response to the change,
but if the action-selection process is an association between the situation and the action
(hence does not take into account the value of the reward), the agent will not modify its
response. Lesions to ventral striatum (Corbit et al. 2001; Schoenbaum et al. 2006c) and
prelimbic medial prefrontal cortex (Killcross & Coutureau 2003) or orbitofrontal cortex
(Ostlund & Balleine 2007; Schoenbaum et al. 2006a; 2006b) discourage devaluation,
whereas lesions to dorsolateral striatum (Yin et al. 2004; Yin & Knowlton 2004; Yin et al.
2006) and infralimbic cortex (Coutureau & Killcross 2003; Killcross & Coutureau 2003)
encourage devaluation processes. Lesions to entorhinal cortex (Corbit & Balleine 2000) and
dorsomedial striatum (Adams et al. 2001; Ragozzino et al. 2002a; 2002b; Yin et al. 2005)
disrupt flexibility in the face of predictability changes (contingency degradation), whereas
lesions to dorsolateral striatum do not (Yin & Knowlton 2006).

It is important to note that not all transitions need be from planning strategies to habit
strategies. Because planning strategies are flexible and learned quickly, while habit-based
strategies are more rigid and learned more slowly, many tasks are solved in their early stages
through the planning system and in their late stages through the habit system (Dickinson
1980; Hikosaka et al. 1999; Packard & McGaugh 1996; Restle 1957). But the habit system
can also learn in the absence of an available planning system (Cohen & Squire 1980; Day et
al. 1999; Knowlton et al. 1994; Mishkin et al. 1984). Under appropriate conditions, well-
developed automated responses can be overridden by controlled (planning-like) systems as
in go/no-go tasks (Goldman et al. 1970; Gray & McNaughton 2000; Isoda & Hikosaka
2007; Iversen & Mishkin 1970) or reversal learning (Hirsh 1974; Mackintosh 1974;
Ragozzino et al. 2002a). Which system drives behavior at which time depends on
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parameters of the specific task (Curran 1995; McDonald & White 1994; O’Keefe & Nadel
1978; Redish 1999) and may even differ between individuals under identical experimental
conditions. In many cases, identical behaviors can be driven by the two systems, and only
specialized probe trials can differentiate them (Barnes 1979; Curran 2001; Hikosaka et al.
1999).

3.2. The planning system
The planning system requires recognition of a situation and/or context S, identification of
the consequences of taking action a in situation S (recognition of a means of achieving
outcome O), and the evaluation of the value of achieving outcome O. This system selects the
most appropriate action by considering the potential consequences of that action. The key
behavioral parameters involved in this system are fast storage and slow retrieval. As noted
earlier, retrieval within this system can be slow because the calculation of value at each step
requires processing through the consideration of possibilities. Because the consideration of
possibilities does not commit one to a single choice, this system is flexible in its behavioral
choices. Because the value of taking action a in situation S is calculated from the value of
achieving expected outcome O, which is calculated online from the current needs of the
agent, if the desire (need) for the outcome is changed (even in another context), the value
calculation can reflect that change.

Computationally, the planning system is likely to require three interacting components: a
situation-recognition component, which classifies the complex interaction of contexts and
stimuli to identify the situation in which the animal finds itself; a prediction component,
which calculates the consequences of potential actions; and an evaluative component, which
calculates the value of those consequences (taking into account the time, effort, and
probability of receiving reward).

The situation-recognition component entails a categorization process, in which the set of
available cues and contexts must be integrated with the agent’s memory so as to produce a
classification of the situation. This system is likely to arise in cortical sensory and
association systems through competitive learning (Arbib 1995; Grossberg 1976; Redish et
al. 2007; Rumelhart & McClelland 1986). Mathematically, the cortical recognition system
can be modeled with attractor network dynamics (Durstewitz et al. 1999; 2000; Kohonen
1984; Laing & Chow 2001; Redish 1999; Seamans & Yang 2004; Wilson & Cowan 1972;
1973), in which a partial pattern can be completed to form a remembered pattern through
recurrent connections within the structure (Hebb 1949/2002; Hertz et al. 1991; Hopfield
1982). This content addressable memory provides a categorization process transforming the
observed set of cues to a defined (remembered) situation that can be reasoned from (Redish
et al. 2007).

The prediction component entails a prediction of the probability that the agent will reach
situation st+1, given that it takes action a in situation st: P(st+1|st, a). This functionality has
been suggested to lie in the hippocampus (Jensen & Lisman 1998; 2005; Johnson & Redish
2007; Koene et al. 2003) or frontal cortex (Daw et al. 2005). The hippocampus has been
identified with stimulus-stimulus associations (Devenport 1979; 1980;Devenport &
Holloway 1980; Hirsh 1974; Mackintosh 1974; White & McDonald 2002), episodic
memory (Cohen & Eichenbaum 1993; Ferbinteanu & Shapiro 2003; Ferbinteanu et al. 2006;
Squire 1987), flexible behavior (Devenport et al. 1981b; Gray & McNaughton 2000),
including flexible navigation behavior (the cognitive map, i.e., spatial associations between
stimuli; O’Keefe & Nadel 1978), as well as in sequence learning (Agster et al. 2002; Cohen
& Eichenbaum 1993; Fortin et al. 2002; Levy 1996; Levy et al. 2005) (see Redish [1999] for
review). Similar functionality has been proposed to lie in the frontal cortex (Daw et al.
2005), which has long been associated with the ability to recategorize situations (Baddeley
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1986; Clark & Robbins 2002; Dalley et al. 2004; Isoda & Hikosaka 2007; Jentsch & Taylor
1999; Quirk et al. 2006; Rushworth et al. 2007) with the storage of delayed events
(Baddeley 1986; Fuster 1997; Goldman-Rakic et al. 1990) and the anticipation of reward
(Davis et al. 2006; Fuster 1997; Watanabe 2007), as well as with sequence planning
(Averbeck & Lee 2007; Kolb 1990; Mushiake et al. 2006; Owen 1997).

The evaluative component allows the calculation of value with each predicted outcome.
Anatomically, the evaluative component is likely to include the amygdala (Aggleton 1993;
Dayan & Balleine 2002; Phelps & LeDoux 2005; Rodrigues et al. 2004; Schoenbaum et al.
2003), the ventral striatum (nucleus accumbens) (Daw 2003; Kelley 1999a; 1999b; Kelley &
Berridge 2002; Mogenson 1984; Pennartz et al. 1994; Stefani & Moghaddam 2006; Wilson
& Bowman 2005) and associated structures (Tindell et al. 2004; 2006), and/or the
orbitofrontal cortex (Feierstein et al. 2006; Padoa-Schioppa & Assad 2006; Plassmann et al.
2007; Sakagami & Pan 2007; Schoenbaum et al. 2003; 2006a; Volkow et al. 2003). Neurons
in the ventral striatum show reward correlates (Carelli 2002; Carelli et al. 2000; Carelli &
Wondolowski 2003; Lavoie & Mizumori 1994; Martin & Ono 2000; Miyazaki et al. 1998)
and anticipate predicted reward (Martin & Ono 2000; Miyazaki et al. 1998; Schultz et al.
1992; Yun et al. 2004). Neurons in the ventral pallidum are associated with the identification
of hedonic signals (Tindell et al. 2004; 2006). Both the hippocampus and prefrontal cortex
project to ventral striatum (Finch 1996; McGeorge & Faull 1989; Swanson 2000), and
ventral striatal firing patterns reflect hippocampal and prefrontal neural activity (Goto &
Grace 2005a; 2005b; Kalivas et al. 2005; Martin 2001; Pennartz et al. 2004). Neurons in the
orbitofrontal cortex encode parameters relating the value of potential choices (Padoa-
Schioppa & Assad 2006; Schoenbaum & Roesch 2005).

These structures all receive strong dopaminergic input from the ventral tegmental area.
Neurophysiologically, dopamine signals in the ventral striatum – measured by neural
recordings from dopaminergic projection neurons (Schultz 1998; 2002) and from
voltammetry signals in the ventral striatum itself (Roitman et al. 2004; Stuber et al. 2005) –
show increased firing to unexpected rewards and to unexpected cues predicting rewards. In
computational models of the habit system, these signals have been hypothesized to carry
value-prediction error information (see further on). Much of the data seems to support a
similar role for dopamine from ventral tegmental sources (de la Fuente-Fernandez et al.
2002; Ljungberg et al. 1992; Roitman et al. 2004; Stuber et al. 2005; Ungless et al. 2004).
However, detailed, anatomically instantiated computational models are not yet available for
the planning system. Theories addressing dopamine’s role in the planning system have
included motivation and effort (Berridge 2006; Berridge & Robinson 1998; 2003; Niv et al.
2007; Robbins & Everitt 2006; Salamone & Correa 2002; Salamone et al. 2005; 2007) and
learning (Ikemoto & Panksepp 1999; Reynolds et al. 2001). An important open question,
however, is to what extent dopamine is carrying the actual signal of motivation (Berridge
2007) and to what extent dopamine’s effects are dependent on corticostriatal synapses
(Anagnostaras et al. 2002; Li et al. 2004; McFarland & Kalivas 2001; McFarland et al.
2003; Nicola & Malenka 1998; Reynolds & Wickens 2002). Finally, dopamine in the
prefrontal cortex has also been hypothesized to have a role in controlling the depth of the
categorization process (Durstewitz et al. 1999; 2000; Redish et al. 2007; Seamans et al.
2001; Seamans & Yang 2004; Tanaka 2002; 2006).

Neuropharmacologically, these systems, particularly the ventral striatum, are also highly
dependent on mechanisms involving opioid signaling. Opioid signaling has been
hypothesized to be involved in hedonic processes (Berridge & Robinson 1998; 2003; Kelley
et al. 2002). Consistent with these ideas, Levine and colleagues (Arbisi et al. 1999; Levine &
Billington 2004) report that opioid antagonists directly interfere with the reported qualia of
hedonic pleasure in humans eating sweet liquids, without interfering in taste discrimination.
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We have suggested that the multiple opioid receptors in the mammalian brain (μ, κ, δ; De
Vries & Shippenberg 2002; Herz 1997; 1998) are associated with an evaluation process
identifying positive (euphorigenic, signaled by μ-opioid activation) and negative
(dysphorigenic, signaled by κ-opioid signaling) evaluations (Redish & Johnson 2007).
Whereas μ-receptor agonists are rewarding, euphorigenic, and support self-administration,
κ-receptor agonists are aversive, dysphoric, and interfere with self-administration (Bals-
Kubik et al. 1989; Chavkin et al. 1982; De Vries & Shippenberg 2002; Herz 1997, 1998;
Kieffer 1999; Matthes et al. 1996; Meyer & Mirin 1979; Mucha & Herz 1985).6

We have also proposed that part of the evaluation mechanism occurring during the search
process (calculating the expected value from the agent’s needs and the expected outcomes

given a  relation) may also involve the opioid system (Redish & Johnson 2007).
This would predict a release of μ-opioid agonists (e.g., enkephalins) in anticipation of
extreme rewards. Rats placed in a drug-associated location show a dramatic increase in
released enkephalin in the nucleus accumbens relative to being placed in a saline-associated
compartment, presumably in anticipation arising from the drug-associated compartment
(Mas-Nieto et al. 2002).7

3.2.1. Potential vulnerabilities in the planning system—The planning system
provides potential failure points in changes in the definition of the perceived needs N of the
animal, in incorrect identification of satisfaction of that need (mimicking reward), in
incorrect evaluation of the expected value of the outcome, and in incorrect search of the

 relationships themselves, as well as a potential failure point in misclassification of
situations.

Vulnerability 1: Homeostatic changes: Changing the definition of the needs N

Vulnerability 2: Allostatic changes: Changing the definition of the needs N

Organisms have evolved to maintain very specific levels of critical biological parameters
(temperature, hormonal levels, neurotransmitter levels, etc.) under large challenge
variations. Because these specific levels (“set-points”) can change under contextual,
biological, social, and other factors, such as with a circadian or seasonal rhythm, some
authors have suggested the term allostasis over the more classic term homeostasis, reserving
homeostasis for a constant set point (Koob & Le Moal 2006). Drugs and other manipulations
can change the needs of an animal either by moving the system away from the homeostatic
set-point itself (say, in a withdrawal state after drug use), requiring drugs to return the
system to homeostasis, or by changing the system’s desired set-point itself, thus requiring
drugs to achieve the new inappropriate set-point (Koob & Le Moal 2006). In either case,
these changes will change the perceived needs of the agent, and will thus change the
evaluated value of expected outcomes.

Vulnerability 3: Overvaluation of the expected value of a predicted outcome – mimicking
reward

As noted earlier, the planning system requires a component that directly evaluates the
expected outcome. This evaluation process is, of course, a memory process that must take
into account the history of experience with the expected outcome. This means that there
must be a biological signal that recognizes the value of outcomes when the agent achieves

6The role of δ-opiate receptors is more controversial (Broom et al. 2002; Herz 1997; Matthes et al. 1996).
7German and Fields (2007a; 2007b) have shown that conditioned place preference (Tzschentke 1998) is in fact due to repeated
transitions into the drug-associated location, implying that conditioned place preference is evidence of drug-seeking.
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the outcome itself (thus satisfying the perceived need). This signal is likely to be related to
the qualia of euphoric pleasure and dysphoric displeasure (Berridge & Robinson 1998;
2003). We can thus identify this signal with subjective hedonic signals. It is likely that when

the agent searches the consequences of the potential  action-sequence, the same
evaluative process would be used, which could implicate these same signals in craving
(Redish & Johnson 2007). This signal is likely to be carried in part by endogenous opioid
signals (Berridge & Robinson 1998; 2003; Kelley et al. 2002), potentially in the ventral
basal ganglia (Tindell et al. 2004; 2006). Additionally, the memory of value depends on the
remembered values of experiences, which tend to be remembered as generally more positive
than they really were due to biases in representation (Kahneman & Frederick 2002;
Schreiber & Kahneman 2000). Social factors can also affect remembered values of actual
dysphoric events (Cummings 2002; Goldman et al. 1999; Jones et al. 2001).

Vulnerability 4: Overvaluation of the expected value of a predicted outcome in the planning
system

In fact, any mechanism by which the value of a predicted outcome is increased will have
vulnerabilities leading the planning system to over-value certain outcomes. At this point,
computational models of the planning system are insufficiently detailed to lead to specific
predictions or explanations of the mechanisms by which outcomes are over-valued, but
experimental evidence has suggested a role for dopamine release in the nucleus accumbens
as a key component (Ikemoto & Panksepp 1999; Robinson & Berridge 1993; Roitman et al.
2004; Salamone et al. 2005; see Robinson & Berridge 2001; 2003, for reviews). The
orbitofrontal cortex has also been implicated in the evaluation of potential rewards (Padoa-
Schioppa & Assad 2006; Sakagami & Pan 2007; Schoenbaum & Roesch 2005), and
incorrect signals arriving from the orbitofrontal cortex could also drive overvaluation of
expected drug- or behavior-related outcomes (Kalivas & Volkow 2005; Schoenbaum et al.
2006a; Volkow et al. 2003). Changes in activity in the orbitofrontal cortex (Stalnaker et al.
2006; Volkow & Fowler 2000) and the ventral striatum (Carelli 2002; German & Fields
2007b; Peoples et al. 1999) are likely to play important roles in this vulnerability.

Vulnerability 5: Incorrect search of  relationships

The prediction component of the planning system is also a memory process, requiring the
exploration of multiple consequences from situation S. If a drug or other process were to

increase the likelihood of retrieving a specific  relationship, then one would expect
this to limit the set of possibilities explored, which would appear as a cognitive blinding to
alternatives (Redish & Johnson 2007). Because action-decisions in the planning system must
be made through the comparison of available alternatives, this vulnerability would also
mean that when an agent is returned to situation S, it would be more likely to remember the
availability of outcome O than other potential outcomes, which would make it more likely to
remember the high value associated with outcome O (see Vulnerabilities 3 and 4), and thus
more likely to experience craving in situation S. This craving would then lead to a recurring

search of the same  path, which would appear as a cognitive blinding or obsession.
This process could also lead to an increase in attention to drug-related cues, which has been
seen in both alcohol and heroin addicts (Lubman et al. 2000; Schoenmakers et al. 2007).

Vulnerability 6: Misclassification of situations

In order to retrieve an  relation, the agent must recognize that the situation it is in is
sufficiently similar to a previous one to successfully retrieve the relation, predict the

outcome, and evaluate it. The  relations are, of course, dependent on the
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predictability of the outcome for a given situation, and therfore are sensitive to contingency
degradation, in which the predictability of an outcome from a given situation-action pair is

decreased (thus changing the  relationship; Corbit & Balleine 2000; Corbit et al.
2002; Devenport & Holloway 1980). These relationships can be misunderstood either by
over-categorization, in which two situations that are actually identical are miscategorized as
different, or by over-generalization, in which two situations that are actually separate are
miscategorized as the same.

Over-categorization. Thus, for example, if gambling losses are not recognized as occurring
in the same situation as previous gambling wins, an agent can potentially (incorrectly) learn

two  relations, one leading from situation S1 to a winning outcome and one leading
from situation S2 to a losing outcome. If the agent can identify cues that separate situation
S1 from situation S2, then it will (incorrectly) predict that it can know when it will achieve a
winning outcome. This has been referred to as “the illusion of control” (Custer 1984;
Griffiths 1994; Langer & Roth 1975; MacKillop et al. 2006; Redish et al. 2007; Wagenaar
1988).

Over-generalization. An inability to recategorize situations (by recognizing actual changes)
can lead to the perseveration of responses and an inability to switch responses in the face of
failures and losses. Many drug users and pathological gamblers show failures to reverse or
switch action-selection choices in response to novel adverse conditions (Bechara et al. 2001;
Clark & Robbins 2002; Everitt et al. 1999; Grant et al. 2000; Jentsch et al. 2002; Verdejo-
Garcia et al. 2006). Developing abilities to recategorize situations has been suggested as one
means of treating addictions (McCaul & Petry 2003; Sylvain et al. 1997). Simulated agents
with deficiencies in the ability to recategorize cues find difficulty in breaking cue-addiction
associations8 (Redish et al. 2007).

3.3. The habit system
In contrast to the complexity of the planning system, the habit system entails a simple
association between situation and action. Thus, the habit system requires recognition of a
situation S, and a single, identified action to take within that situation. This simplicity allows
the habit system to react quickly. However, this simplicity also makes the habit system rigid.
A learned association essentially commits the agent to take action a in situation S. This
means that it would be dangerous to store an association that was not reliable. Therefore,
habit associations should only be stored after extensive experience with a consistent relation.

In contrast to the planning system, the habit system does not include any consideration of
the potential outcome (i.e., there is no O term in the  relation; Table 2). Therefore, in
contrast to the planning system, the habit system does not include a prediction of available
outcomes and cannot evaluate those potential outcomes online. Hence, it cannot take into
account the current perceived needs (desires) of the agent. The habit system is still sensitive
to the overall arousal levels of the agent. Thus, a hungry rat will run faster and work harder
than a satiated rat (Bolles 1967; Munn 1950; Niv et al. 2007). However, because the habit
system does not reflect the current desires of the agent, the habit system will not modify
responses when a reward is devalued. Similarly, the habit system cannot select multiple
actions in response to a single situation.9 This means that in navigation, the habit system can
only take a single action in response to a given situation. For example, a rat with a damaged

8This inability to recategorize situations’ vulnerability will also relate to the interaction-between-systems vulnerability (Vulnerability
8), below.
9It is possible for internal states (e.g., hunger) to be incorporated into the situation S term, but this would require separate learning
under the different internal-state conditions (e.g., under hungry and thirsty conditions) without generalization.
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planning system cannot decide to turn left for water when it is thirsty on one day and turn
right for food when it is hungry on the next day.10

Computationally, there are very good models of how the habit system might work. These
models have generally been based on the temporal difference instantiation of reinforcement
learning (Daw 2003; Daw et al. 2005; 2006; Dayan et al. 2000; Doya 2000b; Montague et al.
1996; Redish 2004; Schultz et al. 1997; Suri & Schultz 1999; Sutton & Barto 1998). In the
simplest version of this model, each situation-action pair is associated with a value (termed
Q(S, a); Sutton & Barto 1998).11 When an agent takes an action from a situation, the agent
can compare the expected value of taking action a in situation S (i.e., Q(S, a)) with the
observed value (the reward received minus the cost spent plus the value of being in the state
the agent ended up in):

(1)

where R(t) is the reward observed, C(t) the cost spent, max[Q(Snew, a)] the most value one
can get from the situation the agent finds itself in (Snew), and Q(Sold, a) is the estimated
value of taking action a in the situation the agent was in (Sold). By updating Q(Sold, a) by δ,
the agent moves its estimate Q(Sold, a) closer to its true value; γ is a discounting parameter
(γ < 1) which ensures that the time required to reach future rewards is taken into account
(Daw 2003; Sutton & Barto 1998). These models can be trained to learn complex situation-
action sequences.

The slow development of a habit association has been most studied in contrast to the fast
planning system. Lesions or inactivation of the dorsolateral striatum (Yin & Knowlton 2004;
Yin et al. 2004; Yin et al. 2006) and the infralimbic cortex (Coutureau & Killcross 2003;
Killcross & Coutureau 2003) prevent the loss of devaluation with experience. Lesions or
inactivation of the dorsolateral striatum (McDonald &White 1994; Packard & McGaugh
1992; 1996; Potegal 1972; White & McDonald 2002; Yin & Knowlton 2004) or the parietal
cortices (DiMattia & Kesner 1988; Kesner et al. 1989) shift rats from response strategy to
map strategies in navigation tasks.

As in the planning system, the habit system requires a situation-recognition component, in
which the set of cues and contexts is integrated with the agent’s memory to classify the
situation, to allow retrieval of the correct  association. As with our discussion in the
planning system, we suggest that cortical sensory and association systems classify situations
through competitive learning processes (Arbib 1995; Grossberg 1976; Redish et al. 2007;
Rumelhart & McClelland 1986). Although there are no neurophysiological data suggesting
that this situation categorization system is anatomically separate from that used for the
planning system, the identification of the habit system with networks involving dorsal and
lateral aspects of striatum, and the planning system with networks involving more ventral
and medial aspects of striatum, suggest that the specific cortical systems involved may
differ. The  association itself, including the mechanisms by which the situation signals
are finally categorized to achieve a single action decision, have been hypothesized to include
the afferent connections from cortex to dorsolateral striatum (Beiser et al. 1997; Houk et al.
1995; Samejima et al. 2005; Wickens 1993; Wickens et al. 2003).

10This inability is seen in rats with fimbria-fornix lesions (Hirsh 1974).
11This version in which value is a function of both situation and the subsequent action is called Q-learning (Sutton & Barto 1998).
Other instantiations have been proposed as well. However, the differences are subtle and not critical to our needs in this paper. We
therefore only describe the very basics of Q-learning.
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Neuropharmacologically, the habit system receives strong dopamine inputs from the
substantia nigra pars compacta (SNpc). The dopamine signal has been well studied in the
primate (Bayer & Glimcher 2005; Ljungberg et al. 1992; Mirenowicz & Schultz 1994;
Schultz 1998; 2002; Waelti et al. 2001). Like the dopamine neurons in the ventral tegmental
area, dopamine neurons in SNpc increase firing in response to unexpected increases in
expected value (via unexpected rewards or via cues that lead to an increased expectation of
reward), and decrease firing in response to unexpected decreases in value (via lack of
expected reward or via cues that lead to a decrease in the expectation of reward). This signal
has been identified with the value-error signal δ in the temporal difference reinforcement
learning algorithm (Barto 1995; Montague et al. 1995; 1996; Schultz et al. 1997), which can
provide dopamine a role in training up  associations. Dopamine has been shown to be
critical to the learning of habitual  associations (Faure et al. 2005). However, the role of
dopamine in learning and performance is still controversial (Berridge 2007; Cagniard et al.
2006; Frank et al. 2004; Niv et al. 2007).

Cellularly, neurons in the dorsal striatum have been found to represent key parameters of the
temporal difference reinforcement learning algorithm: for example, situation-action
associations (Barnes et al. 2005; Carelli & West 1991; Daw 2003; Gardiner & Kitai 1992;
Hikosaka et al. 1999; Hikosaka et al. 2006; Jog et al. 1999; Kermadi et al. 1993; Kermadi &
Joseph 1995; Matsumoto et al. 1999; Miyachi et al. 1997; Schmitzer-Torbert & Redish
2004; Tremblay et al. 1998); reward delivery (Daw 2003; Schmitzer-Torbert & Redish
2004; White & Hiroi 1998;); and value signals (Daw 2003; Kawagoe et al. 2004; Nakahara
et al. 2004). These signals develop in parallel with the development of automated behaviors
(Barnes et al. 2005; Itoh et al. 2003; Jog et al. 1999; Samejima et al. 2005; Schmitzer-
Torbert & Redish 2004; Tang et al. 2007), through an interaction with dopamine signals
(Arbuthnott & Wickens 2007; Centonze et al. 1999; Picconi et al. 2003; Reynolds &
Wickens 2002). Functional imaging data from humans playing sequential games show
similar correlates to value, δ, and other parameters of these models (McClure et al. 2003;
2004; O’Doherty 2004; O’Doherty et al. 2004; Seymour et al. 2004; Tanaka et al. 2004a).

3.3.1. Potential vulnerabilities in the habit system—The primary failure point of the
habit system is the overvaluation of a habit association through the delivery of dopamine
(Bernheim & Rangel 2004; Di Chiara 1999; Redish 2004). As with the planning system, a
misclassification of the situation can also provide a potential vulnerability in the habit
system (see Vulnerability 6).

Vulnerability 7: Overvaluation of actions

With natural rewards, once the value of the reward has been correctly predicted, the value-
error term δ is zero and learning stops (Rescorla & Wagner 1972; Schultz & Dickinson
2000; Waelti et al. 2001). However, when dopamine is produced neuropharmacologically,
sidestepping the calculation of δ, each receipt of the drug induces a positive δ signal, the
value associated with taking action a in situation S continues to increase, producing an
overvaluation (Redish 2004). Because the  association is a habitual, automatic
association, choices driven by  relationships will be unintentional, robotic, perhaps even
unconscious.

3.4. Interactions between planning and habit systems
Generally, the planning system is engaged early; but with experience, behavioral control in
repetitive tasks is transferred to the habit system. This has been observed in the navigation
(O’Keefe & Nadel 1978; Packard & McGaugh 1996; Redish 1999), animal conditioning
(Balleine & Dickinson 1998; Dickinson 1985; Yin et al. 2006), and human learning (Jackson
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et al. 1995; Knopman & Nissen 1991; Poldrack et al. 2001) literatures. However, in tasks
which require behavioral flexibility, behavioral control can remain with the planning system,
even in highly trained animals (Gray & McNaughton 2000; Killcross & Coutureau 2003;
McDonald & White 1994; Morris et al. 1982; White & McDonald 2002).

For many tasks, both systems can drive behavior in the absence of the other (Cohen &
Squire 1980; Nadel 1994; O’Keefe & Nadel 1978; Squire 1987), but some tasks can only be
solved by one system or the other. For example, the water maze requires a flexible response
to reach a hidden platform and requires hippocampal integrity to be learned quickly (Morris
et al. 1982; for a review, see Redish 1999). If the flexibility of the required response is
decreased (by, for example, starting the animal in the same location each trial), then the
hippocampus no longer becomes necessary to reach the platform (Eichenbaum et al. 1990).
Other tasks, such as mirror-writing or the serial reaction time task, require the slow
recognition of regularities in situation-action associations, and they are learned at similar
speeds by patients with damaged and intact planning systems (Cohen & Squire 1980;
Ferraro et al. 1993; Knopman & Nissen 1987). Patients with damaged lateral striatal systems
are impaired on these habit-based tasks (Doyon et al. 1998; Ferraro et al. 1993; Knopman &
Nissen 1991; Smith et al. 2000; Yin & Knowlton 2006). For some tasks, the planning
system can “train up” the habit system, potentially through replay events occurring during
subsequent sleep states (Buzsáki 1996; Hoffmann & McNaughton 2002; Marr 1971;
Pavlides & Winson 1989; Redish 1999; Redish & Touretzky 1998; Wilson & McNaughton
1994). This transfer of information between systems can explain observations of incomplete
retrograde amnesia with certain lesions (consolidation, Cohen & Squire 1980; Nadel &
Bohbot 2001; Nadel & Moscovitch 1997; Redish 1999; Squire 1987) but predicts that
“consolidated memories” will be less flexible than unconsolidated memories (Redish &
Touretzky 1998).

The question of which system drives behavior when the two are put into conflict has only
begun to be addressed computationally (Daw et al. 2005) and experimentally (Isoda &
Hikosaka 2007), but there is a large literature on behavioral inhibition, in which a changed,
novel, or potentially dangerous or costly behavior is inhibited (Gray & McNaughton 2000).
This system seems to involve the prefrontal (Sakagami et al. 2006) and/or the hippocampal
system (Gray & McNaughton 2000), depending on the specific conditions involved.
Whether the interaction entails the planning system overriding a developed habit (Gray &
McNaughton 2000) or an external system that mediates control between the two (Isoda &
Hikosaka 2007) is still unresolved. Whether such an external mediator can be identified with
executive control (presumably, in the prefrontal cortex, Baddeley 1986; Barkley 2001;
Barkley et al. 2001) is still a matter of open research.

Vulnerability 8: Selective inhibition of the planning system

The habit system is inflexible, reacts quickly, “without thinking,” whereas the planning
system is highly flexible and allows the consideration of possibilities. The habit and
planning systems consist of different anatomical substrates. Pharmacological agents that
preferentially impair function in structures involved in the planning system or preferentially
enhance function in structures involved in the habit system would encourage the automation
of behaviors. A shift back from habits to planned behaviors is known to involve the
prefrontal cortex (Dalley et al. 2004; Husain et al. 2003; Isoda & Hikosaka 2007; Iversen &
Mishkin 1970), and has been hypothesized to involve executive function (Barkley 2001;
Barkley et al. 2001; Tomita et al. 1999). If pre-existing dysfunction exists within the inter-
system control or if pharmacological agents disrupt this inter-system control, then the agent
would develop habits quickly and would have difficulty disrupting those established habits.
This vulnerability is distinguishable from the specific planning and habit vulnerabilities by
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its disruption of function of the planning system and/or its disruption of the inter-system
conflict resolution mechanism. Thus, the other vulnerabilities affecting the planning system
lead the planning system to make the incorrect choice; Vulnerability 8 makes it difficult for
the planning system to correct a misguided habit system (Bechara 2005; Bechara et al. 2001;
Bickel et al. 2007; Gray & McNaughton 2000; Jentsch & Taylor 1999; Lubman et al. 2004;
Verdejo-Garcia et al. 2006).

3.5. Summary: Decision-making systems
The decision-making system in the mammal is hypothesized to consist of two subsystems: a

planning system, based on the evaluation of potential possibilities (e.g., 
relationships), and a habit system, based on the association of specific actions with specific
situations (e.g.,  associations), both of which require a situation- recognition system, in
which observed cues are categorized into situations (e.g., the S terms in the previous
formulations). Correct decision-making depends on the integrity of each of these systems
(see Figure 1).

3.6. Additional failure points
The eight vulnerabilities identified so far are certainly an incomplete list of the potential
failure points of the decision-making system. The description of the decision-making system
is, by necessity, incomplete. For example, we have not addressed the question of discounting
and impulsivity. Nor have we addressed the question of learning rates.

Vulnerability 9: Over-fast discounting processes

Both the planning and habit systems need to take into account the probability and the delay
before an expected goal will be achieved (Ainslie 1992; 2001; Mazur 2001; Stephens &
Krebs 1987). In the planning system, this can be calculated online from the expected value
of the expected goal given the searched sequence; in the habit system, this would have to be
cached as part of the stored value function. The specific mechanism (and even the specific
discounting function) are still a source of much controversy (for a review, see Redish &
Kurth-Nelson [in press] in Madden et al. [in press]), but the long-term discounting of future
rewards is well established. If an agent discounts too strongly, it will overemphasize near-
term rewards and underemphasize far-future costs. Because addictions often involve near-
term pleasures and far-future costs, faster-than-normal discounting could drive an agent to
underestimate the far-future costs and to choose those near-term pleasures. A number of
studies have found that addicts discount faster than non-addicts (Alessi & Petry 2003; Bickel
& Marsch 2001; Kirby et al. 1999; Madden et al. 1997; Madden et al. 1999; Odum et al.
2002; Petry 2001; Petry & Bickel 1998; Petry et al. 1998; Vuchinich & Simpson 1998).

Vulnerability 10: Changes in learning processes

Other unincorporated components include changes in learning processes (such as over-
attention to cues or learning rates being too high or too low). More detailed models of each
of the systems will be required before it will be possible to make strong claims about the
consequences of such a potential failure point.

However, the hypothesis put forward in this paper that addiction is a consequence of falling
victim to vulnerabilities (failure modes) in the decision-making system lays out a research
paradigm with important consequences both for what (and how) research questions should
be addressed as well as for drug-treatment paradigms and drug-control policies.
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These vulnerabilities in the decision-making system may arise from individual
predisposition (either due to genetic or social/environmental factors) as well as from drug-
or behavior-driven interactions with the decision system. In the second half of this article,
we address the interactions and implications of each of the previously identified
vulnerabilities with drugs and behaviors of abuse as well as the policy and treatment
consequences of the theory.

4. Addiction as vulnerabilities in decision-making
The unified framework for decision-making described above has potential access points
through which it can be driven to make maladaptive choices, particularly choices which
entail seeking of certain drugs or behaviors. Ten key vulnerabilities can be directly
identified with this unified decision-making system as outlined earlier. They are summarized
in Table 4 and related to the current theories in Table 5.

Some of these failure modes exist as prior conditions, making an agent more vulnerable to
the addictive process, whereas other failure modes are driven by direct interactions with the
drugs themselves.

4.1. Vulnerability 1: Deviations from homeostasis
A classic example of deviations from homeostasis that will produce changing needs is the
well-known “crash” after the euphoria of an opiate experience (Koob & Le Moal 2006).
These negative effects can occur after even a single dose of morphine (Azolosa et al. 1994;
Harris & Gewirtz 2005; Koob & Le Moal 2006). Such a negative affect would drive an
agent to attempt to compensate by returning to the positive qualia occurring during the drug
use. Deviations from homeostasis also lead to the well-known withdrawal symptoms
(Altman et al. 1996; Lowinson et al. 1997) seen in reaction to nicotine (Benowitz 1996;
Hanson et al. 2003; Hughes & Hatsukami 1986), alcohol (Kiefer & Mann 2005; Littleton
1998; Moak & Anton 1999), opiates (Altman et al. 1996; Koob & Bloom 1988; Schulteis et
al. 1997), and caffeine (Daly & Fredholm 1998; Evans 1998) addictions.

4.2. Vulnerability 2: Changes in allostatic set-points
Drug use, particularly repeated drug use, can also produce changes in the set-point itself
(referred to as “changes in allostasis,” most likely through long-term changes in receptor
levels and changes in levels of endogenous ligands released during normal behaviors; Koob
& Le Moal 2006). Animals given prolonged access to drugs, particularly access over many
days to long periods of drug availability, develop greatly increased drug-intake levels
(Ahmed & Koob 1998; 1999). This has been hypothesized to arise from developing
allostatic changes (Ahmed & Koob 2005; Koob & Le Moal 2006).

Pharmacologically, chronic nicotine use changes levels of cholinergic receptors in the brain
(Flores et al. 1997; Marks et al. 1992). Chronic alcohol use changes function and expression
of gamma-aminobutyric acid (GABAA) and N-methyl-D-aspartate (NMDA) receptors (Hunt
1998; Littleton 1998; Valenzuela & Harris 1997). Repeated cocaine (Hurd & Herkenham
1993; Steiner & Gerfen 1998), alcohol (Ciraulo et al. 2003), and opiate (Cappendijk et al.
1999; Weissman & Zamir 1987) treatment all produce changes in endogenous opioid release
and in opiate receptor expression. Many smokers titrate the number of cigarettes smoked
throughout the day, ensuring a relatively constant blood-plasma level of nicotine (Schmitz et
al. 1997).

These neurobiological changes change the identified needs of the agent, and thus imply
changes in the evaluation of expected outcomes of drug-taking (or abstinence), which will
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change action-selection in the planning system.12 This vulnerability is identifiable by
changes in long-term set-points of physiological variables.

4.3. Vulnerability 3: Overvaluation of the expected value of a predicted outcome –
mimicking reward

The planning system requires a signal that directly evaluates the successful achievement of a
perceived need (thus leading to the qualia of pleasure). A number of authors have suggested
that this may reside within the opiate system (Berridge & Robinson 2003; Redish & Johnson
2007). μ-Opiate agonists (such as heroin, morphine, etc.) are generally highly euphorigenic
(Jaffe et al. 1997; Mark et al. 2001; Meyer & Mirin 1979). Even though exogenously
delivered μ-opiate agonists (such as heroin or morphine) are not a true reward that the
system evolved to recognize, they can mimic the reward system and trick the system into
believing that it just received a strong reward, which it will learn to return to. Drugs
accessing this vulnerability are likely to be highly euphorigenic, particularly with initial use.
Heroin and morphine produce profound euphoria very quickly after injection (Koob & Le
Moal 2006). This reward signal will be stored in memories associated with the planning
system, which would lead to the recall of highly euphoric signals when the planning system
recognizes a path to achieve these reward-mimicking drugs. This vulnerability is
recognizable by strong craving when agents recall those euphoric events.

4.4. Vulnerability 4: Overvaluation in the planning system
As reviewed earlier, the planning system consists of recognition (memory), search through,

and evaluation of  relationships. A fundamental vulnerability of this relationship is
in the valuation of the outcome, which is calculated from the level of “need” and the “value”
of the outcome satisfying that perceived need, presumably learned through dopaminergic
signals (Robinson & Berridge 1993; 2001; 2003; 2004) projecting to the ventral striatum and
orbitofrontal cortex. Dopamine firing patterns in the ventral tegmental area (projecting to the
ventral striatum and orbitofrontal cortex) indicate changes in the amount of expected or just-
received reward (Pan et al. 2005; Roesch et al. 2007; Schultz 2002; Schultz et al. 1997),
analogous to the δ signal required for the Q-learning algorithm described in the habit system.
Although no computational theories are as yet available describing how these dopaminergic
signals translate into changes in evaluation in the planning system, voltammetry recordings
from the ventral striatum have shown dopamine signals occurring before both cued and self-
initiated actions leading to drug receipt (Phillips et al. 2003; Roitman et al. 2004; Stuber et
al. 2004; 2005). These changes presumably modulate the cortico-and hippocampo-ventral-
striatal synapses, both during learning (Thomas et al. 2001) and during performance (Goto
& Grace 2005a; 2005b; Lisman & Grace 2005; Yun et al. 2004).

Other researchers have suggested that this evaluation process may arise in the orbitofrontal
cortex (Padoa-Schioppa & Assad 2006; Plassmann et al. 2007; Schoenbaum et al. 2006a)
and that overvaluation in the orbito-frontal cortex can lead to overvaluation of expected
rewards (Kalivas & Volkow 2005; Volkow et al. 2003). In rats with a past history of cocaine
intake, the orbitofrontal cortex becomes less capable of predicting adverse outcomes than in
normal rats (Stalnaker et al. 2006), implying a potential difficulty in identifying negative
consequences. Nevertheless, an overvaluation of expected drug outcomes would produce
craving (Redish & Johnson 2007) and an increased likelihood of taking actions leading to
those expected drug outcomes (German & Fields 2007a).

12Although the habit system does not directly take the immediate needs of the agent into account, it is possible that continued positive
evaluation of drug-taking (or negative evaluation of abstinence) due to the changed-needs vulnerability could slowly train up the habit
system, leading to a shift in drug use from the compulsive, needs-based vulnerability to a more robotic, habit-based vulnerability,
independent of changes in homeostatic or allostatic set-points.
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4.5. Vulnerability 5: Incorrect search of  relationships
As noted earlier, the prediction component of the planning system is also a memory process,
requiring the exploration of multiple consequences from a given situation S. This prediction
process has been suggested to require the hippocampus (Jensen & Lisman 1998; 2005;
Johnson & Redish 2007) and the prefrontal cortex (Daw et al. 2005), but the specific
mechanism is still unknown.

Although the specific mechanisms of storage and access of  relationships are
unknown within the hippocampus and prefrontal cortex, Vulnerability 5 can occur due to
maladaptive and often subtle modifications of system storage and access functions rather
than system failure. These systemic modifications may occur as a result of changes in the
cell morphology within these areas and plasticity mechanisms within the hippocampus and
prefrontal cortex. A number of addictive substances produce such changes. Both
hippocampus and prefrontal cortex receive dopaminergic inputs, which are known to change
the sensitivity to synaptic plasticity (Huang et al. 1995; Seamans & Yang 2004) and to
modulate representations (Kentros et al. 2004; Seamans & Yang 2004) and performance
(Arnsten et al. 1994; Murphy et al. 1996). Similarly, morphine and other opiate agonists
increase synaptic spine formation in cell culture (Liao et al. 2005) and development (Hauser
et al. 1987; 1989). Long-term drug exposure also increases the spine formation in the
hippocampus and prefrontal cortex in vivo (Robinson & Kolb 1999; Robinson et al. 2001;
2002). These changes may affect the prediction process, possibly driving it to preferentially
search the drug-related potential choices, which would appear clinically as an over-
sensitivity to drug-related cues and obsessive consideration of choices leading to drug
receipt.

4.6. Vulnerability 6: The illusion of control
When faced with reward distributions that change over time, agents can react in one of two
ways: The agent can identify itself as being in a new situation with a different reward
distribution, or the agent can identify itself as being in the same situation, but change the
expectation of the likelihood of receiving reward. If the agent incorrectly classifies the same
situation as different or different situations as the same, the agent may find itself making
incorrect decisions.

Misclassification of situations has been primarily identified as a potential cause for problem
gambling, in which agents incorrectly identify a statistically unlikely sequence of wins as a
separate situation from more-commonly experienced losses (Custer 1984; Langer & Roth
1975; Redish et al. 2007; Wagenaar 1988). This provides the agent with the illusion that
certain cues can identify winning situations while other cues identify losing situations
(referred to as the “illusion of control”; Langer & Roth 1975; Redish et al. 2007; Sylvain et
al. 1997; Wagenaar 1988). Problem gamblers tend to have experienced a statistically
unlikely sequence of wins followed by devastating losses (Custer 1984; Wagenaar 1988).
This misclassification may arise from excessive recognition of cue changes between the
winning and losing experiences (Redish et al. 2007). Problem gamblers are often observed
to “explain away” losses by post hoc identification of differences in cues between the losses
and memories of wins (also referred to as “hindsight bias”; Custer 1984; Dickerson &
O’Connor 2006; Wagenaar 1988). Similarly, near misses, in which gamblers lose but come
close to the winning situation, encourage continued play (Parke & Griffiths 2004). These
near misses may provide illusory support for the hypothesis that certain noisy cues have a
relationship to the predictability of the reward.
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4.7. Vulnerability 7: Overvaluation in the habit system

In the habit ( ) system, phasic (bursting) dopamine signals are correlated with the value-
prediction error signal δ, needed by the temporal difference reinforcement learning
algorithm to learn situation-action sequences (Barto 1995; Daw 2003; Montague et al. 1995;
1996). With natural rewards, as the value-prediction system learns to predict those rewards
correctly, the value-prediction compensates for the reward, and dopamine at the time of
correctly predicted reward decreases to zero with learning (Schultz 1998). Drugs that
produce dopamine neuropharmacologically (like cocaine or amphetamine) will bypass that
value-compensation system, providing a constant “better-than-expected” δ signal. This non-
compensable dopamine signal leads to overvaluation in the  system (Bernheim &
Rangel 2004; Redish 2004). Cocaine and many other abused drugs produce large increases
of dopamine pharmacologically throughout the striatum (Ito et al. 2002; Kuhar et al. 1988;
Roitman et al. 2004; Stuber et al. 2005). This mechanism can lead to the formation of habits,
which have been suggested as a key process in late stages of drug addiction (Altman et al.
1996; Di Chiara 1999; Everitt & Robbins 2005; Robbins & Everitt 1999; Tiffany 1990).
Clinically, such users would be unlikely to show strong craving and would manifest a
robotic drug use, without conscious planning or statements of drug-seeking. Habit-based
drug use could well be uncorrelated to the qualia of pleasure.

4.8. Vulnerability 8: Selective inhibition of the planning system
Exposure to drugs can shift the normal balance between systems, emphasizing one system
over the other. For example, pretreatment with amphetamine shifts rats to preferentially use
systems that do not show devaluation (i.e., habit-based over planning-based systems)
(Nelson & Killcross 2006). Alcohol, as another example, has been hypothesized to
preferentially impair hippocampal (Hunt 1998; White 2003) and prefrontal (Oscar-Berman
& Marinkovic 2003) function, which would shift the normal balance from the planning to
the habit systems. Dickinson et al. (2002) found that alcohol-seeking in rats is driven
primarily by  mechanisms and does not show devaluation. Similarly, Miles et al. (2003)
found that including cocaine in a sucrose solution prevents devaluation. Such distinctions
would appear as a fast increase in habitual responses over planning-based responses.

Following from the hypothesis that prefrontal (executive) systems are involved in the shift
from habit back to planning systems (Baddeley 1986; Barkley 2001; Barkley et al. 2001;
Dalley et al. 2004; Isoda & Hikosaka 2007), deficits in this executive system would lead to a
difficulty in breaking habits (Bechara et al. 2001; Jentsch & Taylor 1999; Lubman et al.
2004). Following from the hypothesis that extinction follows from a reinterpretation of
situations (Bouton 2002; Capaldi 1957; Quirk et al. 2006; Redish et al. 2007), this would
suggest a difficulty in extinguishing drug-taking. It is certainly possible to extinguish drug-
taking in animals (Kalivas et al. 2006; Olmstead et al. 2001), but those extinguished
behaviors are particularly susceptible to relapse and reinstatement (McFarland & Kalivas
2001; Shalev et al. 2002). Whether it is more difficult to extinguish some drug-taking
behavior in certain agents due to selective inhibition of the planning system or excitation of
the habit system is still unknown. Agents falling victim to this vulnerability would show a
particularly strong, uncontrolled relapse, likely cue-dependent, and possibly independent of
explicitly identified cravings.

4.9. Vulnerability 9: Overfast discounting
As reviewed earlier, there is strong evidence that addicts discount faster than non-addicts
(Bickel & Marsch 2001; Reynolds 2006). An important question that is still unresolved is
whether these faster discounting factors exist as preconditions or develop with experience.
Impulsivity shows a strong heritability that has been hypothesized to underlie a pre-existing
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factor in addiction (Kreek et al. 2005). Impulsivity has been identified with changes in
neuromodulators, particularly serotonin13 (Chamberlain et al. 2006); changing serotonin
levels can lead to online changes in discounting rates (Schweighofer et al. 2004; Tanaka et
al. 2004b). (Computationally, serotonin has been explicitly modeled as controlling the
discounting factor in temporal-difference learning; Doya 2000a; 2002.) Many drugs of
abuse, such as cocaine, directly affect serotonin levels (Paine et al. 2003; Ritz et al. 1987),
while in other substances, such as alcohol, self-administration levels reflect serotonin levels
(Chastain 2006; Valenzuela & Harris 1997). It is currently unknown whether the excess
discounting seen in addicts is a pre-existing condition or a consequence of the addictive
process itself (Reynolds 2006). As with many of these vulnerabilities, it is possible to have a
positive feedback, in which pre-existing conditions support the entrance to addiction (Kreek
et al. 2005; Perry et al. 2005; Poulos et al. 1995), and then post-addictive consequences
arising from pharmacology or experience exacerbate it (Paine et al. 2003).

4.10. Vulnerability 10: Changes in learning rates
The decision-making system reviewed earlier depends on learning associations among
situations, outcomes, and actions. These systems depend on specific learning rates.
Neuromodulators such as acetylcholine and dopamine have been hypothesized to control
learning rate parameters (Doya 2000a; 2002; Gutkin et al. 2006; Hasselmo 1993; Hasselmo
& Bower 1993; Yu & Dayan 2005). Pharmacological substances that manipulate these
learning rates can produce enhanced associations, leading to overdeveloped expectations or
habits. For example, nicotine enhances the presence of already available phasic
dopaminergic signals in vitro (Rice & Cragg 2004). Following from a hypothesized role of
phasic dopamine signals in identifying high-value associations to be stored (Montague et al.
1996; Schultz et al. 1997), this would predict that nicotine would enhance small learning
signals, further increasing the likelihood of making cue-related associations. Although there
is as yet no direct evidence for a general role of nicotine in learning, if nicotine did generally
enhance learning signals, this would make smokers particularly susceptible to cue-driven
associations (Chiamulera 2005). Multiple drugs taken simultaneously may interact with each
other, and drugs may interact with natural rewards as well.

5. Drugs and the taxonomy of vulnerabilities
The 10 vulnerabilities listed here provide a taxonomy of potential problems with decision
processes.14 Because neuromodulators (such as acetylcholine, serotonin, norepinephrine,
and dopamine) are involved throughout the decision-making system (learning  relations,

storing and evaluating  relations, recognition of situations S, etc.), drugs of abuse are
unlikely to access only one subsystem. Because there are differences in these vulnerabilities,
any specific drug is also unlikely to access all 10 vulnerabilities. Because behavioral control
involves the entire decision-making systems, behavioral problems such as gambling are
likely to arise from an interaction of vulnerabilities. Although each vulnerability can drive
an agent to return to the addictive choice, each vulnerability also produces a characteristic
symptomology and can thus be separately identifiable within an agent.

Different drugs are likely to access different vulnerabilities. For example, whereas opiates
are generally euphorigenic on initial use (Koob & Le Moal 2006; Vulnerability 3), nicotine
is often dysphoric on initial use (Heishman & Henningfield 2000; Perkins 2001; Perkins et
al. 1996; making Vulnerability 3 unlikely). However, continued use of nicotine can produce

13Other neuromodulators may be involved as well.
14There are certainly going to be other problems that have not yet been identified, but these 10 can provide a starting point for this
discussion.
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strong allostatic changes (Benowitz 1996; Koob & Le Moal 2006; Vulnerability 2), which
produce a very strong need to return levels to normal (Fiore 2000). Nicotine also produces
increases in the firing of dopaminergic neurons (Balfour et al. 2000; Dani & Heinemann
1996; Pidoplichko et al. 1997), which suggests that it can also accesses the 
overvaluation vulnerability (Vulnerability 7). Cocaine use automates particularly quickly
(Miles et al. 2003) and produces a very strong cued relapse (Altman et al. 1996; Childress et
al. 1992; 1993; O’Brien et al. 1992), suggesting that it also accesses the  overvaluation
vulnerability (Redish 2004; Vulnerability 7), presumably through its direct effects on
dopamine (Kuhar et al. 1988; Ritz et al. 1987; Stuber et al. 2004; 2005). However, chronic
cocaine use can also produce long-term changes in μ- and κ-opiate receptor levels
(Shippenberg et al. 2001), suggesting it can also access the allostatic vulnerability
(Vulnerability 2). The appendix provides more details on drugs and the potential
vulnerabilities involved with each.

5.1. Individual vulnerabilities
One of the main thrusts of addiction research right now is the question of why some people
become addicted and some do not (Deroche-Gamonet et al. 2004; Koob & Le Moal 2006;
Tarter et al. 1998; Volkow & Li 2005b). These individual differences arise from an
interaction between the genetics of the individual, the development environment (social and
physical), the developmental stage of the individual, and the behavioral experience with the
addictive substance (Koob & Le Moal 2006; Kreek et al. 2005; Volkow & Li 2005a; 2005b).
Laying out the complete details of individual vulnerabilities are beyond the scope of this
article (and are in large part still unknown), but the multiple-vulnerabilities hypothesis put
forward here suggests a plan of attack to the problem. Addiction research has been
historically aimed at problems with a single drug (e.g., nicotine, heroin, alcohol, etc.) or at
unifying parameters across drugs (e.g., the role of dopamine). The multiple-vulnerabilities
hypothesis suggests that we should look, instead, at the potential vulnerabilities within the
natural learning system.

These vulnerabilities are likely to depend on a number of specific individual parameters. For
example, imagine an individual who was particularly sensitive to rewards and punishments.
That individual would be more susceptible to Vulnerability 3 in which a drug of abuse
produced a euphorigenic signal. Imagine an individual who was more likely to treat a
slightly new situation as new. Such an individual would be more susceptible to Vulnerability
6 in which wins and losses are not matched. Or imagine an individual in which the effect of
nicotine on dopamine was increased. Such an individual would receive a strong dopamine
kick with each puff of a cigarette and become particularly vulnerable to Vulnerability 7.
Perhaps, in some individuals, nicotine produces excessive dopamine release (Vulnerability
7), leading to a habit-like addiction, whereas in others, nicotine produces allostatic changes
(Vulnerability 2), leading to a maintenance-of-levels addiction. Other individuals may have
neither of these vulnerabilities, leaving them more resistant to becoming addicted to
nicotine.

5.2. Interactions among vulnerabilities
The failure points identified here are not mutually exclusive; they can co-occur. For
example, excess dopamine delivered simultaneously to the ventral striatal regions
(hypothesized to be involved in the planning system), to the dorsal striatal regions
(hypothesized to be involved in the habit system), and to the frontal cortices and
hippocampus (hypothesized to be involved in situation-categorization mechanisms) could
drive an individual into a host of vulnerabilities. Increased dopamine in the planning system
has been hypothesized to lead to increased motivational salience (Robinson & Berridge
2001; 2003; 2004; Vulnerability 4). Increased dopamine to the habit system has been
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hypothesized to lead to overvaluation of  associations (Bernheim & Rangel 2004;
Redish 2004; Vulnerability 7). Increased dopamine to the situation-categorization system
has been hypothesized to change the stability of categorization systems (Redish et al. 2007;
Seamans & Yang, 2004; Vulnerability 6). Thus, a single effect of a single drug can access
multiple failure points.

Drugs can also produce multiple effects, which can lead to multiple vulnerabilities all
leading to maladaptive decisions. For example, cocaine, amphetamine, and
methamphetamine pharmacologically block the dopamine transporter (Kuhar et al. 1988;
Ritz et al. 1987) leading to increases in dopamine in the ventral striatum (Stuber et al. 2005),
but long-term exposure also leads to changes in dopamine receptor levels (Letchworth et al.
2001; Porrino et al. 2004a; 2004b), to a decrease in dopamine release caused by other
mechanisms (Martinez et al. 2007), and to changes in long-term depression (LTD) and long-
term potentiation (LTP) in ventral (Thomas et al. 2001) and dorsal (Nishioku et al. 1999)
striatum. But long-term exposure to cocaine also produces changes in opioid-receptor
distributions (Shippenberg et al. 2001). Each of these effects can lead to an agent falling
victim to a different vulnerability, which can lead to separate mechanisms driving
maladaptive decisions.

Similarly, nicotine has multiple access points throughout the brain (Ikemoto et al. 2006).
Repeated nicotine use can lead to allostatic changes in response to the flooding of the system
with cholinergic agonists (Benowitz 1996; Koob & Le Moal 2006), but it also leads directly
to dopamine release (Pidoplichko et al. 1997), increases the effect of glutamatergic inputs to
the ventral tegmental area (Mansvelder & McGehee 2000), and strengthens the effect of
already present phasic dopaminergic signals (Rice & Cragg 2004). This combination of
vulnerabilities could lead to the subject falling victim to Vulnerability 2 (allostasis), to
Vulnerability 7 (overvaluation in the habit system), and to Vulnerability 10 (increased
learning rates of drug-related cues) simultaneously. Treatment of only the allostatic
component (such as through nicotine replacement therapy, Hanson et al. 2003; Rose et al.
1985) would not treat the simultaneous problem arising from the other vulnerabilities.

The fact that these vulnerabilities can interact implies interactions between drugs which can
lead to polydrug abuse. Drugs may be synergistic in their effects on a single vulnerability or
they may involve multiple vulnerabilities simultaneously. Cocaine and heroin both affect the
opiate system, and allostatic changes made in response to one drug may affect the
neurobiological response to another (Leri et al. 2003). Nicotine enhances already present
dopaminergic signals (Rice & Cragg 2004), thus the presence of nicotine (potentially
changing learning rates, Vulnerability 10) may enhance the ability of other drugs to drive
dopamine-produced overvaluation in the planning (Vulnerability 4) or habit systems
(Vulnerability 7). Similarly, amphetamine can sensitize cue-driven motivational signals
(Wyvell & Berridge 2000), which may explain some of the interaction between cocaine and
methamphetamine addiction and sexual behavior (Schneider & Irons 2001). Our theory
suggests that polydrug abuse arises from the same causes as drug abuse: Interactions
between the agent’s environment (drugs, cues, and experience) and the agent’s internal
decision-making system (genetics, planning, and habit systems) lead to the agent falling
victim to vulnerabilities in the decision-making system, leading to the continued use of
problematic drugs and behaviors.

We are not the first to suggest that decisions to take drugs or to gamble can arise as a
consequence of multiple processes. These multiple-process theories are generally discussed
in terms of a transition sequence from more cognitive, “planned” processes to less cognitive,
more “automatic” processes. For example, Everitt and Robbins (2005) suggest a transition
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sequence of “actions to habits to compulsion.” Oei and Baldwin (2002) suggest a transition
in alcohol consumption from a controlled process to a more automatic habit-based process.

In contrast, it is our contention that there are many paths through these vulnerabilities. It is
not always a transition from flexible planning strategies to automated habitual strategies.

Animal experiments have found numerous methods through which animals can appear to
lose control over drug-taking, including escalation due to extended exposure to drug
availability (Ahmed & Koob 1998; 1999; 2004; 2005; Vanderschuren & Everitt 2004),
incubation by separation after exposure to drugs (Bossert et al. 2005; Grimm et al. 2001),
relapse due to stress (Shaham et al. 2000; Shalev et al. 2000), relapse due to reinstatement
(de Wit & Stewart 1981; McFarland & Kalivas 2001), and even that susceptibility time-
courses can change between individuals due to unknown (potentially genetic) factors
(Deroche-Gamonet et al. 2004; Goldman et al. 2005; Hiroi & Agatsuma 2005; Ranaldi et al.
2001).

Agents can show addictive decisions through vulnerabilities in planning systems or through
vulnerabilities in habit systems or through vulnerabilities in the interaction between them.
Our suggestion is that there are many vulnerabilities in the decision-making system and thus
many ways for an agent to become addicted. This means that there are many transition
sequences as well.

5.3. Transitions
Clinically, the transition to addiction is usually described in terms of three stages: initial
exploratory or trial use, subsequent maintenance of drug use associated with the beginning
of strong desires (craving), followed in some users by a strong, habitual use in which the
user loses control of the drug use (Altman et al. 1996; Everitt & Robbins 2005; Kalivas &
Volkow 2005; Lowinson et al. 1997; Oei & Baldwin 2002; Robbins & Everitt 1999). This
sequence can be described as a path through the vulnerabilities of the decision systems: once
the drug or behavior has been sampled, it will be repeated due to euphorigenic,
pharmacological, or socially positive effects. Euphorigenic effects will drive repeated use
due to associated reward signals (Vulnerability 3). Pharmacological effects will drive
repeated use due to fast homeostatic changes (Vulnerability 1). It is also possible for drugs
that are not euphorigenic to be driven by associated socially positive associations, such as
has been hypothesized for tobacco (Bobo & Husten 2001; Cummings 2002), alcohol (Bobo
& Husten, 2001; Goldman et al. 1987; 1999), and caffeine (Greden & Walters 1997), which
we might categorize under Vulnerability 3. However, repeated use will lead to potentiation

of the  relationship in the planning system (Vulnerability 4) and to the development
of allostatic changes (Vulnerability 2), which will lead to strong desires and craving. With
sufficient habitual use, actions leading to drug use can become over-valued in the habit
system through increased value associated with an  relationship (Vulnerability 7). This
sequence parallels many examples of normal learning, proceeding from ventral to dorsal
striatal systems (Balleine & Dickinson 1998; Everitt et al. 2001; Haber et al. 2000;
Letchworth et al. 2001; Packard & McGaugh 1996).

This sequence will not be followed by all individuals or via all drugs of abuse. The timeline
with which individuals make these transitions from vulnerability to vulnerability likely
depends on a complex interaction between the genetics, development, and drug experience
of the individual. We do not expect all addicts to take the same path through this maze of
vulnerabilities.

Just as different tasks entail different interactions between planning and habit systems (some
tasks entail transitions from planning to habit, other tasks always require the planning
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system, other tasks require the habit system, and other tasks can entail transitions from habit
to more flexible planning systems), we expect different agents (with different genetics,
different experiences, etc.) to take different paths through these vulnerabilities. In addition,
just as some tasks entail an overlaying of automated habit-like strategies on top of planning-
based strategies (e.g., Packard & McGaugh 1996), treating the habit-based vulnerability of a
patient may uncover earlier planning-based vulnerabilities. Other agents can show addictive
decisions through vulnerabilities in habit or interactive systems without ever passing through
planning systems. It is also possible that habit-based addictive decisions may shift to
planning-based addictive decisions (e.g., when obstacles are put into place). We argue that,
in order to understand and treat the issue of addiction, we need to know not only where the
patient is in his or her trajectory through these vulnerabilities, but also which vulnerability
(vulnerabilities) the patient has fallen victim to.

5.4. Relapse
The fundamental issue with addiction is that of relapse, which can be defined as drug-
seeking or the making of the addictive choice, even after a period of abstinence.

Relapse has been studied both clinically by measuring populations remaining abstinent from
drug use and in animals identifying the return to responding for drug after forced removal
(extinction, forced abstinence). In humans, relapse can occur after re-exposure to the drug,
to cues associated with drug-taking and drug-seeking, and to stress (Self & Nestler 1998;
Shalev et al. 2002). Relapse to behavioral addictions (such as gambling) has not been
studied in the same detail, but we have suggested that gambling addiction may be related to
the reinstatement of responding seen after extinction of normal rewards (Redish et al. 2007,
see also Bouton 2002; 2004). In animals, a return to responding can occur due to acute re-
exposure to the drug, to cues associated with drug-taking and drug-seeking, and to stress
(Bossert et al. 2005; Kalivas et al. 2006; Shaham et al. 2003). The validity of the
reinstatement paradigm as a model of abstinence and relapse is still controversial (Kalivas et
al. 2006; Katz & Higgins 2003); nevertheless, the reinstatement paradigm can provide an
understanding of mechanisms by which relapse could occur (Epstein & Preston 2003).

All of the vulnerabilities noted earlier can potentially drive relapse to the addictive behavior,
but the path to relapse will differ depending on the vulnerabilities involved.

For example, relapse driven via homeostatic needs (Vulnerability 1) should occur through
the natural time-course of the homeostatic change. Relapse driven through allostatic needs
(Vulnerability 2) can be driven by changes in physiological set-points, driven in part by cues
or by circadian or other rhythmic changes. The natural time-course of these changes can be
seen in some smokers who show a circadian time-course of craving (Benowitz 1996; Perkins
2001; Schmitz et al. 1997). Allostatic set-points driving expectation can also be cue-driven
(Ehrman et al. 1992; Hunt 1998; Meyer & Mirin 1979; Siegel 1988). Experienced users can
show preparation tolerance with cues associated with heroin (Meyer & Mirin 1979; O’Brien
et al. 1977; Siegel 1988). Similarly, alcohol users show fewer coordination deficits under the
influence of alcohol in alcohol-associated environments (such as bars) than in non-alcohol-
associated environments (such as offices) (Hunt 1998). A number of authors have suggested
that relapse under stress may be due to cue-driven deviations from homeostatic set-points
(Ahmed & Koob 1997; Shaham et al. 2000; Shalev et al. 2000; Weiss et al. 2001).

Relapse caused by expectation (overvaluation in the planning system, Vulnerabilities 3 and

4) can be identified by “craving.” Such relapse can be triggered by a recall of an 
association, in which the agent recognizes an action-sequence that can get the agent from the
situation the agent is currently in (S) to an over-valued outcome (O). The recognition can be
cue-driven or may arise spontaneously, but in either case will entail an expectancy of the
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outcome. As noted earlier, correct decision-making within the planning component requires
a search of multiple possibilities. It is likely that once a pathway to a highly valued outcome
is recognized, the search will keep returning to that possibility, producing cognitive blinding
and obsession (Vulnerability 5). Both craving and obsession are common to pre-relapse
conditions in some (but not all) patients (Altman et al. 1996; Childress et al. 1988; Grant et
al. 2006; MacKillop & Monti 2007; O’Brien 2005; Sayette et al. 2000).

Note that our theory predicts that craving should be clinically separable from relapse:
Because the planning system is flexible, recognition of a path to an outcome (in our theory,
craving is recognition of a path to a high-valued outcome) does not necessarily lead to
taking that path. Thus, craving can occur without relapse. Because the habit system does not
include recognition of an outcome, in our theory, it does not produce craving. Thus, relapse
caused by overvaluation in the habit system (Vulnerability 7) may be robotic, without
craving, perhaps without even conscious recognition (Everitt & Robbins 2005; Robbins &
Everitt 1999). (Retrospectively, the addict may believe he or she craved the drug, whether or
not any actual craving occurred prospectively; Sayette et al. 2000.)

Multiple vulnerabilities can cause a relapse to the addictive choice, but the pathway to that
relapse may be different, depending on the vulnerability involved. Therefore, prevention of
relapse will also depend on treating the vulnerabilities involved.

5.5. Treatment
Each vulnerability drives the decision-making process towards the addictive choice and
provides a potential access-point for the addiction to relapse, but each vulnerability is a
different failure-point of the decision process and leads decision-making to error through a
different mechanism. Thus, each vulnerability is likely to require a different treatment
regimen. This concept (of different treatments for different vulnerabilities) has enjoyed
some recent success and been used to explain historical treatment failures. For example, in a
recent study (Grant et al. 2006), significant success was found in treating a subset of
pathological gamblers that showed strong urges (craving). Irvin and colleagues (Irvin &
Brandon 2000; Irvin et al. 2003) suggest that the well-documented decreasing success of
smoking cessation in tobacco studies is due to the presence of available over-the-counter
cessation-aid products and thus a changing distribution of smokers participating in the
studies.

Treatment of the homeostatic deviations and allostatic changes in nicotine through nicotine
replacement therapy has been extremely successful (Balfour & Fagerström 1996; Benowitz
1996; Hanson et al. 2003; O’Brien 2005; Rose et al. 1985). However, long-term relapse after
these treatments is notoriously high (Balfour & Fagerström 1996; Hanson et al. 2003; Monti
& MacKillop 2007). This is likely a consequence of the fact that nicotine replacement
therapy does not address the other vulnerabilities involved in nicotine addiction (e.g.,
Vulnerability 7).

Treatment of the planning vulnerabilities (Vulnerabilities 3, 4, and 5), which lead to excess
expectation of positive outcomes (see above) and may be identifiable through craving and
obsession (Redish & Johnson 2007), may depend on blocking the misevaluation process.
Opiate antagonists have been used to reduce craving in alcohol addictions (Kiefer & Mann
2005; O’Brien et al. 1996) and in gambling (Grant et al. 2006). Many heroin abusers on
naltrexone report no craving (Meyer & Mirin 1979; O’Brien 2005, but see Halikas 1997 for
another view). Whether this is due to controlling allostatic effects (Koob & Le Moal 2006)
or to the blocking of craving and the recognition of future rewards (O’Brien 2005) is still
unresolved. Naltrexone treatment of cocaine addicts failed to find a significant effect on
craving (Schmitz et al. 2001). It is clear that there is still work to be done to completely
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elucidate the specific relationship among clinically tested treatments, the qualia identified as
craving, and the potential vulnerabilities identified in this article.

Treatment of each vulnerability requires a regimen specifically designed to address that
vulnerability. For example, the homeostatic and allostatic vulnerabilities (Vulnerabilities 1
and 2) likely require pharmacological treatment to rebalance the system. Overvaluation in
the planning system (Vulnerabilities 3, 4, and 5) likely requires treatment to change the
recall and re-evaluation processes, either through pharmacological means or through
cognitive behavioral re-training, or some combination of the two. Overvaluation and over-
strengthening in the habit system (Vulnerabilities 7 and 8) likely require mechanisms with
which to strengthen alternative choices available in the planning system. Miscategorization
of situations (Vulnerability 6) likely requires treatments aimed at executive function and its
role in re-categorizing situations. Although we have not proposed specific treatments for any
of these vulnerabilities, it is our contention that these failure modes are treatable and that
treatments aimed at these specific modes are more likely to be successful than general
treatments aimed at the general addicted population.

In general, we propose that the clinical treatment of addiction should not be addressed to the
general addicted population, or to specific drugs of abuse. Instead, we propose that treatment
should first entail the identification of which vulnerabilities have been triggered within the
individual, and then treatment should be addressed to the specific constellation of
vulnerabilities into which the addicted patient has fallen.

6. Future work is still needed
The thesis of this review is that addiction arises from vulnerabilities inherent in the decision-
making system within the brain. Susceptibility to these vulnerabilities arises through an
interaction among the genetics of the individual, the development environment, the social
milieu, and the behavioral experience of the individual. We have outlined several
vulnerabilities that arise from current theories of the mammalian decision-making system.
However, it is important to note that the understanding of that decision-making system is
still incomplete.

Exactly what differentiates the planning and habit systems is still being debated (e.g., Daw
et al. 2005; Dayan & Balleine 2002; Redish & Johnson 2007). Detailed computational
models of the habit system have been developed (Montague et al. 1996; Samejima et al.
2005; Suri & Schultz 1999, but see Berridge 2007, for an alternate view), including how
those systems could produce addiction-like behavior (Bernheim & Rangel 2004; Redish
2004). But computational models of the planning system are still in their earliest stages
(Daw et al. 2005; Johnson & Redish 2005; Zilli & Hasselmo, 2008). How these systems
interact to produce behavior is still unknown.

A number of open questions still remain. For example, the decision-making theories
discussed in this article are primarily about reinforcement (delivery of unexpected reward)
and disappointment (non-delivery of expected reward). The role of aversion (delivery of
punishment) and relief (non-delivery of expected punishment) in these decision-making
systems is still unresolved. Negative symptoms clearly play important roles in addiction
(Gawin 1991; Jaffe 1992; Koob & Le Moal 2001; 2005; 2006; O’Brien et al. 1992). How to
incorporate those negative symptoms beyond homeostatic (Vulnerability 1) and allostatic
(Vulnerability 2) effects is still unclear. Detailed decision-making models in the face of
aversion and relief may help elucidate these issues. The fear-conditioning and extinction
literature (Domjan 1998; Myers & Davis 2002; 2007) and the roles of the amygdala (Paré et
al. 2004; Phelps & LeDoux 2005; Rodrigues et al. 2004) and prefrontal cortex (Milad &
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Quirk 2002; Quirk et al. 2006) therein are likely to be important starting points for these
models.

Similarly, the key parameters that underlie individual differences are still unknown,
including whether those key parameters are genetic, environmental, or some combination
thereof (Kreek et al. 2005; Volkow & Li 2005b). Models of decision-making can provide
candidate variables that may vary across the population, which may change susceptibilities
to specific vulnerabilities and would lead to individual reactions to drugs of abuse or
potentially addictive behaviors.

The key social definition of a problem addiction relates to the cost to the individual and to
society of the addiction. Whereas methamphetamine addiction is a terrible burden on society
and thus leads to extreme measures taken to prevent it, caffeine addiction leads to a minor
inconvenience to an individual and little or no burden on society. In part, we believe that
these differences arise from the different vulnerabilities impacted by these drugs. Problem
gambling is often classified as an addiction due in large part to the extreme costs paid by
“addicted” individuals. Whether other behaviors, such as shopping or Internet use, should be
counted as addictions is an open question (Holden 2001). In this article, we have proposed a
new framework for understanding addiction. This new framework provides a new definition
of addiction itself as decisions made due to failure modes in the decision-making system.
How serious each failure mode is, whether it should be treated, and how it should be treated,
are clinical and policy issues that need to be addressed in the future.

The list of vulnerabilities laid out in this target article are certainly incomplete. There are
likely to be other processes beyond decision-making that can drive errors, including errors in
probability recognition (Kahneman et al. 1982), different responses to gains and losses
(Kahneman & Tversky 2000), and errors in memory itself (Schacter 2001). We have not
fully explored the potential interactions between the decision-making vulnerabilities, nor
have we fully explored the interaction between decision-making vulnerabilities and other
memory-based errors.

Clinically, we cannot yet relate these potential vulnerabilities to other action-selection and
decision-making disorders such as obsessive-compulsive disorder, Tourette’s syndrome,
depression, mania disorders, anxiety disorders, impulsivity disorders, and so on. However,
we believe that the paradigm laid out in this article (taking a basic-science understanding of
action-selection and decision-making and identifying failure modes) is likely to be fruitful
for understanding many other psychiatric disorders beyond addiction.

More importantly, however, we do not yet have specific clinical instruments with which to
identify the presence or absence of each vulnerability within an individual, nor do we have
specific clinical treatments (pharmacological, behavioral, or otherwise) to suggest. Our
hope, however, is that the framework laid out in this article and the identification of these
vulnerabilities can lead to research aimed at identification and treatment.

More work elucidating an understanding of the mammalian decision-making system is
clearly needed, but we believe that the current understanding of this system can already
illuminate addictive processes. It is our belief that an interaction between basic science
research on decision-making, basic science research on the neurophysiological effects of
addictive substances and behaviors, and the clinical consequences of addiction will
illuminate both processes and will provide new avenues for the treatment of addiction.
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APPENDIX
The vulnerabilities hypothesis laid out in this target article provides a taxonomy of addictive
processes. This means that it should be possible to characterize the effects of drugs of abuse
(and problematic behaviors) in terms of these vulnerabilities in the decision-making system.
In this appendix, we address the clinical and neurophysiological effects of known drugs of
abuse in the light of the vulnerabilities identified in the text: cocaine and psychostimulants
(A), opiates (B), nicotine (C), alcohol (D), and caffeine (E). Finally, we discuss problem
gambling (F).

A. Cocaine and the psychostimulants
The primary neurobiological effect of cocaine and the psychostimulants is to produce large
increases of dopamine pharmacologically, by blocking dopamine reuptake (cocaine, Chen et
al. 2006; Kuhar et al. 1988; Ritz et al. 1987)15 or releasing dopamine-containing vesicles
(amphetamine, Sulzer et al. 2005). These can be measured quantitatively throughout the
dorsal and ventral striatum, and continue to appear, even after cocaine is well predicted (Ito
et al. 2002; Roitman et al. 2004; Stuber et al. 2005). This dopamine release bypasses the
brain’s computational systems, which direct when and how dopamine should be released
(Schultz 1998; 2002). This non-compensable dopamine release (Di Chiara 1999) has been
hypothesized to lead to an overvaluation within the habit system (Bernheim & Rangel 2004;
Redish 2004; Vulnerability 7). However, cocaine also leads to dopamine release in the

15Note that cocaine similarly blocks reuptake of norepinephrine and serotonin through blockage of their respective transporters (Ritz
et al. 1987); however, the behavioral/addictive consequences of these effects are not known.
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ventral striatum (Ito et al. 2000; Roitman et al. 2004; Stuber et al. 2005), which can lead to
development of over-valuation in the planning system as well (Vulnerability 4).

Cocaine intake also produces transient euphoric highs (Balster 1973; Gold 1997; Volkow et
al. 2003), which implies a component that can mimic reward (Vulnerability 3), followed by
a very strong post-high crash (Gawin 1991; Koob & Le Moal 2006), which may imply a role
of homeostatic mechanisms (Vulnerability 1). One potential issue is that psychostimulants
can enhance performance of simple tasks and are sometimes used in reaction to fatigue and
boredom (Koob & Le Moal 2006), again implying a potential vulnerability in the relief of
homeostatic deviations (Vulnerability 1). With repeated use, users become tolerant to
dosages and the subjective high becomes harder to reach with a given dose (suggesting a
role for allostasis, Koob & Le Moal 2006; Vulnerability 2).

Cocaine craving is extremely cue-sensitive, in that cues associated with cocaine use lead to
strong cravings (Childress et al. 1988; 1992; O’Brien et al. 1992), involving memory circuits
including the hippocampus, ventral striatum, and orbitofrontal cortex (Childress et al. 1999;
Garavan et al. 2000; Grant et al. 1996; Volkow et al. 2003). These circuits are key

components of the planning system and suggest an involvement of excess 
associations, possibly driven by dopamine in the limbic structures (implying a role for
Vulnerabilities 4 and 5). However, cocaine craving can be separated from drug-seeking
behavior (Dudish-Poulsen & Hatsukami 1997), suggesting that, for some patients, drug-
seeking depends on the non-craving-producing vulnerabilities. Anecdotal descriptions
suggest the presence of cue-induced “robotic” relapse in the absence of identified craving
(Altman et al. 1996, implying a role for Vulnerability 7).

Some researchers have found that cocaine-seeking is goal-directed (Olmstead et al. 2001),
implying an involvement of the planning system (Vulnerabilties 1 to 5). However, cocaine
and amphetamine have long been associated with motor stereotypies associated with habit-
system structures such as the dorsal striatum (Johanson & Fischman 1989; Koob & Le Moal
2006), implying an involvement of Vulnerability 7. Other researchers have found that prior
treatment with amphetamine can lead to a faster development of automated behaviors, even
during navigation and food-seeking (Nelson & Killcross 2006; O’Tuatheigh et al. 2003),
implying an involvement of Vulnerability 8. That many vulnerabilities are accessed by
cocaine may be one of the reasons why successful treatment has been so elusive.

B. Opiates
Opiates have been noted as a drug of choice since ancient times (Koob & Le Moal 2006).
Modern opiates include the processed forms of the opium poppy, including opium,
morphine, heroin, meperidine (Demerol), oxycodone (OxyContin), and codeine. Abused
opiate drugs are all strong agonists of the μ-opioid receptor (Jaffe et al. 1997; Negus et al.
1993; van Ree et al. 1999), in contrast to drugs that have strong κ-agonist properties (Jaffe et
al. 1997).

Five components of the reaction to opioid intake have been identified (Koob & Le Moal
2006): a euphoric rush of intense pleasure, often characterized by analogy to sexual orgasm,
followed by a general feeling of well-being, followed then by a detached, separated state
which can include virtual unconsciousness, and finally, a fade back to an appearance of
normality. This is then followed by a fifth, highly dysphoric withdrawal state (Jaffe et al.
1997; Koob & Le Moal 2006).

The presence of the intense euphorigenia suggests a relationship to Vulnerability 3. The
development of tolerance and the presence of a withdrawal state suggest a potential
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implication of Vulnerability 2. The fact that the withdrawal can occur after only a single use
(Azolosa et al. 1994; Harris & Gewirtz 2005; Koob & Le Moal 2006) suggests the presence
of homeostatic changes (Vulnerability 1) as well as long-term allostatic changes
(Vulnerability 2). However, relapse can also occur well after all identified withdrawal
symptoms have subsided (Shalev et al. 2002).

One potential explanation for relapse long after obvious withdrawal symptoms have faded is
changes in expectations arising from associations with environmental stimuli (Meyer &
Mirin 1979). Homeostatic expectation can also be cue-driven (Ehrman et al. 1992; Meyer &
Mirin 1979; Siegel 1988). Experienced users can show preparation tolerance with cues
associated with heroin (Meyer & Mirin 1979; O’Brien et al. 1977; Siegel 1988). However,
opiate addicts are not generally described as “robotic” (Altman et al. 1996), and opiate
addiction generally involves a strong craving component (Meyer & Mirin 1979). These data
suggest that the environmental stimuli are more related to  associations, rather than

 associations, implying a stronger involvement of the planning system (Vulnerabilities 4
and 5) than of the habit system (Vulnerability 7).

Many studies have reported that heroin delivery leads to dopamine activity in vitro (Johnson
& North 1992) and dopamine release in the accumbens shell in vivo (Caillé & Parsons 2003;
Hemby et al. 1995; Kiyatkin 1994; Kiyatkin & Rebec 1997; Tanda et al. 1997; Wise et al.
1995; Xi et al. 1998). Although cocaine and psychostimulants always increase dopamine
levels in the nucleus accumbens and striatum, no matter how well predicted (Stuber et al.
2005), Hemby et al. (1995) have reported that heroin only increases dopamine in
unpredicted conditions. This finding, however, has not been replicated by other labs (Caillé
& Parsons 2003; Wise et al. 1995; Xi et al. 1998) which have found that heroin self-
administration does increase dopamine levels in the nucleus accumbens. Kiyatkin and Rebec
(1997; 2001) report an increase in dopamine in the nucleus accumbens on initiation of self-
administration, in preparation for self-administration, and in response to presentation of a
heroin-associated cue, but a sudden drop in response to the actual delivery of heroin during
self-administration maintenance. This sequence is very similar to that seen in the lever-press
for food (Kiyatkin & Gratton 1994; Schultz 1998; 2002), but very different from cocaine
(Roitman et al. 2004; Stuber et al. 2005). Kiyatkin (1994) also reports that passive delivery
of heroin led to long-term increases in dopamine similar to that reported by Hemby et al.
(1995). Recently Georges et al. (2006) found no effect of morphine on dopamine cells in
vivo in morphine-dependent rats. We suggest that re-examining these data in light of the
hypothesized roles of the dopamine and opiate systems (Berridge & Robinson, 1998; 2003;
Montague et al. 1996; Redish, 2004; Redish & Johnson 2007; Schultz 1998; 2002; and see
target article earlier) may be fruitful, and we believe that these data suggest that opiate
addiction is not likely to involve Vulnerability 7.

C. Nicotine
Nicotine is the primary addictive substance in tobacco products, including cigarettes, as well
as smokeless tobacco products (Schmitz et al. 1997). Nicotine is extremely addictive, with a
very large proportion of teenagers who sample cigarettes eventually succumbing to long-
term regular use (Russell 1990). The neurobiological effects of nicotine are well reviewed
elsewhere (Benowitz 1996; Koob & Le Moal 2006) and therefore not reviewed here.
Nicotine treatment has primarily been through prevention education (Fiore 2000; Schmitz et
al. 1997) and nicotine replacement therapy (Balfour & Fagerström 1996; Benowitz 1996;
Hanson et al. 2003; O’Brien 2005; Rose et al. 1985). However, replacement therapy is
susceptible to relapse (Balfour & Fagerström 1996; Fiore 2000; Hanson et al. 2003), and
current treatments are becoming less successful over time, possibly due to differences in the
population still smoking (Irvin & Brandon 2000; Irvin et al. 2003).
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Nicotine is, however, dysphoric on initial use (Heishman & Henningfield 2000; Perkins
2001; Perkins et al. 1996). Thus, it is unlikely to access Vulnerability 1 or Vulnerability 3.
However, attitudes towards nicotine products can drive positive views of use, which may
lead to social pressures that can support initial usage (Cummings 2002).

Nicotine also leads to very large changes in allostatic levels of acetylcholine, dopamine, and
other neuromodulators (Flores et al. 1997; Koob & Le Moal 2006; Marks et al. 1992), which
would access Vulnerability 2. These allostatic effects may be due to changes in levels of
cholinergic receptors in the brain (Flores et al. 1997; Koob & Le Moal 2006; Marks et al.
1992). Deviations from allostatic levels lead to very powerful withdrawal effects (Schmitz et
al. 1997), which presumably reflect changes in the perceived needs of an agent, which
would lead to strong cravings aimed at restoring those deviations. These deviations can be
seen in a daily cycle in the reaction to the initial cigarette of the day (Perkins et al. 1996). It
is likely that nicotine replacement therapy can affect these allostatic levels, which may
suggest that replacement therapy is treating Vulnerability 2.

However, nicotine increases the activity of dopamine neurons through the activity of
nicotinic acetylcholine receptors on dopamine neurons (Mansvelder & McGehee 2002;
Pidoplichko et al. 1997). In addition, nicotine increases the effectiveness of associated
dopaminergic signals (Rice & Cragg 2004). These effects could lead to non-compensable
value-prediction-error signals (Redish 2004), which would suggest that nicotine use is likely
to access Vulnerability 7. This vulnerability would lead to excess cue-related triggers.
Nicotine shows a particularly high cue-related susceptibility to relapse (Chiamulera 2005;
Kenny & Markou 2005; LeSage et al. 2004). Extinction and behavioral treatments
potentially aimed at Vulnerability 7 have had limited success so far (Monti & MacKillop
2007; Schmitz et al. 1997). Providing valuable alternatives has had some success (Higgins et
al. 2002).

D. Alcohol
Alcohol has long been identified as a drug of abuse, and it may be one of the first drugs to
have been regularly abused by humans (Goodwin & Gabrielli 1997). The neurobiological
effects of alcohol are well reviewed elsewhere (Hunt 1998; Koob & Le Moal 2006;
Valenzuela & Harris 1997) and hence not reviewed here. Alcohol has extensive
neurobiological effects, both in terms of acute effects on membrane lipids and on ion
channels as well as long-term changes in expression of GABAA and NMDA receptors (Hunt
1998; Littleton 1998; Valenzuela & Harris 1997). This may be indicative of allostatic
changes (Vulnerability 2). Supporting these hypotheses, alcohol intake leads to very strong
withdrawal symptoms (Goodwin & Gabrielli 1997; Hunt 1998), both in terms of acute
intake (e.g., a hangover, Swift & Davidson 1998, suggesting an involvement of
Vulnerability 1) and after chronic, long-term intake (Saitz 1998, suggesting involvement of
Vulnerability 2).

Much of the theoretical drive behind an understanding of alcohol addiction has arisen from
the relationship between cognitive expectancies and alcohol consumption (“alcohol
expectancy theory”; Goldman et al. 1987; 1999; Jones et al. 2001). These expectancies can
be related to the “if-then” cognitive component of the planning system. Thus, early
consumption can be due to positive expectations in the planning system (Vulnerability 3).
There is a strong interaction between alcohol and the endogenous opioid systems (Herz
1997). Some success has been found from pharmacological treatment with opioid
antagonists such as naltrexone in alcoholic subjects, particularly in reducing craving
(O’Brien et al. 1996; Sinha & O’Malley 1999). Alcohol addiction shows a strong cue-driven
craving and desire (Childress et al. 1993; Hunt 1998; MacKillop & Monti 2007; Sinha &
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O’Malley 1999), suggesting involvement of the planning system. Alcohol users show fewer
coordination deficits under the influence of alcohol in alcohol-associated environments
(such as bars) than in non-alcohol-associated environments (such as offices), suggesting a
cue-driven preparation due to expectation of alcohol intake (Hunt 1998). However,
Dickinson et al. (2002) found that alcohol intake did not show devaluation even when a
comparably trained food-reward did, suggesting a developing involvement of the habit
system. Some theories of alcohol consumption have been explicitly tied to the transition
from cognitive to automatic learning (Oei & Baldwin 2002). Neurobiologically, the effects
of heavy drinking are concentrated on hippocampal and prefrontal cortical function
(Devenport et al. 1981a; Hunt 1998; Oscar-Berman & Marinkovic 2003; White 2003),
which may lead to an imbalance between the planning and habit systems (Vulnerability 8).

Genetic effects on alcoholism have been well studied (Dick et al. 2006; Herz 1997; Stewart
& Li 1997), in particular, in the relationship between genes involved in negative
consequences of drinking alcohol (Nurnberger & Bierut 2007). Not surprisingly, people who
experience more negative consequences during early drinking experiences are less likely to
become addicted to alcohol (Goldman et al. 1999).

Alcohol addiction is clearly a spectrum disorder, with a wide variety of paths to dependence
(Nurnberger & Bierut 2007). Alcohol intake stimulates dopaminergic neurons in the ventral
tegmental area (VTA) and substantia nigra; however, these effects are dependent on the
intermediate release of opioid peptides (Di Chiara 1997). It is an interesting (and open)
question whether the dopamine release due to alcohol intake is more akin to the non-
compensable effect of cocaine (Stuber et al. 2005, suggesting influence of Vulnerability 7;
Redish 2004) or to the compensable effect of food (Schultz 1998, suggesting influence of
Vulnerability 3; Redish & Johnson 2007).

E. Caffeine
Although caffeine is often not treated as a typical drug of abuse (Koob & Le Moal 2006),
and is not regulated legally at this time, it does have strong psychopharmacological effects
and has been identified as leading to a measurable drug-dependence (Daly & Fredholm
1998; Evans 1998; Greden & Walters 1997). The most noticeable affect of caffeine related
to abuse is the well-identified caffeine withdrawal syndrome (Evans 1998; Nehlig 1999),
which can last for several days once caffeine intake has been stopped. However, after that,
there is a very low level of subsequent relapse, and neither craving for caffeine nor robotic
automatic caffeine-ingestion behaviors appear. Subjects showing strong withdrawal
symptoms are significantly more likely to self-administer caffeine than subjects not showing
strong withdrawal symptoms, suggesting that the re-establishment of homeostasis underlies
much of the caffeine addiction. This suggests that the primary effect of caffeine is due to
easily reversible homeostatic (Vulnerability 1) or allostatic (Vulnerability 2) effects.
Evidence suggests that large doses of caffeine can lead to dopamine release in both
accumbens and caudate nucleus, but only in doses much higher than typically seen in human
consumption (Nehlig 1999; Nehlig & Boyet 2000). This suggests that caffeine is unlikely to
access the other vulnerabilities, which may explain the ease with which caffeine intake can
often be stopped.

F. Gambling
Although gambling does not entail direct pharmacological manipulation of the decision-
making system, it has been suggested to share many properties with the pharmacological
addictions (Dickerson & O’Connor 2006; Potenza et al. 2001), in large part because it
entails obvious (and often explicitly acknowledged) problematic decision-making
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(Dickerson & O’Connor 2006; Potenza 2006; Raylu & Oei 2002; Toneatto et al. 1997;
Walker 1992a). Because the primary argument of our unified framework is that addiction
entails vulnerabilities in decision-making, we argue that pathological gambling can also be
explained within this framework.

The key to pathological gambling has been suggested to lie in distortions in estimates of the
value of certain decisions. Agents in general show deficits and distortions in probability
estimates, particularly in the difference between probabilities of wins and losses in the face
of noisy variables (Dickerson & O’Connor 2006; Griffiths 1994). These deficits may lead to
the process known as the “illusion of control” in which agents believe they can control
probabilistic situations due to a miscalculation of predictability relationships between cues
and outcomes (Langer & Roth 1975; Sylvain et al. 1997). This can lead to “hindsight bias,”
in which gamblers explain away losses through the back identification of differential cues
(Custer 1984; Wagenaar 1988). A number of researchers have argued that these may be the
key to the process of “chasing” in which gamblers try to recapture losses by risking larger
and larger gambles (Dickerson & O’Connor 2006; Lesieur 1977; Wagenaar 1988). These
descriptions suggest that a large part of the gambling addictive process is due to
Vulnerability 6 (Redish et al. 2007).

As noted by Parke and Griffiths (2004), an effective way to create a near miss in a gambling
context is to manipulate the “trail” by which the gambler completes the process (Dickerson
& O’Connor 2006). This can provide the user with additional cues to identify the situations
categorized, providing the user with (incorrect) support for the hypothesis that there is a
controllable sequence of situations, which, if the gambler could only control correctly,
would lead to the win. Over the last several decades, manufacturers have changed lottery
cards, video poker, and slot machines to add additional complexity, providing additional
variables and additional cues (Dickerson & O’Connor 2006; Parke & Griffiths 2004), which
would increase the likelihood of misclassification of situations (Redish et al. 2007).

This classification component plays a role in both the planning and the habit components,
and therefore, we can expect gamblers to potentially show key aspects of the planning or the
habit systems or both. Gamblers with problems associated with inputs to the planning
system may show the signs of planning system deficits, including explicit expectations,
craving, and complex, planned behaviors. Gamblers with problems associated with inputs to
the habit system may show a more robotic, less self-recognized gambling behavior. Whether
these differences translate to differences in preferred games is unknown but may be a
testable avenue for future research.

The opiate antagonists naltrexone (Potenza et al. 2001) and nalmefene (Grant et al. 2006)
are effective in the short-term treatment of gambling addiction, but only in subjects with
strong gambling urges (i.e., craving, thus suggesting an involvement of the planning system
over the habit system). No effective treatment has yet been found for pathological gamblers
who do not show strong urges (i.e., suggesting a primary involvement of the habit system
over the planning system).

Whether other vulnerabilities (such as an over-release of dopamine with monetary wins) can
also lead to pathological gambling is still unknown, but a number of researchers have
suggested that there are multiple pathways to pathological gambling (Dickerson &
O’Connor 2006).
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Figure 1.
Structure of decision making in mammalian agents. Components of the more flexible,
planning-based system are shown in light gray; components of the less flexible, habit-based
system are shown in dark gray. Components involved in both are shown in gradient color.
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Table 1

Theories of addiction

Opponent processes Changes in allostatic and homeostatic needs a

Hedonic processes Pharmacological access to hedonically positive signals b

Incentive salience Sensitization of motivational signals c

Noncompensable DA Leading to an overvaluation of drug-seeking d

Impulsivity Overemphasis on a buy-now, pay-later strategy e

Illusion of control Misclassification of wins and losses f

Shifting balances Development of habits over flexible systems g

Related References:

a
Solomon and Corbit (1973; 1974); Koob and Le Moal (1997; 2001; 2005; 2006).

b
Kalivas and Volkow (2005); Volkow et al. (2003, 2004); Wise (2004).

c
Berridge and Robinson (1998; 2003); Robinson and Berridge (1993; 2001; 2003; 2004).

d
Bernheim and Rangel (2004); Di Chiara (1999); Redish (2004).

e
Ainslie (1992; 2001); Ainslie and Monterosso (2004); Bickel and Marsch (2001); Reynolds (2006).

f
Custer (1984); Griffiths (1994); Langer and Roth (1975); Redish et al. (2007); Wagenaar (1988).

g
Everitt and Wolf (2002); Everitt et al. (2001); Nelson and Killcross (2006); Robbins and Everitt (1999).
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Table 2

Learning theory and decision-making

System Description Learning Theory Expectation

Observation S → O Pavlovian S-S E(O)

Planning Pavlovian with action S-O E(O)→E(V)

Planning Instrumental A-O E(O)→E(V)

Habit Habit S-R E(V)
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Table 3

Two systems

Planning System Habit System

Literature

Animal navigation Cognitive map Route, taxon, response

Animal behavior S-O, S-A-O, A-O S-A, S-R

Memory systems Cognitive Habit

Learning and memory Episodic (declarative) Procedural

Cognition Explicit Implicit

Machine learning Forward-search Action-caching

Properties

Flexibility Flexible Rigid

Execution speed Slow Fast

Learning speed Quick Slow

Devaluation? Yes No

Key Anatomical Structures

Striatum Ventral, dorsomedial striatum (accumbens, head of the caudate) Dorsolateral striatum (caudate, putamen)

Frontal cortex Prelimbic, orbitofrontal cortex Infralimbic, other components?

Hippocampal involvement Hippocampus (yes) ——— (no)

Dopaminergic inputs Ventral tegmental area Substantia nigra pars compacta
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Table 4

Failure modes in the decision-making system provide a taxonomy of vulnerabilities to addiction

Failure Point Description Key Systems Clinical Consequence

Vulnerability 1 Moving away from homeostasis Planning Withdrawal

Vulnerability 2 Changing allostatic set points Planning Changed physiological set points, craving

Vulnerability 3 Mimicking reward Planning Incorrect action-selection, craving.

Vulnerability 4 Sensitization of motivation Planning Incorrect action-selection, craving.

Vulnerability 5
Increased likelihood of retrieving a specific

 relation

Planning Obsession

Vulnerability 6a Misclassification of situations: overcategorization Situation-recognition Illusion of control, hindsight bias

Vulnerability 6b Misclassification of situations: overgeneralization Situation-recognition Perseveration in the face of losses

Vulnerability 7 Overvaluation of actions Habit Automated, robotic drug-use

Vulnerability 8 Selective inhibition of the planning system System-Selection Fast development of habit learning

Vulnerability 9 Overfast discounting processes Planning, habit Impulsivity

Vulnerability 10 Changes in learning rates Planning, habit Excess drug-related cue associations

Note. Because Vulnerability 6 affects the situation S term in both planning and habit systems, we identify it as affecting “situation-recognition.”
Vulnerability 8 affects the interaction between the planning and habit systems. Vulnerabilities 9 and 10 can affect components of the planning and
habit systems. Detailed models of the effects of these last two vulnerabilities on the systems are as yet unavailable.

Behav Brain Sci. Author manuscript; available in PMC 2013 September 16.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Redish et al. Page 85

Table 5

Relation between identified vulnerabilities and current theories of addiction

Current Theory Related Vulnerabilities

Homeostatic changesa Deviations from homeostatic set-points drives the system to restore original
homeostatic levels.

Vulnerability 1

Allostatic changesb Changes in the homeostatic set-points drives the system to achieve incorrect
homeostatic levels.

Vulnerability 2

Reward-based processingc Pharmacological access to reward signals drives the return to those signals Vulnerability 3

Incentive-salienced Sensitization of motivational signals drives excess motivation for certain events Vulnerability 4

Unmitigated cravinge Increased expectation of reward with experience drives craving Vulnerabilities 3, 4

Noncompensable dopaminef Excess positive value-error signals lead to an overvaluation of drug-seeking Vulnerability 7

The illusion of controlg Incorrect expectations of control of situations leads to a willingness to gamble Vulnerability 6a

Impulsivityh Unwillingness to weigh future events leads to impulsive choices Vulnerabilities 8, 9

Decreased executive functioni An inability to plan makes it difficult to break habits through cognitive
mechanisms

Vulnerabilities 6b, 8

Alcohol expectancy theoryj Expectance of positive rewards are associated with alcohol consumption. These
expectancies develop into automated processes under certain conditions

Vulnerabilities 3, 8

a
Becker and Murphy (1988); Harris & Gewirtz (2005); Koob and Le Moal (2006).

b
Becker and Murphy (1988); Koob and Le Moal (1997; 2001; 2005; 2006); Solomon and Corbit (1973; 1974).

c
Kalivas and Volkow (2005); Volkow et al. (2003; 2004); Wise (2004).

d
Berridge and Robinson (1998; 2003); Robinson and Berridge (1993; 2001; 2003; 2004).

e
Drummond (2001); Goldman et al. (1987; 1999); Halikas (1997); Hommer (1999).

f
Bernheim and Rangel (2004); Di Chiara (1999); Redish (2004).

g
Custer (1984); Griffiths (1994); Langer and Roth (1975); Redish et al. (2007); Sylvain et al. (1997); Wagenaar (1988).

h
Ainslie (1992; 2001); Ainslie and Monterosso (2004); Bickel and Marsch (2001); Giordano et al. (2002); Odum et al. (2002).

i
Bickel et al. (2007); Everitt et al. (2001); Everitt and Wolf (2002); Nelson and Killcross (2006); Robbins & Everitt (1999).

j
Goldman et al. (1987; 1999); Jones et al. (2001); Oei and Baldwin (2002).
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