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Despite recent progress on estimating the heritability explained by genotyped SNPs (hg
2), a large 

gap between hg
2 and estimates of total narrow-sense heritability (h2) remains. Explanations for 

this gap include rare variants, or upward bias in family-based estimates of h2 due to shared 

environment or epistasis. We estimate h2 from unrelated individuals in admixed populations by 

first estimating the heritability explained by local ancestry (hγ2). We show that hγ2 = 

2FSTCθ(1−θ)h2, where FSTC measures frequency differences between populations at causal loci 

and θ is the genome-wide ancestry proportion. Our approach is not susceptible to biases caused by 

epistasis or shared environment. We examined 21,497 African Americans from three cohorts, 

analyzing 13 phenotypes. For height and BMI, we obtained h2 estimates of 0.55 ± 0.09 and 0.23 ± 

0.06, respectively, which are larger than estimates of hg
2 in these and other data, but smaller than 

family-based estimates of h2.

Introduction

Understanding the genetic architecture of complex human phenotypes is a fundamental 

question to the field of genetics, with broad implications for identifying genes related to 

disease and predicting individual risk profiles1-6. A central element of this problem is 

estimating narrow-sense heritability (h2), the fraction of phenotypic variation in a population 

determined by genetic variation under an additive model7. While the last decade of genome-

wide association studies (GWAS) produced thousands of novel loci associated with 

hundreds of phenotypes8, the sum of their effects ( ) explain only a small fraction of the 

estimated heritability for most phenotypes5. The gap between  and h2 is called the 

“missing heritability” and several explanations for this difference have been posited, 

including upward bias in estimates of h22,4,9. The objective of this work is to develop a 

method for estimating h2 (defined in Methods) that (1) does not require closely related 

individuals, (2) can be applied to both quantitative and case-control phenotypes, and (3) is 

able to localize narrow-sense heritability to individual chromosomes or other genomic 

segments.

Current approaches to heritability estimation proceed by phenotyping many closely related 

individuals with a known genetic relationship, such as monozygotic (MZ) and dizygotic 

(DZ) twins7. Yang et al.10 avoided the use of related individuals by applying linear mixed 

models to estimate the heritability explained by genotyped SNPs (hg
2). hg

2 corresponds to 

the fraction of phenotypic variation that could be captured by  under an additive model 

if GWAS sample sizes were infinitely large. While current estimates of hg
2 are often much 

larger than , they are typically only slightly more than half of h2 11. One reason hg
2 is 

less than h2 is because hg
2 does not include the contribution of variants poorly tagged by the 

genotyping platform, such as rare variants. Another reason for the difference in heritability 

estimates is that existing methods for estimating h2 can be biased12,13, since they rely on 

related individuals. As a result, epistatic interactions between SNPs, gene environment 

interactions, and the shared environmental factors of related individuals can all lead to 

inflated estimates of h2 12,13. We recently showed that by jointly using related and unrelated 

individuals it is possible to obtain less biased estimates of h2 11. However, the joint fit will 
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still lead to inflated estimates of h2 in the presence of shared environment11, and can not be 

applied to case-control phenotypes.

In this work we propose a new approach for estimating h2, which takes as input the 

phenotypes and genotypes of admixed individuals such as African Americans. We show via 

analytical derivation as well as extensive simulation over both simulated and real genotype 

data that heritability explained by local ancestry (hγ2) is related to the total narrow sense 

heritability h2 via the equation hγ2 = 2FSTCθ(1−θ)h2, where FSTC is a specific measure of 

weighted allele frequency differences between ancestral populations at causal loci (see 

Online Methods) and θ is the fraction of European ancestry14,15. Since our approach does 

not use closely related individuals it is free from bias due to epistasis, gene environment 

interactions, and shared environment effects. Unlike previous work in which h2 estimates 

could not be obtained for case-control phenotypes11, our current approach can obtain 

estimates of h2 for both quantitative and case-control phenotypes, achieving goals (1) and 

(2). Furthermore, unlike previous methods that provide genome-wide estimates, we are able 

to estimate h2 for a particular genomic region, such as a chromosome, achieving goal (3). 

Our approach can be applied to all existing and future GWAS of admixed populations, 

without requiring additional expensive and time-consuming collections of large numbers of 

MZ and DZ twins.

We applied this approach to 21,497 African Americans from the NHLBI CARe, WHI-

SHARe, and AAPC projects, analyzing 12 quantitative phenotypes and 1 case-control 

phenotype. For height and BMI, we obtained h2 estimates of 0.55 ± 0.09 and 0.23 ± 0.06, 

respectively, which are larger than estimates of hg
2 in these and other data sets but smaller 

than twin-based estimates of h2, consistent with inflation in twin-based estimates because of 

shared environment or epistasis. We also estimated the heritability of height for each 

chromosome and found a significant correlation between chromosome length and 

heritability (p-value < 0.003).

Results

Overview of method

We consider three approaches to estimating heritability for a phenotype with a narrow-sense 

heritability of 80%. First, the classic approach to estimating heritability is to divide the 

phenotypic covariance of related individuals by the fraction of the genome they share IBD13. 

In this instance, the phenotypic covariance of pairs of related individuals will be 0.80 times 

the fraction of genome shared IBD (Figure 1a). The second approach, developed by Yang et 

al.10, is to estimate the genetic relationship of unrelated individuals over genotyped SNPs 

and applied a linear mixed model with the genetic relationship matrix to estimate phenotype. 

To illustrate this approach we simulated 2 million independent pairs of individuals, 

regressing their normalized genetic similarity over the product of their normalized 

phenotypes giving a regression coefficient of 0.79±0.014 (Figure 1b). This Haseman-Elston 

regression16 shows how genetic similarity of unrelated individuals can be used to estimate 

heritability of genotyped SNPs (hg
2). In general, the heritability explained by genotyped 

SNPs is less than the total narrow-sense heritability (h2) since phenotypic variation 

determined by poorly tagged SNPs such as rare variants will not be captured10.
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The approach used in this work is similar to that of Yang et al.10, but instead of using 

genotypes to estimate genetic similarity we use the number of copies of local ancestry in an 

admixed population. A crucial element of our approach is that the phenotypic variation 

described by variation in local ancestry ( ) is a function of all causal variation, not just that 

tagged by SNPs on the genotyping platform. This is because local ancestry tags both 

common and rare variation. To illustrate this approach we simulated 4 million unrelated 

admixed individuals from ancestral populations with genetic distance FSTC= 0.08 and an 

equal proportion of ancestry from each ancestral population θ = 0.5 (see Online Methods). 

Applying Haseman-Elston regression to regress the product of normalized phenotypes 

against genetic similarity of local ancestry, we observe a regression coefficient 0.033±0.007 

≈ 2FSTCθ(1−θ)h2= 0.032, corresponding to h2 = 0.83 (s.e. = 0.18) (Figure 1c). The 

Haseman-Elston regression used in generating these figures is for illustrative purposes (as in 

Figure 3 of [10]). In practice, we use a mixed model approach due to its lower standard 

errors10.

We first construct a local ancestry based kinship matrix Kγ, which is constructed similarly to 

the genotype-based kinship matrix K in previous methods10, but with local ancestry 

substituted for genotypes at each SNP. We use a variance components approach to estimate 

the phenotypic variance explained by variation in local ancestry ( ) and the residual 

phenotypic variance ( )10,17. We included genome-wide ancestry proportion θ and the top 

five principal components as fixed effects when fitting the mixed model (see Online 

Methods). The heritability explained by local ancestry is given by . Finally, to 

estimate h2, we use the formula hγ2 = 2FSTCθ(1−θ)h2, where FSTC is a specific measure of 

weighted allele frequency differences between ancestral populations at causal loci (see 

Online Methods). For dichotomous phenotypes we applied the same approach, but converted 

the observed scale estimates to a liability scale estimate of heritability using [18], and the 

published disease prevalence in African Americans. In our previous work11, this conversion 

was not possible because non-randomly ascertained individuals in multiple relatedness 

classes (e.g. siblings, first cousins, avuncular) were studied, and there is currently no method 

for accounting for ascertainment in such complex pedigrees. A complete description of the 

approach, along with an analytical derivation, is given in Online Methods.

Simulations with Simulated Genotypes

We first verified the analytical derivations and examined the properties of the approach 

under a simple simulation framework. We simulated the genotypes and local ancestry of 

4,000 unrelated diploid individuals at 1,000 SNPs from a two-way admixed population with 

causal variant genetic distance FSTC, and either normally or uniformly distributed ancestry 

proportion θ. Each local ancestry segment contained exactly one SNP and all segments were 

generated independently. Phenotypes were simulated under an additive model with 

heritability h2 in which a proportion r of the 1,000 SNPs was causal (see Online Methods). 

We applied our method to estimate heritability over a range of values of FSTC, θ, r, and h2. 

For each parameter setting we estimated heritability from 2,000 independent simulated data 

sets. The results shown in Table 1 show that our heritability estimates are accurate across a 
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range of parameter settings, confirming our analytical derivation. Results for additional 

parameter settings are shown in Supplementary Table 1.

The results also demonstrate the relationship between  and the parameters FSTC, θ, and h2. 

For a fixed value of r, phenotypes with a larger h2 will have larger genetic effects resulting 

in larger . When ancestral populations are genetically distant (larger FSTC), variants are 

more likely to have a different frequency in the ancestral populations resulting in a 

concomitant increase in . Increasing the variance of θ results in a larger standard error 

around the heritability estimates.

Simulations with Real Genotypes

We made several simplifying assumptions in the above simulations that do not hold in real 

data sets. These include a single SNP per ancestry block, no genotyping error, no local 

ancestry inference error, no LD, a normal or uniform distribution of ancestry proportion, 

continuous phenotypes, and that the effect size distribution of common and rare variants 

used in computing FSTC was identical. To address these complexities, we took the approach 

of using real genotypes and simulating phenotypes. We simulated continuous and case-

control phenotypes over 5,129 individuals (excluding close relatives) from the CARe cohort 

(see Online Methods). Although phenotypes were generated from SNPs sampled across all 

genotyped SNPs, we only used local ancestry information from every 5th SNP.

We tried a range of parameters for h2. Instead of simulating phenotypes under an 

infinitesimal model, we sampled a proportion of causal variants r. We could not alter 

ancestry proportion θ, since this is fixed in the real data set. However, we altered the effect 

size distribution of SNPs according to their value of FSTC.

The data did not contain a sufficient number of genotyped variants that were rare in both 

populations to simulate rare versus common effects. Instead we examined SNPs common in 

both populations (common) vs. SNPs rare in at least one population (uncommon). Only 

common variants were used in constructing the kinship matrix, and so uncommon variants 

will only contribute to hg
2 via LD. The common SNPs had an FSTC of 0.15, while the 

uncommon SNPs had an FSTC of 0.25. We simulated phenotypes with a different proportion 

of phenotypic variance from uncommon variants (α). When α is different from 0, the kinship 

matrix variant and causal variant frequencies are different. The results in Table 2 show that 

simulations involving a large proportion of causal variants not included in the kinship matrix 

(high α) had a lower value of hg
2 than h2 because the common variants did not completely 

capture the phenotypic variance driven by the uncommon variants. The parameter α also 

determines the study wide FSTC according to FSTC = (0.15(1-α) + 0.25α) (see Online 

Methods). The results shown in Table 2 use the correct value of α, and hence the estimates 

of h2 are unbiased. However, if we incorrectly assume that α=0 when it does not, then h2 

will be biased by factor of (0.15(1- α) + 0.25α)/0.15. We describe this (and other potential 

sources of bias) in detail in the Discussion.

Setting individuals with the lowest P% of phenotypes as cases and all other as controls 

generated dichotomous phenotypes with prevalence P. The small number of individuals 
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prevented simulation of case-control ascertainment, which may produce downward bias for 

low prevalence diseases in very large studies (see Supplementary Table 9 in [19]). Those 

biases are expected to be small in the prostate cancer data analyzed here because of the high 

prevalence of prostate cancer and moderate sample size. For large sample sizes, replacing 

mixed model based estimates with Haseman-Elston regression estimates will alleviate the 

issue of ascertainment bias20.

The results in Table 2 also demonstrate that complexities such as genotyping error, LD, or 

errors in local ancestry inference in African Americans do not introduce bias into the 

heritability estimates when phenotypes are generated under a non-infinitesimal mixture 

model. This may not be the case for other admixed populations such as Latinos21 (see 

Discussion).

Application to WHI, CARe, and AAPC cohorts

We applied our method to 21,497 African-American individuals from the WHI, CARe, and 

AAPC cohorts over a total of 12 quantitative phenotypes and 1 case-control phenotype (see 

Online Methods). Local ancestry was inferred using the HAPMIX, SABER+, and RFMix 

methods, which are extremely accurate in African Americans (r2=0.98 or greater)22,23,24. 

For each phenotype we estimated hg
2,  and by extension h2. For hg

2 and  we used the 

GCTA software package applied to the genotypes and local ancestry at each SNP 

respectively17. For those phenotypes measured in both cohorts we compute the inverse 

variance-weighted mean and standard error. For each phenotype we also list previously 

published estimates of heritability from family studies using twins and African-American 

estimates where available ( ) The results are shown in Table 3, and published African-

American estimates are marked for reference. Estimates from European populations may not 

be directly comparable if the genetic or environmental bases for the phenotype differ 

substantially.

Several phenotypes, including height, BMI, HDL, TG, PC, and WBC (conditioned on 

ancestry at the Duffy antigen locus FY; see below), had h2 estimates lower than family-

based estimates. This could be due to the phenotype-specific effects of epistasis, gene 

environment interaction, and/or shared environmental factors that can inflate family based 

estimates12,13. In our recent work using an extended genealogy inclusive of more distantly 

related individuals we also found height and BMI estimates lower than previous heritability 

estimates, providing further evidence of inflation11. The lower estimates could also reflect a 

difference in the heritability between African Americans and the previous study populations. 

There were no statistically significant differences in h2 estimates between the cohorts.

Yang et al. proposed an adjustment to account for the incomplete coverage of genotyping 

platforms10. We applied this approach in the CARe data (see Supplementary Table 3), and 

observed an increase in hg
2 of less than 1% in all phenotypes. We include genome-wide 

ancestry proportion as a fixed effect in our mixed model. If there exists an environmental 

factor that affects phenotype and is correlated with ancestry, our heritability estimates will 

discount this environmental effect leading to higher estimates of heritability. Specifically, it 

will remove the variance of the environmental factor that can be explained by ancestry from 
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the environmental component ( ) in the denominator of the heritability estimate 

 (see Online Methods).

Differences between our heritability estimates and those of previous studies can also be due 

to differences between the value of FSTC we used in this study and the true value of FSTC for 

the phenotype in question. Based on recent evidence that rare variants unlikely to contribute 

to a large proportion of phenotypic variation25,26, we computed an FSTC of 0.182 over the 

common variants (MAF > 5%) in African-Americans. However, this estimate drops to 0.165 

for low-frequency variants (MAF < 5%) and 0.054 for rare variants (MAF < 1%). Estimates 

of heritability assuming a rare variant only phenotype model would be more than three times 

as large as from a common variant only phenotype model. Therefore, if rare variants 

contribute substantially to phenotypic variation or if balancing or negative selection 

constrained the genetic distance at causal variants, then our estimates of heritability will be 

biased downward (see Discussion).

Positive selection acting at causal variants could induce such a bias in FSTC, and we 

included WBC as a positive control for this type of bias. A SNP in the DARC gene (FY, 

Duffy null allele) is highly differentiated between CEU and YRI, likely due to its protective 

effect against vivax malaria27. It is also a SNP of large effect size for WBC28. Therefore, the 

average FSTC at causal variants for WBC, is much higher than the value 0.182 estimated 

from common variants (see Online Methods). The h2 estimate of WBC is 3.42 due to the 

effect of this positive selective pressure. Ancestry at the FY locus accounts for ∼20% of the 

phenotypic variation in WBC28. By including ancestry at FY as a fixed effect (WBC|FY) we 

obtain an h2 estimate of 0.19, which is lower than the published estimate of 0.48.

We perform a sensitivity analysis to assess whether this type of bias is likely to be 

problematic. Since strong positive selection is unusual29, we consider a single locus under 

positive selection. We estimate bias as a function of FSTC at the locus and the variance 

explained by the locus. The results in Supplementary Table 4 show that only for extreme 

values of both locus FSTC and heritability will there be significant bias in heritability due to 

positive selection. As an example we consider the 8q24 locus in prostate cancer, which 

contains causal SNPs that are highly differentiated SNPs between African and European 

ancestors, producing an admixture-mapping peak30. However, because this locus explains 

less than 2% of the heritability of prostate cancer, even exceedingly strong population 

differentiation at this locus will not substantially bias our overall results.

Partitioning heritability across the genome

Our method is also capable of estimating the total narrow sense heritability attributable to a 

particular genomic region. This is accomplished by constructing the kinship matrix using 

just those ancestry segments in the region of interest and applying the variance component 

model to the phenotype of interest using the region-specific kinship matrix (see Online 

Methods). We partitioned the heritability for each of the phenotypes from the CARe data set 

across each of the chromosomes31. We applied weighted linear regression to determine the 

relationship between heritability and chromosome length (see Online Methods). The results 
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for height are presented in Figure 2 and the full results are provided in Supplementary Table 

2. We find a strong correlation between chromosome length and the heritability of height 

(Pearson correlation = 0.513, weighted p-value = 0.0028). logHDL, BMI, and SBP, also 

produced significant results (weighted p-value < 0.03, 0.02, 0.02 respectively). Other 

phenotypes had standard errors too large to produce meaningful results. To address this, we 

averaged the heritability from each chromosome across all phenotypes (using WBC|FY 

instead of WBC) and we observed a significant correlation between chromosome length and 

mean chromosomal heritability (Pearson correlation=0.686, weighted p-value <0.0002).

Discussion

We developed a method for estimating narrow sense heritability from unrelated individuals 

by leveraging the two ancestral genomes in recently admixed populations, such as African 

Americans. We used a population genetic approach to derive the relationship between 

heritability and variation in local ancestry in admixed populations. Theory and simulations 

confirm that under an infinitesimal phenotypic model our approach produces unbiased 

estimates of heritability. Since the individuals are distantly related, our approach will not 

produce heritability estimates inflated by epistasis, gene environment interactions, or shared 

environmental effects.

Our method is also able to partition total narrow-sense heritability (h2) along genomic 

segments such as chromosomes, as we have shown by application to the phenotypes in the 

CARe data set. This is distinct from recent work that instead partitioned the heritability 

explained by genotyped SNPs (hg
2) across chromosomes31-33. While a previous method has 

also partitioned h2 along chromosomes34,35, it relies on the use of siblings, leading to very 

large standard errors, and is limited by the coarseness of shared IBD segments (which 

extend for tens of megabases). Our approach is limited by the coarseness of local ancestry 

segments (which extend for megabases) and thus cannot be applied at the level of individual 

genes.

We applied our method to an African-American population in this study. Application to 

more complex admixed populations such as Latinos will have to account for the reduced 

accuracy in local ancestry inference21 to avoid downward bias. Restricting to two ancestry 

categories (e.g. Native American vs. non-Native American ancestry)36 is one approach to 

handle multi-way admixture, but it may be possible to extend our derivation to multi-way 

admixture. There is evidence that African Americans have a small proportion of admixture 

from Native American populations (0.5%)24, but this very small proportion is unlikely to 

significantly change our results. Substantial errors in the assumed population genetic 

structure would perturb the values of FSTC and θ, and resulting h2 estimates would be biased 

in proportion to these errors. Application to sex chromosomes can be adapted from the 

approach taken in[31], but must be analyzed separately due to the differences in admixture 

proportion of European ancestry on autosomes and sex chromosomes.

In our previous work we found that heritability estimates from related individuals followed a 

pattern consistent with biases due to shared environment11. In this work we found that a 

linear additive model, implicitly including both rare and common variants, typically 
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explained less phenotypic variation than that predicted in family studies. These new 

estimates of narrow-sense heritability are less susceptible to bias and provide additional 

evidence that family based estimates are inflated. Unlike [11], we were able to obtain 

estimates for both quantitative and case-control traits. We also found that chip based 

additive models explained less phenotypic variation than our estimates. In the meta-analyzed 

phenotypes common to CARe and WHI the average of these estimates were 24.7% and 

31.1% respectively. Rare variants and poorly tagged common variants are the most likely 

explanation for the difference between these two estimates. We discuss other possible 

explanations below.

Our method does produce biased estimates when model assumptions are violated. 

Specifically, if the genetic distance we estimated over common variants (0.182; see Online 

Methods) differs from the distribution over causal variants, our method can be either inflated 

or deflated. If selection were acting on the causal variants their FSTC could be higher or 

lower depending on the direction of selection. In the case of positive selection in one of the 

ancestral groups but not the other, the true value of FSTC will be larger than our genome-

wide estimate and so our h2 estimate will be inflated. For example, estimates for white blood 

cell count were larger than , due to strong selective pressure at the Duffy locus27,37. 

However, strong positive selection is believed to be rare in recent human evolution29. If a 

large proportion of phenotypic variance is due to rare variants then incorrect estimates of 

FSTC may induce bias. However, previous reports suggest that rare variation explains a small 

proportion of total heritability25,26.

The application of our approach to two large cohorts of African Americans revealed a 

difference between previously published family-based estimates of the heritability of height 

and BMI and our estimates. This suggests that there is a significant contribution of non-

additive genetic effects or shared environmental effects that differ between MZ and DZ 

twins. The future application of our method to large-scale studies of African Americans will 

both provide a mechanism of estimating the total narrow sense heritability of phenotypes as 

well as determining the genetic architecture of complex phenotypes.

Online Methods

Given a set of M admixed individuals with two ancestral populations (P0 and P1), let the 

local ancestry for individual i at SNP s, γis ∊ {0,1,2}, be the number alleles inherited from a 

P1 ancestor. We use a mixed model approach to estimate  the contribution of variation in 

local ancestry to phenotypic variation for the phenotype Y=y1, y2, …yM. We first construct 

a local ancestry based kinship matrix Kγ, which is constructed similarly to the genotyped-

based kinship matrix K, but with local ancestry substituted for genotypes at each SNP. We 

then find the parameters  and  which maximize the likelihood of the mixed model 

. The heritability explained by local ancestry is given by h2
g. Finally, 

we use the formula  to estimate h2.
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Definition of h2

Heritability is the ratio of genetic variance to the sum of genetic and environmental variance 

. In this case we are defining these elements with respect to an admixed 

population. For a given phenotype, both  and  can vary between the ancestral European 

and African populations. For example,  will vary with ancestry if the minor allele 

frequency at causal variants is systematically larger in one of the two populations. It is also 

possible for ancestry to be associated with environmental factors. In this case, by 

conditioning on genome-wide ancestry, our method will remove the environmental variance 

that can be explained by ancestry and estimate the heritability of the component of 

phenotype that cannot be predicted by genome-wide ancestry, thereby increasing the 

heritability estimate.

Estimation of 

We use a variance components approach to determine the phenotypic variance described by 

local ancestry  using θ as a fixed effect to prevent confounding from environmental 

factors association with ancestry. This method is equivalent to recent methods used to 

determine the phenotypic variance described by genotyped SNPs ( ), replacing genotypes 

with inferred local ancestry10.

Derivation of relationship between h2 and 

Let i denote (diploid) individuals and s index SNPs. Individual i is assigned global ancestry 

proportion θi from some distribution F(.) with mean E[θi] = θ and variance σ2
θ. Given θi, an 

individual is assigned maternal and paternal local ancestries γi,s,M and γi,s,P at each SNP (0 

or 1 copies of European ancestry), from Bernoulli distribution Ber(θi). Given local ancestries 

γi,s,M, γi,s,P and allele frequencies ps,o, ps,1 at SNP s in populations 0 and 1, individuals are 

assigned maternal genotypes gi,s,M =γi,s,M Zi,s,1 + (1-γi,s,M) Zi,s,0 where Zi,s,0∼Ber(ps,0) and 

Zi,s,1∼Ber(ps,1), and similarly for paternal genotypes. The diploid genotype gi,s= gi,s,P+ 

gi,s,M (0, 1 or 2), and the diploid local ancestry γi,s = γi,s,P+γi,s,M (0, 1 or 2).

We define E[gi,s] = μg,s and Var[gi,s] = σ2
g,s, and the normalized genotype , 

where

(1)

(2)

Similarly, we define E[γi,s] = μγ and Var[γi,s] = σ2
γ, and the normalized local ancestry at 

each locus , where
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(3)

(4)

Although though equation (4) may not be strictly true (e.g. in a population where all 

individuals have 1 European parent and 1 African parent), it is approximately true for 

African Americans22. Furthermore,  can be estimated empirically, and we do so in this 

work. We model the phenotype of individual i as

(5)

where , Var[yi]=1, E[yi]=0, the effect size of SNP s is βs, and . By 

substitution and algebra we get

(6)

Plugging into equation (5), we get

(7)

Note that δi does not depend on local ancestry, which allows us to compute the heritability 

due to local ancestry h2
γ as:

(8)

We define FSTC as a measure genetic distance between ancestral populations weighted by 

the square of effect size βs:

(9)

This results in a final relationship
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(10)

In practice we do not know the effect size of every SNP and must make simplifying 

assumptions about their distribution in order to estimate FSTC. First consider a simple 

phenotypic model in which genotypic effect size βs is independent of ps,o and ps,1. Then

(11)

where N is the number of SNPs. Then equation (8) becomes

(12)

The FSTC in equation (12) is a genome-wide measure of genetic difference between the 

ancestral populations. This is related to the classic parameter FST when all variants are 

causal (i.e. the infinitesimal model).

(13)

Now consider a more complex model in which the effect size of SNPs can fall into one of L 

classes such that the effect size distribution is a function of the class L. These classes could 

be, for example, rare and common variants (used in this work). We defined the genetic 

distance between ancestral populations within each class as FSTL and the phenotypic 

variance explained by SNPs in this class as h2
L. Again substituting into equation (8) we 

have,

(14)

Therefore  a weighted measure of genetic distance in each class.

To obtain an estimate of h2 we must estimate θ, FSTC, and . The parameter θ is estimated 

from local ancestry inference. The parameter FSTC is estimated from assumptions about the 

variance explained by SNPs in each genotypic class combined with external reference 

panels45,46.
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Definition and Estimation of FSTC

As shown in the equations above we are defining FST to be the weighted average (across all 

SNPs s) of ratios . While this is similar to standard versions of FST, a ratio of 

averages is recommended instead when the goal is to draw population genetic inferences47. 

If the distribution of SNPs effect sizes is not a function FST then this would be the 

appropriate definition for our heritability estimation approach. However, recent work has 

shown that rare variants are unlikely to contribute to a large proportion of phenotypic 

variation48,25. As has been reported previously47, the average of ratios estimate will shrink 

when including many rare variants in the estimate. This is reflected in the 1000 Genomes 

based estimate of FST =0.07, which used an average of ratios49. Therefore, FST will produce 

a biased estimate of heritability because for the variance explained by rare variants is 

different from the variance explained by common variants. To account for this we defined a 

parameter FSTC, which is a weighted measure of genetic distance between ancestral 

populations (equation 9).

In practice we defined FSTC as the average FST within each class L of SNPs (FSTL), weighted 

by the proportion of phenotypic variance explained by that class:

(15)

Consider a situation in which L contains two classes, rare and common SNPs, with FST 

0.054 and 0.182 respectively. If rare variants explained 10% of the heritability and common 

variants explain 90% of the heritability, then FSTC=0.1692. We estimated FSTC over the 

HapMap337 data set by using CEU and YRI as proxies for the ancestral populations of 

African-Americans, using an admixture proportion of 18.3% European ancestry, and 

assuming distribution of causal variant frequencies. We estimated a value of 0.182 assuming 

causal variant MAF > 5% (which we used in this work), 0.165 assuming MAF < 5%, and 

0.054 assuming MAF < 1%.

Simulations with Simulated Genotypes

In order to examine the properties of our approach, we first applied our method to data 

generated under a simple simulation framework for generating genotypes, local ancestries, 

and phenotypes of individuals from an admixed population. Allele frequencies pA1, pA2, 

…,pAN of N SNPs from an ancestral population were drawn uniformly from [0.1-0.9]. Allele 

frequencies of SNPs from P0 were drawn from a beta distribution with parameters p(1- 

FSTC)/FSTC and (1-p)(1- FSTC)/FSTC for each SNP s, and similarly for P1. The parameter 

FSTC determines the genetic distance between the two populations. The global proportion of 

P0 ancestry θ1, θ2, …θM for each of M individuals was drawn either uniformly from 

[0.4,0.6], from the normal distribution N(0.5,0.1), or fixed at 0.5. Local ancestry for 

individual i at SNP s (γis), was generated by two draws from binomial distribution with 

parameter θs. The genotypes from individual i at SNP s(gis) were then generated by drawing 

from the binomial distributions with allele frequencies specified by the local ancestry for 
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that individual at that SNP. That is, if the individual had two copies of ancestry from P0 at 

SNP s then two draws from a binomial with parameter p0s were used. To create a phenotype 

we first selected Nr causal variants where r is the proportion of causal variants. Effect sizes 

were drawn from the normal distribution N(0,h2/(Nr)) and the genetic element of the 

phenotype was generated by taking the inner product of the causal variants, normalized to 

have mean 0 and variance 1, and the effect sizes for the variants. Normally distributed 

random noise was added such that the total heritability in the population was h2.

Simulations with Real Genotypes

We split the genotypes from 5,129 distantly related CARe individuals into two groups. The 

common group contained those SNPs with MAF > 5% in both CEU and YRI. The 

uncommon group contained all other SNPs (i.e. MAF < 5% in either or both of CEU and 

YRI). The genotype kinship matrix K was constructed over the common SNPs and the local 

ancestry kinship matrix Kγ was constructed using the local ancestry called at every 5th 

common SNP.

We simulated a phenotype by first selecting a proportion r of causal variants at random from 

the common and uncommon SNPs, leaving Nc common causal and Nn uncommon causal 

SNPs. We then selected a fraction of phenotypic variance α explained by the uncommon 

SNPs. At α=0.0 uncommon variants had no effect and the genetic basis of the phenotype 

was entirely determined by common variants. We then chose effect sizes for each common 

and uncommon SNP by drawing from normal distributions N(0,(1-α)h2/(Nc)) and N(0,

(α)h2/(Nn)) respectively. The genetic element of the phenotype was generated by taking the 

inner product of the causal variants, normalized to have mean 0 and variance 1 in the 

admixed population, and the effect sizes for the variants. Normally distributed random noise 

was added such that the total heritability in the population was h2. The FSTC of the common 

and uncommon SNPs was 0.15 and 0.25 respectively. The study FSTC used to estimate 

heritability was the weighted mean 0.15(1-α) + 0.25α as described in the derivation above. 

Setting individuals with the lowest P% of phenotypes as cases and all other as controls 

generated dichotomous phenotypes with prevalence P.

Data set approvals

The CARe project has been approved by the Committee on the Use of Humans as 

Experimental Subjects (COUHES) of the Massachusetts Institute of Technology, and by the 

Institutional Review Boards of each of the nine parent cohorts.

The WHI project has been approved by the Human Subjects Committees at the WHI 

Clinical Coordinating Center (FHCRC) and at the 40 WHI Field Centers.

The AAPC project has been approved by the Institutional Review Board of the University of 

Southern California. The 11 studies contributing to the AAPC each received approval for the 

use of specimens from their patients.
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CARe data set

Affymetrix 6.0 genotyping and QC filtering of African-American samples from the CARe 

cardiovascular consortium was performed as described previously50. After QC filtering for 

each of ARIC, CARDIA, CFS, JHS and MESA cohorts and subsequent merging, 8,367 

samples and 770,390 SNPs remained. To limit relatedness among samples we restricted all 

analyses to a subset of 5,129 samples in which all pairs have genome-wide relatedness of 

0.05 or less and had between 5% and 45% European ancestry. We performed local ancestry 

inference using the HAPMIX software with the CEU and YRI HapMap populations as 

reference ancestral populations. We examined seven phenotypes from the CARe cohort, 

height, body mass index (BMI), log transformed high density lipoprotein cholesterol 

(logHDL), low density lipoprotein cholesterol (LDL), white blood cell count (WBC), 

diastolic blood pressure (DBP), and systolic blood pressure (SBP). For each phenotype we 

included age, sex, study center, proportion of European ancestry, and the top 5 principal 

components as fixed effects. A detailed description of the phenotypes can be found here51.

WHI Data Set

Affymetrix 6.0 genotyping and QC filtering of African-American samples from the 

Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) was 

performed as described previously52. The dataset includes extensive phenotypic and 

genotypic data on 12,008 African American and Hispanic women aged 50-79 enrolled in 

one or more components of the WHI program. We included only African American samples 

and to limit relatedness among samples we restricted all analyses to a subset of 8,153 

samples in which all pairs have genome-wide relatedness of 0.05 or less. We performed 

local ancestry inference using the SABER+23 software with the CEU and YRI HapMap 

populations as reference ancestral populations. We examined 10 phenotypes from the WHI 

cohort (BMI), log transformed high density lipoprotein cholesterol (logHDL), low density 

lipoprotein cholesterol (LDL), white blood cell count (WBC), log transformed triglycerides 

(logTG), glucose, log transformed insulin (logInsulin), QT interval duration (QT-

INTERVAL), C-reactive protein (CRP), diastolic blood pressure (DBP), and systolic blood 

pressure (SBP). For each phenotype we included age and proportion of European ancestry as 

fixed effects. A detailed description of the phenotypes can be found here52.

African American Prostate Cancer Data Set (AAPC)

IlluminaHuman1M-Duov3_B genotyping and QC filtering of African-American samples 

from the African American Prostate Cancer Study (AAPC) from a total of 11 participating 

studies was performed as described previously55,53,54. The cleaned dataset includes 9,641 

African American subjects and 1,001,899 autosomal SNPs. To limit relatedness among 

samples we restricted all analyses to a subset of 8,215 samples in which all pairs have 

genome-wide relatedness of 0.05 or less. We performed local ancestry inference using the 

RFMix24 with the CEU and YRI HapMap populations as reference ancestral populations. 

We examined prostate cancer (PC) outcome for each subject. There were 4207 cases and 

4008 controls after QC. Due to the admixture signal at the 8q24 locus54, we also estimated 

heritability removing 8q24 from the SNPs used to estimate the kinship (PC|8q24). For each 
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phenotype we included age and the top 10 principal components as fixed effects. For 

conversion to the liability scale we used a prevalence of 5%54.

Partitioning Heritability across the genome

To estimate the heritability for a particular genomic segment we compute the genetic 

relatedness matrix as defined in Yang et al10, replacing genotypic for local ancestry calls, 

and restricting to just those SNPs contained in the region of interest. Given a partitioning of 

segments along the genome (in our case 22 segments), it is possible to fit them individually 

or jointly. We attempted both approaches, but found that the joint fit produced a numerical 

instability in the optimization algorithm preventing convergence. Thus all results reported 

for the single chromosome analyses are provided by individual and not joint estimates.

We performed both weighted and standard linear regression to assess the relationship 

between the heritability explained by a chromosome and the length of the chromosome. The 

weighted version accounts for the differences in number of SNPs contained in longer and 

shorter chromosomes and the weighting factor we used was the length of the chromosome in 

centimorgans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relationships between genetic distance and phenotype for a trait with heritability = 80%. (a) 

The phenotypic covariance of pairs of individuals at different expected fractions of genome 

shared IBD is 0.8*%IBD. (b) Regression of genetic distance estimated from genetic 

variation against the product phenotypes normalized to have mean 0.0 and variance 1.0 has 

coefficient 0.79 (se = 0.014). (c) Regression of genetic distance estimated from local 

ancestry variation against normalized phenotypes has coefficient 0.033 (s.e. = 0.007) 

≈2FSTCθ(1−θ)h2= 0.032, corresponding to h2 = 0.83 (s.e. = 0.18).
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Figure 2. 
Estimated heritability of height for each chromosome in the CARe data set. The numbers 

adjacent to each point are the chromosomes. We plot the regression line of h2 per 

chromosome regressed on chromosome length. We find a strong correlation between 

chromosome length and height heritability (Pearson correlation = 0.513, weighted p-value = 

0.0028).
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Table 1

Results of local ancestry based heritability estimation from simulated genotypes and simulated phenotypes 

over a range of population and disease architectures. Mean heritability estimates and standard errors are 

reported from 2,000 simulations for each choice of parameters.

h2 FST r ĥ2

0.8 0.30 1.0 0.802(0.003)

0.8 0.30 0.1 0.802(0.005)

0.8 0.15 1.0 0.800(0.005)

0.8 0.15 0.1 0.804(0.006)
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Table 4

Number of individuals for each phenotype in the CARe and WHI data sets. The AAPC data set contained 

4207 PC cases and 4008 controls.

Phenotype WHI CARe

height 8109 5024

BMI 8153 5026

Log(HDL) 8014 4928

LDL 7979 4794

WBC 8035 3367

WBC|FY 8035 3367

Log(TG) 8015 NA

Glucose 6826 NA

log(Insulin) 7749 NA

QT-Interval 4143 NA

Log(CRP) 8014 NA

DBP 8153 5030

SBP 8153 5029
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