
ARTICLE

Received 29 May 2015 | Accepted 21 Sep 2015 | Published 22 Oct 2015

Characterizing noise structure in single-cell
RNA-seq distinguishes genuine from technical
stochastic allelic expression
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Single-cell RNA-sequencing (scRNA-seq) facilitates identification of new cell types and gene

regulatory networks as well as dissection of the kinetics of gene expression and patterns of

allele-specific expression. However, to facilitate such analyses, separating biological variability

from the high level of technical noise that affects scRNA-seq protocols is vital. Here we

describe and validate a generative statistical model that accurately quantifies technical noise

with the help of external RNA spike-ins. Applying our approach to investigate stochastic

allele-specific expression in individual cells, we demonstrate that a large fraction of stochastic

allele-specific expression can be explained by technical noise, especially for lowly and

moderately expressed genes: we predict that only 17.8% of stochastic allele-specific

expression patterns are attributable to biological noise with the remainder due to

technical noise.
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P
rofiling the transcriptomes of individual cells via single-cell
RNA-sequencing (scRNA-seq) allows the functional role
of heterogeneity in gene expression levels between cells

to be investigated in early development, in cancer and during
tissue differentiation1–9. Current scRNA-seq protocols require
amplification of the minute amount of mRNA present in an
individual cell so that next-generation sequencing libraries can be
prepared. More specifically, following cell lysis and reverse
transcription of the poly-adenylated fraction of RNA molecules,
PCR or in vitro transcription is used to amplify cDNA molecules.
In combination, these steps contribute to substantial increases in
the level of technical noise relative to bulk-level RNA-seq5,10–12.

Several strategies have been proposed to reduce or eliminate
technical noise in scRNA-seq protocols. First, a large fraction
of polyadenylated RNA is stochastically lost during sample
preparation steps including cell lysis, reverse transcription and
amplification5. Studies where sample preparation was performed
in microlitre volumes and cells are hand-picked reported a
capture efficiency on the order of 10% (refs 5,10). In contrast,
nanolitre-volume scRNA-seq using microfluidic platforms that
automate sample preparation showed an improved capture
efficiency of up to 40% (ref. 11), substantially reducing the bias
introduced by stochastic RNA loss. Second, the linear or
exponential amplification, in conjunction with the stochastic
RNA loss, introduces amplification bias, especially for lowly
expressed genes12. A recent approach that counts the absolute
number of molecules per gene using unique molecular identifiers
facilitated modelling of the amplification bias and reduced the
overall levels of technical noise10,13. Finally, scRNA-seq protocols
that profile full-length transcripts suffer from a 30-end bias due
mainly to inefficiencies in reverse transcription and incomplete
RNA degradation14, although recent developments have led to
improvements15,16. Despite this limitation, full-length protocols
are popular as they allow transcript isoform identification3

and measurement of allele-specific expression (ASE) by using
single-nucleotide polymorphisms (SNPs)17 in the coding
sequence. However, owing to challenges in processing the small
quantity of starting molecules, current scRNA-seq protocols have
substantially increased levels of technical noise relative to bulk
RNA-seq. Consequently, accurately quantifying the contributions
of technical and biological noise to variability in gene expression
levels across cells at both the whole gene and the allele-specific
level is challenging.

To date, computational strategies have focused on using
extrinsically spiked-in molecules to model background (technical)
noise in scRNA-seq data10,12. However, current approaches either
fail to account for the substantial differences in technical noise
between cells12 or make strong parametric assumptions about the
relationship between variation and gene expression10. In the
context of ASE at the single-cell level, this is an extremely
important problem, as failing to correctly account for such
features might lead to the incorrect identification of stochastic
ASE. Indeed, to date, there has been no formal attempt to
incorporate measurements of technical noise from extrinsic
spike-in molecules into the identification of stochastic ASE.

To address this problem, we develop a generative model,
which extends and integrates key aspects of previous analytical
approaches (Supplementary Notes 1–3). Our approach is
based upon an explicit probabilistic model, which allows
scRNA-seq data to be simulated under a variety of assumptions
and then contrasted to true data. To validate our approach,
we distinguish biological from technical variability in scRNA-seq
data generated from mouse embryonic stem cells (mESCs)
cultured in serum/leukaemia inhibitory factor (LIF) or
2i/LIF conditions10. Using single-molecule fluorescent in situ
hybridization (smFISH) data, we demonstrate that our approach

better estimates biological variability than previously described
computational strategies, especially for lowly expressed
genes. Having validated our model, we use it to explore
the influence of technical and biological noise upon
measurements of ASE in mESCs derived from a first-generation
cross of two inbred mouse strains. Our analysis reveals that a
substantial degree of apparent stochastic ASE can be explained by
technical noise, with important implications for studying ASE in
single cells.

Results
Overview of the method. We developed a statistical method to
quantify biological noise by decomposing the total variance of
each gene’s expression across cells into biological and technical
components, while minimizing assumptions on the form of dis-
tributions for each noise component.

Our method uses external RNA spike-in molecules, added at
the same quantity to each cell’s lysate, to model the expected
technical noise across the dynamic range of gene expression. It
assumes a probabilistic model that represents the underlying
generative process of observed counts in scRNA-seq data
(Supplementary Notes 1, 2 and Supplementary Fig. 1). The
generative model captures two major sources of technical noise:
(i) stochastic dropout of transcripts during the sample
preparation procedure and (ii) shot noise. Critically, to model
cell-to-cell differences in capture efficiency and shot noise, we
allow these quantities to vary between cells. It should be noted
that the model cannot capture stochastic RNA losses that arise
because of inefficient cell lysis as the external RNA spike-ins are
added to the lysis buffer. Third, our model decomposes the total
variance into multiple terms that correspond to different sources
of variation18, where all of the necessary parameters can be
estimated using the external RNA spike-ins (Supplementary Note
3 and Fig. 1). The biological variance can be estimated by
subtracting variance terms corresponding to technical noise from
the total observed variance. Finally, our model allows scRNA-seq
data to be simulated under various assumptions, which can be
applied to distinguish genuine stochastic ASE across cells from
artefacts induced by technical noise.

Estimating biological noise. We analysed two publicly available
scRNA-seq data sets where individual mESCs cultured in
two different conditions (serum/LIF or 2i/LIF) were profiled
using a unique molecular identifier protocol10. The libraries were
prepared in two batches, the first containing 40 mESCs cultured
in 2i and 40 mESCs cultured in serum and the second containing
the remaining cells. Each batch was split into two and sequenced
on different lanes of an Illumina HiSeq2500 (ref. 10).

To ensure the quality of the data, following the approach of
Grün et al.10, we discarded cells with fewer than 500 sequenced
transcripts for External RNA Control Consortium (ERCC) spike-
ins and 10,000 sequenced transcripts for endogenous genes. In
the first batch, 38 2i and 37 serum mESCs remained after filtering
with 38 2i and 18 serum cells remaining in the second batch. We
did not apply an additional filter used by Grün et al.10, who
discarded cells with fewer than 10 sequenced transcripts for
Pou5f1 in 2i and 25 in serum. We did this to avoid the possibility
of a genuine subpopulation of cells being overlooked.

As the cells were prepared in multiple independent batches, we
used the expression levels of the ERCC transcripts to explore
whether technical batch effects were confounded with the
biological signal of interest (Supplementary Note 4). Although
all cells were spiked with the same volume of the ERCC spike-in
mix, we observed that cells cluster by batch first and only
subsequently by culture condition, indicating the presence of
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strong technical effects (Supplementary Fig. 2a). To identify the
source of this variation, we estimated the strength of the linear
relationship between the observed and expected spike-in counts
(which incorporates all sources of technical variability except for
cell lysis inefficiencies), denoted by E[Z] (Supplementary Note 1
and 2), separately for each batch and observed considerable
variation (E[Z] ranged from 0.0177 to 0.0361 indicating
substantial differences in both capture and sequencing efficiency
between batches). We speculated that the variability in E[Z] was
the main source of batch effects. Indeed, when we normalized the
raw number of sequenced ERCC transcripts by dividing by E[Z]
(separately for each batch), the batch effects were removed
(Supplementary Fig. 2b). Hence, we used the normalized number
of sequenced transcripts in all downstream analyses.

To validate our approach for estimating technical noise, we
compared the expected technical noise derived from the
generative model with the observed noise from the ERCC
spike-ins. Our model captured the mean-variance relationship
for estimating technical noise successfully across the whole
dynamic range of expression levels (Supplementary Figs 3–6
and Supplementary Note 5). For each gene, we used our model
to estimate the contribution of technical and biological
variability to the overall variability in its expression across cells
(Supplementary Figs 5 and 6).

We assessed our model’s performance by comparing its output
with gold standard estimates of biological variability generated for

nine genes using smFISH (Fig. 2 for 2i-grown mESCs and
Supplementary Fig. 7 for serum-grown mESCs). To compare our
biological noise predictions with a recently proposed method10,
we used the same set of cells (74 for 2i and 44 for serum) by
applying the additional filter based on the number of sequenced
transcripts of Pou5f1. In general, we observed excellent
concordance between our estimates of biological noise and
those derived from smFISH. For lowly expressed genes (Sohlh2,
Notch1, Gli2 and Stag3), our method outperforms the
deconvolution-based methods (Po0.05 by one-tailed paired
t-test; Fig. 2a,b). However, for the more highly expressed genes
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Figure 1 | Schematic representation of the noise decomposition method.

With the help of external RNA spike-in molecules, added at the same

quantity to each cell’s lysate, we first estimate four parameters capturing

technical variability, which are the expectation and variance of capture (y)

and sequencing (g) efficiency. Then, by the general variance decomposition

formula, the total observed variance of read counts can be decomposed into

technical (blue) and biological (green) variance terms. The estimate of

biological variance can be obtained by subtracting technical variance terms

from the total observed variance. Shot noise (or Poisson noise) is cell-to-

cell variability that can be modelled by a Poisson process.
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Figure 2 | Validation of estimated biological noise of 2i-grown mESCs by

single-molecule FISH. (a) Bar plot depicts the measured coefficient of

variation (CV) (y axis) of chosen genes by each method: total noise by

scRNA-seq (Cell); Models II and III of Grün et al.10; our noise decomposition

method (Decomposition); single cell FISH (smFISH). Genes chosen by Grün

et al.10 to cover a dynamic range of gene expression are sorted by their

expression levels: lowly expressed genes (Sohlh2, Notch1, Gli2 and Stag3),

moderately expressed genes (Tpx2) and highly expressed genes (Pou5f1,

Sox2, Pcna2 and Klf4). Notch1 is not available in serum-grown mESCs of

Grün et al.10 Error bars represent standard deviation (s.d.): bootstrap s.d. for

our predictions; s.d. derived from estimated standard errors of the

parameters of a negative binomial distribution for other methods.

(b) Comparison of models for the deviation of the model estimates of CV

from the smFISH estimates of CV using z-scores of lowly expressed gene.

To compare the accuracy of the model estimates of CV, we performed a

one-tailed paired t-test between two paired sets (corresponding to different

methods) of z-scores of genes for each group. Here the z-score is defined

as |xi-mi|/si, where xi is the model estimate of CV of gene i, mi is the smFISH

estimate of CV of gene i and si is the standard deviation of the model

estimate of CV of gene i. As the lower z-score means more accurate

estimate of biological CV in terms of smFISH measurements, we set the

alternative hypothesis to state that the z-scores of our method is less than

that of other methods. For lowly expressed genes, our method outperforms

the deconvolution-based methods (P¼0.0166 between model II and ours,

P¼0.0385 between model III and ours). Error bars represent 95%

confidence intervals. (c) Comparison of biological estimates of CV between

model III of Grün et al.10 and our noise decomposition method.
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for which smFISH data are available, there is no significant
difference between methods at a significance level of 0.1.
Importantly, unlike the previous state-of-the-art approach10, we
did not systematically overestimate biological noise for lowly
expressed genes (Sohlh2, Notch1, Gli2 and Stag3), primarily
because we did not assume transcript counts are the sum of two
independent counts capturing technical and biological processes
that were modelled by a negative binomial distribution (Fig. 2c).
More generally, for lowly expressed genes (o20th percentile),
11.9% of variance in their expression across cells can be attributed
to biological variability on average, as opposed to 55.4% for highly
expressed genes (480th percentile).

Stochastic ASE. Single-cell measurements of ASE provide a
valuable resource for studying transcriptional diversity17. One
interesting pattern is monoallelic expression, where only one
allele of a gene is expressed. The choice of which allele to actively
transcribe can be determined by the parental origin of each allele
(for example, genomic imprinting) or randomly (for example,
X chromosome inactivation). Random monoallelic expression has
also been reported at some autosomal genes where it is
established stochastically during differentiation after which it is
maintained through subsequent mitotic cell divisions19.
Interestingly, a recent study used scRNA-seq data to show that
many autosomal genes (12–24%) display transient monoallelic
expression in individual cells of mouse preimplantation embryos,
where the stochastic RNA loss was modelled by splitting each
cell’s lysate into two fractions of equal volume17.

In bulk-based studies, ASE describes differences in the mean
level of expression between the two alleles. scRNA-seq allows a
more nuanced understanding: we define stochastic ASE as
excessive variability in the ratio of the expression level of the
paternal (or maternal) allele between cells after controlling for
mean allelic expression levels (Fig. 3b). To date, heuristic
approaches based on the fraction of reads mapped to each allele
across cells have been used to identify genes displaying stochastic
ASE. Even though these approaches usually filter out lowly
expressed genes, this has not allowed technical noise, a potentially
major contributor to perceived stochastic ASE, to be properly
accounted for.

To explore this, we considered newly generated scRNA-seq
data from 54 mouse ESCs cultured in 2i and derived from a
first-generation intercross between two inbred strains (C57BL/
6Ncr male� 129S6/SvEvTac female, Fig. 3a). We initially
sequenced the cDNA from cells captured using a 96-cell Fluidigm
C1 IFC and filtered out low-quality cells, resulting in 54 cells that
were used in downstream analysis. The 92 ERCC spike-in
molecules were used to quantify the extent of technical noise
(Methods). In total, 28,912 transcripts contained at least one SNP
that could be used to distinguish between the strains, meaning
that ASE could be quantified for 7,385 (29.6%) of 24,941
expressed genes.

We applied the model introduced earlier by first estimating, for
each gene, the mean expression level and biological variance of
the maternal and paternal alleles before simulating 54 pseudo
cells assuming only technical variability (‘T’) or assuming both
technical and biological variability (‘TþB’; Supplementary
Fig. 8). We simulated the single-cell data using the generative
process of our model under the assumption that the two alleles of
a gene are expressed independently (Supplementary Note 6 and
Supplementary Fig. 9) and showed that the simulated data reflect
the real scRNA-seq data at the level of both mean expression and
variability (Supplementary Fig. 10).

To examine the effect of technical noise on the allelic ratio
(defined as the expression of the most expressed allele divided by

the total across both alleles), we simulated single-cell data under
the ‘T’ model where each allele was expressed at the same level
(Supplementary Note 6). Lowly expressed genes frequently
displayed stochastic monoallelic expression (90–100% observed
allelic ratio, Fig. 3c), where lowly expressed genes are defined as
those with an estimated number of transcripts per cell o1.
Importantly, total noise was dominated by technical noise (40–
100%) for lowly expressed genes (Supplementary Fig. 11a),
indicating that ASE observed in this range of expression values is
unlikely to be genuine. Although the observed allelic ratios of
genes successively decreased towards the true value as the
expression levels increased, the observed allelic ratio did not
converge to the true value even at the maximum number of
transcripts per cell (B1,000, Fig. 3c), potentially suggesting the
difficulty of accurately estimating the true allelic ratios of genes
with the balanced expression of both alleles because of the
technical variability present in scRNA-seq data.

We also examined the combined effect of technical and
biological noise on the estimated allelic ratio by simulating
single-cell data under the ‘TþB’ model (Supplementary Note 6),
again assuming that each allele was expressed at the same level.
Including biological noise yielded allelic ratios that are larger than
those observed in the ‘T’ model and are above the true value
across the whole dynamic range of expression levels, suggesting
that we cannot ignore biological noise even at the maximum
expression level (Fig. 3c). More genes with an estimated
number of transcripts per cell o10 showed monoallelic
expression (90–100% observed allelic ratio) compared with the
‘T’ model.

Identifying genuine stochastic ASE. We observed that 72.7% of
all expressed SNPs in 54 cells had an allelic ratio above 0.95,
suggesting that 99.7% of expressed genes display monoallelic
expression in at least one cell (this percentage falls to 99.3% when
only the most expressed SNP per gene is considered). Previous
reports obtained similar results in other cell types and suggested
that the majority of this ASE is stochastic20.

Of 75,872 expressed SNPs, 99.4% had an allelic ratio larger
than 0.95 in at least one cell (Supplementary Fig. 11d). When we
simulated single-cell data under the ‘T’ model with the allelic
ratio fixed to 50%, we found 47.2% had an allelic ratio above 0.95
in at least one cell, indicating that about half of SNPs displaying
monoallelic expression in cells are driven by technical noise.
When we allowed biological variability and fixed the allelic ratio
at 50% (‘TþB’ in Supplementary Fig. 11d), 69.1% showed
monoallelic expression in at least one cell, suggesting that
biological variability accounts for about 20% of the expressed
SNPs displaying monoallelic expression in cells. The remaining
30% could be potentially explained by differences in the mean
expression levels of the two alleles.

We formalized the above arguments within the null hypothesis
significance testing framework as follows. To identify genes
showing stochastic ASE not explained by technical noise and
differences in the mean expression levels between the maternal
and paternal alleles, we separately estimated the mean
expression of the two alleles before simulating 54 pseudo cells
assuming only technical variability (Supplementary Notes 6,7 and
Supplementary Fig. 8). For each pseudo cell, we then calculated
the allelic ratio for all simulated genes and computed its mean
value across the simulated cells. We repeated this process 10,000
times, yielding a null distribution of simulated ratios, which we
contrasted with the observed ratio. Notice that we accounted for
differences in the mean level of expression between the two alleles
by separately estimating the mean expression of both alleles
(instead of fixing the allelic ratio at 50%) since we defined
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stochastic ASE as excessive variability in differences in the
expression levels between the two alleles across single cells, after
controlling for differences in average allelic expression levels.

As an example, Trim25 shows a strong ‘L’-shaped pattern
between the two alleles, and most individual cells have an allelic
ratio above 0.95. It also has a higher average allelic ratio
than expected by chance, suggesting it displays stochastic ASE

(in the left column of Fig. 4). However, even though Amacr shows
a similar expression pattern to Trim25, its average allelic ratio is
not significantly higher than would be expected by chance,
indicating that the monoallelic expression of Amacr in cells is
driven by technical variability (in the middle column of Fig. 4).
Notice that we do not consider monoallelic expression observed in
bulk-based studies (for example, genomic imprinting) as stochastic
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since differences in the expression levels between the two alleles
are conserved across cells (Hspa8 in the right column of Fig. 4).

Of 7,385 genes with one or more expressed SNPs
(Supplementary Fig. 12), 1,311 (17.8%) showed more variation
across cells than expected by chance (empirical Po0.001; Fig. 5a),
suggesting that they are subject to stochastic ASE. Next, we
considered the 6,705 genes with an observed mean allelic ratio
greater than 0.95. Of these, only 427 (6.4%) showed stochastic
ASE not explained by technical noise (solid green line in Fig. 5a
and Supplementary Data 1). We also observed that the fractions
of SNPs showing ASE from the ‘T’ model (dotted red line in
Fig. 5a) show good agreement with the observed values. These
results suggest that much of the stochastic monoallelic expression
observed in previous studies may not be of biological origin but
rather technical variation.

When we simulated single-cell data allowing both technical and
biological variability, we found that the simulated allelic ratios show

good agreement with the observed values, except at high expression
levels (Fig. 5b). Notice that the allelic ratios show a slight increase at
an estimated number of transcripts per cell of B100 due to a few
outlier genes that show monoallelic expression (Supplementary
Fig. 11b,c). These results suggest that the genuine stochastic ASE
can be explained by the biological cell-to-cell variability

Finally, we investigated the shared features of the 427 genes
showing stochastic monoallelic expression not explained by
technical noise. We found no enrichment of specific functional
categories in these genes. In addition, they were not associated
with specific transcription factor binding or histone modification
patterns (Supplementary Note 8).

Discussion
We provide a statistically sound framework to estimate biological
noise by accounting for technical noise from scRNA-seq with the
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help of external RNA spike-ins. This framework enables us to
investigate whether apparently abundant monoallelic expression
observed in a single cell is driven by technical and biological
noise. Intriguingly, we also show that the two alleles of a gene
show correlated allelic expression across cells more often than
expected by chance, potentially suggesting regulation by extrinsic
factors (Supplementary Note 9).

Our noise decomposition approach is built upon two
main ideas. First, cell-to-cell variability in capture and
sequencing efficiency is allowed to account for the substantial
differences in technical noise between cells. Second, by the
general variance decomposition formula, the generative model
enables us to decompose the observed total variance
into technical and biological variance terms without strong
parametric assumptions about the relationships between variation
and gene expression and on the distributional form of the
unobserved true number of mRNA molecules. In contrast
to the deconvolution approach10, we do not assume that each
transcript’s expression level is the sum of two independent,
non-negative, counts that capture technical and biological
processes. Consequently, our method does not underestimate
the true expression level of a gene, thus yielding an improvement
in estimating biological noise. It is also worth pointing out
that the decomposition method is computationally more efficient
than the deconvolution approach. Our approach allowed us,
for the first time, to demonstrate that spike-ins could be used
to statistically quantify the extent of stochastic ASE in scRNA-seq
data. In contrast to some previous studies, we suggest
that a substantial degree of stochastic ASE can be explained by
technical noise.

More generally, it is essential to properly account for technical
noise in scRNA-seq data as the high level of technical noise can
easily skew biological interpretations of single-cell data. The most
widely used approach to address this issue is to remove lowly
expressed genes by employing a threshold on expression levels.
In addition to the criticism that the choice of a threshold is
arbitrary, determining what level of expression is enough to
prevent misguided biological conclusions is highly dependent on
biological questions, cell types and scRNA-seq protocols. The
generative model that we present can instead be easily adapted to
employ the simulation-based null hypothesis significance testing
framework. The null distribution of a test statistic can be

generated by simulating pseudo single cells assuming only
technical variability, which is estimated from external RNA
spike-in molecules. We can easily modify the generative model to
simulate single-cell data in more complicated situations. To
make this method more accessible, we provide an R function
and the complete workflow to simulate single-cell data under
various assumptions, which are available in the Supplementary
Software. Our generative model, in principle, can be extended to a
wide range of applications including identifying highly variable
genes12, dissecting gene regulatory networks, inferring the
kinetics of stochastic gene expression21 and detecting differen-
tially expressed genes22.

Methods
Cell culture. G4 (C57BL/6Ncr x 129S6/SvEvTac) mouse hybrid23 cells were
maintained on STO feeder cells. For the experiment, they were subcloned and
cultured on gelatinized plates (Corning) in N2B27 basal media (NDiff 227,
StemCells) with addition of 100 U ml� 1 of recombinant human leukemia
inhibitory factor (Millipore), 1 mM of Mek1/2 inhibitor (PD0325901, Stemgent)
and 3 mM of GSK3b inhibitor (CHIR99021, Stemgent). After three passages, when
cells reached 75% confluence they were harvested by trypsinizing them with 0.05%
trypsin/EDTA (Gibco).

RNA-seq. Single-cell libraries were prepared following the instructions in the
Fluidigm manual ‘Using the C1 Single-Cell Auto Prep System to generate mRNA
from Single Cells and Libraries for Sequencing’. Single cells were captured by
loading cell suspension (1mln cells per ml) onto 10–17 microns Fluidigm C1
Single-Cell Auto Prep IFC. One microlitre of 1:100 dilution of ERCC RNA Spike-In
Mix (Ambion) was added into lysis mix A to control for technical variation.
Obtained cDNA was diluted to 0.1–0.3 ng ml� 1 and sequencing libraries were
prepared using Nextera XT DNA Sample Preparation Kit and the Nextera Index
Kit (Illumina) according to the Fluidigm manual. Libraries from one chip were
pooled, and paired-end 100 bp sequencing was performed on four lanes of an
Illumina HiSeq2000 in the Wellcome Trust Sanger Institute.

Mapping reads for gene-level counts. Paired-end reads were mapped to the Mus
musculus genome (GRCm38) using GSNAP (version 2012-07-20) with default
options24. From the GTF file of GRCm38 provided by Ensembl (release 73), we
extracted known splice sites to detect splice junctions in reads and counted
uniquely mapped reads for each gene using htseq-count25.

Mapping reads for allele-level counts. We first took an intersection of SNPs
present in the three 129 strains (129S1/SvImJ, 129S5/SvEvBrd and 129P2/OlaHsd)
available in the Sanger mouse genomes project26 and then confirmed that the
extracted SNPs do not overlap with a subline of C57BL/6 (C57BL/6NJ). From the
resulting 5,038,206 SNPs between C57BL/6 and 129, we constructed the genome of
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Figure 5 | Distinguishing genuine from technical allelic expression patterns. (a) Mean fraction of SNPs showing stochastic ASE as a function of overall
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the 129 strain by mutating nucleotides at the SNP positions. Paired-end reads were
independently mapped to both the paternal (C57BL/6Ncr) and maternal (129S6/
SvEvTac) genome using GSNAP with default options24. We discarded reads that
are mapped to multiple locations. We extracted 120,036 exonic SNPs based on the
GTF file of GRCm38 provided by Ensembl (release 73) and counted reads covering
each exonic SNP from mpileup of samtools (version 0.1.19)27. We calculated two
DESeq size factors for each cell, where one is from ERCC spike-ins (technical size
factor capturing cell-to-cell variability in sequencing depth) and another is from
endogenous genes (biological size factor capturing cell-to-cell variability in both
sequencing depth and the total amount of mRNA molecules)12. Then, we
normalized the raw read counts by dividing the counts by the corresponding size
factors, that is, technical size factor for ERCC spike-ins and biological size factor for
endogenous genes.

Quality control on cells. We excluded cells from the downstream analysis if they
satisfy the following criteria: (i) empty capture sites or capture sites with multiple
cells or debris on the C1 chip by visual inspection under the microscope, (ii) cells
that have fewer than 500,000 (or 50%) reads mapped to exons (indicator for
sequencing library failure), (iii) cells that have greater than 10% reads mapped to
37 genes on the mitochondrial chromosome (indicator for cell rupture during the
process of microfluidic cell capture13).

Quality control on SNPs. To exclude SNPs affected by the systematic bias towards
the reference allele, we applied the following criteria: (i) SNPs not annotated as
‘PASS’ in the FILTER column of the VCF file provided by the Mouse Genomes
Project (version 3) were removed, (ii) SNPs that have a number of other SNP sites
located within the SNP-flanking region(± read length) larger than or equal to 4
were removed, (iii) SNPs with at least one indel within the SNP-flanking region were
removed28, (iv) SNPs on chromosome X (the mouse used is male) were removed.

Noise decomposition method. The underlying generative model of our noise
decomposition method is described in Supplementary Note 1 and numerical
procedures for estimating parameters are provided in Supplementary Note 2. A
statistical framework for decomposing the total variance into the technical and
biological variance based on the generative model is described in Supplementary
Note 3. The R code and the complete workflow to run the R code are available in
Supplementary Software.
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