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Abstract

The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive 

databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB 

has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These 

better represent a wider range of biological processes and diseases, but the utility of the database is 

reduced by increased redundancy across, and heterogeneity within, gene sets. To address this 

challenge, here we use a combination of automated approaches and expert curation to develop a 

collection of “hallmark” gene sets as part of MSigDB. Each hallmark in this collection consists of 

a “refined” gene set, derived from multiple “founder” sets, that conveys a specific biological state 

or process and displays coherent expression. The hallmarks effectively summarize most of the 

relevant information of the original founder sets and, by reducing both variation and redundancy, 

provide more refined and concise inputs for gene set enrichment analysis.
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INTRODUCTION

High-throughput technologies, such as microarrays and next generation sequencing, 

generate measurements of gene activity at genomic scale. For transcription profiling, these 

technologies report transcript abundances for tens of thousands of genes. Analysis of this 

type of data usually follows one of two approaches. The first identifies genes that are 

differentially expressed across phenotypes of interest. This is straightforward to perform, but 

in practice it leads to challenges in the follow-up analysis and interpretation of results. For 

example, in some instances only a few genes reach statistical significance and the analysis 

may not produce meaningful results. Alternatively, when a large number of genes pass a 

significance threshold, there may be no obvious way to select the most interesting genes to 

follow up. Moreover, the resulting list of genes may be difficult to interpret and to identify 

the relevant biological process that those genes represent. An alternative approach, 

pioneered by Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et 

al., 2005), focuses on coordinated differential expression of annotated groups of genes, or 

gene sets, and produces results that can more easily be interpreted in terms of the relevant 

biological processes. Since its introduction, the use of GSEA has become widespread and 

has motivated the development of many similar approaches (reviewed in Huang et al., 

2009a) and even novel statistical methods based on groups of variables (Efron, 2010; Good, 

2011). Over the last decade GSEA has proven a very successful approach in many fields of 

biomedical research and has become an essential part of the genomic analysis toolbox.

The Molecular Signatures Database (MSigDB) (Liberzon et al., 2011), originally developed 

for use with GSEA and now employed by many similar approaches, remains one of the 

largest and most popular repositories of gene sets. The latest version of MSigDB consists of 

seven collections C1-C7 which include: genes grouped by their location in the human 

genome (C1), canonical pathways and experimental signatures curated from publications 

(C2), genes sharing cis-regulatory motifs up- or downstream of their coding sequences (C3), 

clusters of genes co-expressed in microarray compendia (C4), genes grouped according to 
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gene ontology (GO) categories (C5), signatures of oncogenic pathway activation (C6), and a 

large collection of immunological conditions (C7). All of the gene sets in MSigDB are 

reviewed, curated, and annotated manually by the MSigDB curator. They are all represented 

as lists of human gene symbols from the HUGO Gene Nomenclature Committee at the 

European Bioinformatics Institute (Gray et al., 2015).

The usefulness of GSEA and other gene-set-based analysis methods depends on the 

availability of independent compendia of gene sets such as MSigDB. The growth of these 

compendia over time can provide the benefits of better representation and coverage of 

biological processes but it can also pose new challenges. These challenges derive from the 

intrinsic redundancy and heterogeneity associated with a larger universe of gene sets.

Redundancy can take different forms, e.g. gene sets may simply share a large proportion of 

their comprising genes. Another more subtle form of redundancy can occur when gene sets 

have only a partial overlap but their annotations refer to similar or the same biological 

process. In the latter case, the gene sets may actually represent partial transcriptional 

readouts of the same processes, and in both cases the sets may attain similar GSEA. As a 

consequence of this redundancy, gene set enrichment analysis could produce long lists of 

statistically significant results with multiple occurrences of essentially the same biological 

process. Moreover, many high scoring, but overlapping or redundant, gene sets can 

dominate the top of a result set and effectively hide other potentially relevant hits further 

down the list. In this scenario one can easily fail to notice important and relevant findings 

and thus not realize the full potential of GSEA. In addition, the overrepresentation of a 

biological process at the top of a gene set list can skew the tail of the observed distribution 

of enrichment scores, thereby increasing the significance of top scoring gene sets that 

represent the same signal.

A second challenge stems from heterogeneity within a gene set. For example, genes in a 

given gene set do not always behave consistently or coherently. This could be due to several 

causes: variation because of context dependencies, the existence of multiple modalities of 

biological response, intrinsic variation in the original dataset from which the gene set is 

experimentally or computationally derived, limitations of manual curation, or poor 

biological resolution with respect to the relevant biological process.

Here we present a new MSigDB collection of “hallmark” gene sets and show how it can 

help to overcome these challenges. These hallmark gene sets are generated by a hybrid 

approach that combines an automated computational procedure with manual expert curation. 

The computational methodology identifies gene set overlaps and generates coherent 

representatives of them. The manual curation makes critical use of domain expert 

knowledge in order to: i) assign biological themes to groups of the original overlapping gene 

sets, ii) identify expression data for refinement and validation of the hallmark signatures, 

and iii) properly annotate the refined hallmarks. The hallmarks summarize information 

across multiple gene sets by emphasizing genes that display coordinate expression and 

represent well-defined biological processes, thereby reducing variation and redundancy, and 

providing a better delineated biological space for GSEA analysis.
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RESULTS

Generating the Hallmark Collection

Here we give an overview of the hallmarks generation procedure (see Methods for details). 

We first identified groups of similar gene sets according to their individual gene 

membership overlaps using consensus clustering. Starting with 8,380 gene sets from 

MSigDB v4.0 collections C1-C6, the consensus clustering grouped them into 600 clusters. 

We manually reviewed the clusters and were able to annotate 43 of them with 50 clear 

biological themes. While 36 clusters had only one theme assigned to them, seven clusters 

were assigned to two themes due to the heterogeneity of their founder gene sets (see 

Supplemental Experimental Procedures, Note 1 for details). These themes, and their 

associated clusters, served as candidates for an initial collection of hallmark signatures. We 

defined “raw” sets, one for each candidate hallmark, as the union of a cluster’s gene sets. 

We refined each of these raw sets according to its gene expression profile in a number of 

datasets relevant to the corresponding biological theme. The refinement excluded genes that 

did not well discriminate the relevant phenotype. In this way, only coordinately expressed 

and biologically relevant genes remained in the final hallmark to be added to the collection. 

An additional validation procedure determined whether the final hallmark generalized, i.e., 

performed as expected in an independent dataset that was not used for the refinement. 

Founders for the final set of 50 hallmarks (Table 1) comprise 4,022 of the original 8,380 

MSigDB gene sets.

Examples using the Hallmark Collection

In this section, we give three examples that illustrate different aspects of the use of the 

hallmark collection for GSEA. The first example shows how using only the hallmarks can 

form the basis for a concise and sensitive comparison between subtypes of medulloblastoma. 

It also illustrates the type of summarization that hallmarks provide for their founder sets. 

The next example necrosis in glioblastoma, demonstrates the redundancy reduction gained 

from using the hallmark collection instead of the original MSigDB collections C1 – C6. 

Finally, in the last example we show that hallmarks can effectively associate with their 

corresponding protein activation phenotypes thus confirming their biological relevance.

Analysis of Hedgehog signaling in medulloblastoma

Medulloblastomas comprise a diverse group of malignant tumors of the cerebellum and are 

the most common pediatric brain cancers (Northcott et al., 2012). In 2011, Cho et al. 

analyzed transcriptomes of a collection of 189 primary medulloblastoma tumors. 

Unsupervised clustering of this dataset identified six distinct molecular subgroups of 

medulloblastoma, including one that is driven by the tumorigenic activation of the 

Hedgehog pathway (Cho et al., 2011). Here we considered only the samples of the 

Hedgehog subtype. As a “control”, we used samples of another subtype from this dataset 

where the relevant oncogenic process is not Hedgehog signaling but rather photoreceptor 

activation and GABRA5 up-regulation. We projected the samples from these two subtypes 

into the space of the 50 hallmarks by means of single sample GSEA (Barbie et al., 2009). 

Single sample GSEA (ssGSEA, see Methods) estimates the degree of enrichment of gene 

sets in individual samples. Then we estimated the degree of association between each 
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hallmark’s ssGSEA profile and the Hedgehog vs. photoreceptor activation phenotypic 

distinction using the Information Coefficient (IC, see Methods). In fact, any standard 

method for differential analysis could be used for this purpose. An empirical sample-label 

permutation test (500,000 random permutations) was used to estimate the statistical 

significance of the scores (i.e., the p-value and False Discovery Rates (FDR) in Figure 1A). 

Notably, if we rank the hallmarks according to their association with the Hedgehog versus 

photoreceptor phenotypes then the top-scoring hallmark, i.e., the one with the highest IC 

value (IC: 0.7346, p-value: 2×105, FDR:1×105), is indeed the Hedgehog hallmark, 

consistent with prior findings in the literature (Cho et al., 2011). A heat map of the results 

along with the hallmarks ranked by IC appears in Figure 1A. Thus we see the sensitivity of 

the Hedgehog hallmark in detecting its relevant biological process i.e., oncogenic activation 

of the sonic hedgehog pathway in the context of a disease subtype.

Repeating the analysis with the original Hedgehog hallmark’s founder sets, augmented by 

the hallmark itself, reveals that the hallmark attains the 4th highest IC measure of association 

with the oncogenic phenotype (Figure S1). The first 3 highest scoring gene sets refer to 

embryonic development of the nervous system (Figure 1B and Figure S1).

Analysis of necrosis in glioblastoma

Here we show how hallmarks address the problem of gene set redundancy, by illustrating 

the difference between GSEA performed with the hallmarks and one that uses thousands of 

gene sets from the MSigDB collections C1-C6. The dataset contains expression data for 200 

glioblastoma multiforme (GBM) and two normal brain samples from the Cancer Genome 

Atlas Research Network (TCGA) (Verhaak et al., 2010). GBM is the most common, most 

aggressive malignant primary brain tumor in adults (Ostrom et al., 2013). Necrosis, resulting 

from a limited supply of oxygen and nutrients, is a critical diagnostic feature of GBM 

(Karsy et al., 2012). We performed standard GSEA on this dataset with the MSigDB v4.0 

collections C1-C6 using the samples’ clinical annotation of percentage of necrosis as a 

continuous phenotype, the Pearson correlation as the ranking metric, and 1,000 permutations 

of sample labels to estimate significance.

The analysis yielded 527 significantly enriched gene sets that were positively correlated 

with necrosis (FDR < 0.25, Table S1). Upon inspecting these 527 significant gene sets we 

were able to assign 11 biological themes to 245 of them. Figure 2 shows the ranks of those 

annotated gene sets according to their enrichment scores (NES values) grouped by their 

corresponding biological theme on the left side.

The 100 top scoring gene sets show numerous instances of three biological processes: NFκB 

signaling, EMT (epithelial-mesenchymal transition), and hypoxia/glycolysis. Indeed, 62 out 

of the 100 top scoring sets account for 27 NFkB, 25 EMT and 10 hypoxia/glycolysis 

annotations (Figure 2). The strong presence of EMT and NFκB signatures in association 

with necrosis agrees with the observations made in the original GBM study. However, an 

additional group of 8 biological themes (shown inside a red box in Figure 2) only appear 

below rank 97 in the ranked results list and are thus eclipsed. For example, the original study 

noted deregulation of the p53 pathway as an underlying relevant biological theme of GBM. 

Our analysis finds significant enrichment of 15 gene sets corresponding to the p53 pathway. 
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However, the first such gene set appears only at rank 114 and thus, despite being statistically 

significant, would more likely be overlooked in a routine interpretation of the GSEA results.

Repeating GSEA with the 50 hallmarks finds 12 that are significantly enriched (FDR < 0.25, 

Table S2). The three top hallmarks correspond to the biological themes in the top 100 full 

MSigDB analyses, but the hallmark collection is more sensitive and also highlights the other 

eight biological processes. Notably, the hallmarks not only produce more parsimonious but 

equivalent results representing the main biological themes found in the prior analysis, but 

they also avoid the problem of gene set redundancy and over-representation altogether.

Matching hallmark enrichment scores to protein level phenotypes

We sought biological validation that the hallmark gene sets are able to detect their annotated 

processes by measuring their performance against experimental data from established 

protein reporters of pathway activation. For this we used a subset of the Cancer Cell Line 

Encyclopedia (CCLE) gene expression dataset (Barretina et al., 2012). Besides gene 

expression, the CCLE repository (www.broadinstitute.org/ccle) maintains detailed genomic, 

proteomic, and pharmacologic records for about 1,000 cancer cell lines. We projected the 

CCLE gene expression dataset onto hallmark gene sets using ssGSEA. To define protein 

abundance phenotypes we utilized the CCLE reverse phase protein array (RPPA) data. 

RPPA is an antibody-based assay that quantifies expression of proteins and allows 

concordant interrogation of multiple proteins in many samples (Spurrier et al., 2008). For a 

large panel of CCLE cell lines, we obtained the RPPA abundances of 8 proteins: AR, BCL2, 

CDH2 (N-cadherin), ESR1, KDR (VEGFR2), MYC, SMAD3, STAT5A, and a variant of 

STAT3 phosphorylated at Tyr705 (STAT3_pY705). Next, we matched 9 relevant ssGSEA 

hallmark profiles to those phenotypes using the IC, and assessed the significance of their 

matching scores using an empirical permutation test as above (2,083,333 permutations). 

Figure 3 (A through I) shows the results. We observe that all the relevant hallmark 

enrichment profiles display a high degree of association against the corresponding protein 

profiles (IC scores and p-values):

MYC protein (Figure 3A)—Cell lines with high levels of MYC protein are associated 

with high ssGSEA scores for both MYC hallmarks (MYC targets V1: IC = 0.552, p < 

4.8×10−7; MYC targets v2: IC = 0.464 p < 4.8×10−7).

Estrogen Response (Figure 3B)—There is a strong association of ESR1 protein 

expression with the ssGSEA scores of both hallmarks for estrogen response (IC = 0.518, p < 

4.8×10−7).

Androgen Receptor (Figure 3C)—Androgens are a group of steroid hormones that 

regulate the development and maintenance of male characteristics (Matsumoto et al., 2013). 

Accordingly, the highest ssGSEA score of the hallmark set denoting androgen response 

corresponds to high AR protein levels (IC = 0.429, p = 0.0002).

BCL2 and Apoptosis (Figure 3D)—BCL2 blocks apoptosis and consequently its 

protein levels display strong association (IC = 0.476, p < 4.8×10−7) with a proliferation 

signature represented by the E2F hallmark (Topham and Taylor, 2013). The BCL2 profile 
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has also a strong negative association with the apoptosis hallmark (IC = −0.588, p < 

4.8×10−7).

N-cadherin and the Epithelial-Mesenchymal Transition (Figure 3E)—N-cadherin 

is a marker of mesenchymal cells (Zeisberg and Neilson, 2009) and the epithelial-

mesenchymal transition (EMT) (Kalluri and Weinberg, 2009). This figure shows a strong 

correlation between N-cadherin protein levels and ssGSEA scores of the EMT hallmark (IC 

= 0.560, p < 4.8×10−7).

SMAD3 and TGF-β (Figure 3F)—TGF-β interacts with TGF-β receptors and leads to 

phosphorylation of SMAD2 and SMAD3 proteins (Akhurst and Hata, 2012). The profile of 

SMAD3 protein expression matches activity of the TGF-β hallmark (IC = 0.396, p < 

4.8×10−7).

STAT3 and Interleukin-6 (Figure 3G)—Interleukin-6 (IL6) binds a cytokine receptor 

and triggers a signal transduction cascade through Janus kinases (JAK) that culminates in 

phosphorylation of STAT3 on the Tyr705 (Kaptein et al., 1996; Stark and Darnell, 2012). 

There is a strong correlation between high levels of the phosphorylated STAT3 

(STAT3_pY705) and enrichment of the IL6 JAK STAT3 hallmark (IC = 0.422, p = 

2.38×104).

STAT5 and heme metabolism (Figure 3H)—STAT5 is a member of JAK/STAT 

signaling network (Stark and Darnell, 2012). During erythroid differentiation, erythropoietin 

activates STAT5, which in turn activates transcription of genes defining erythroid lineage 

(Ferbeyre and Moriggl, 2011). Consistent with this relationship, the heme metabolism 

hallmark (IC = 0.494, p < 4.76×10−7) attains high scores against the profile of STAT5A. 

Activation of STAT5 by IL2 in T lymphocytes, on the other hand, turns on expression of a 

different group of genes that play a role in a variety of immune responses. Accordingly, the 

hallmark for IL2 STAT5 signaling pathway is also associated with the STAT5A protein (IC 

= 0.368, p = 2.44×10−4).

VEGF and angiogenesis (Figure 3I)—KDR is a receptor of VEGF growth factor. As 

such, it is a key regulator of blood vessel formation (Folkman and D'Amore, 1996). We 

observe strong correlation between KDR protein levels and activity of the angiogenesis 

hallmark (IC = 0.580, p < 4.76×10−7).

DISCUSSION

Here we introduce a collection of hallmarks, along with a methodology to generate them, 

and demonstrate their utility in several examples. The hallmark generation method of gene 

overlap yielded groups of gene sets with coherent annotation and thus eventually produced 

hallmarks that represented the relevant signal in related and potentially redundant gene sets. 

Because gene sets often convey approximate and incomplete versions of the pertinent 

biological conditions, we developed a hybrid approach, which combined computational and 

manual steps. The automated steps included clustering, microarray data processing and 

meta-analysis. Expert human biological review was essential to leverage prior domain 
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knowledge for labeling clusters with biological themes because the automated clustering 

methods do not provide a sense of the degree of biological resolution represented by the 

clusters. Additional manual tasks, also requiring an experienced curator, included locating 

microarray datasets and annotating their phenotype classes. The refinement methodology 

allows the hallmark to contain the most transcriptionally coherent set of genes, which serve 

as more effective and accurate transcriptional signatures for detecting specific biological 

processes. By summarizing relevant information from thousands of founder gene sets across 

diverse collections in MSigDB, hallmarks greatly reduce redundancy and produce more 

robust and concise GSEA results that facilitate interpretation and follow-up analysis, as well 

as substantially reduce the chances of missing potentially important findings. The fifty 

hallmarks described here represent 48% (4,022 out of 8,380) of MSigDB gene sets. The 

hallmarks also capture 52.7% (452 out of 858) gene sets from the C4 collection of co-

expression modules, which cover the global landscape of the transcriptome.

The hallmarks are freely available as the H Collection in the MSigDB v5.0 and can be used 

by any enrichment analysis method that relies on gene sets. The name of every gene set in 

this collection starts with HALLMARK to distinguish them from other MSigDB gene sets. 

Table 1 lists all 50 hallmarks by their names and provides their biological process category, 

a brief description and additional statistics such as their size and their number of founder 

gene sets. Table S3 contains detailed statistics for the gene sets used to make the hallmarks 

and their cluster assignments. Each hallmark set and all of its annotations appear on a 

separate web page of the MSigDB web site (see example in Figure S2). This page also 

provides a brief description of each hallmark and follows the standard conventions for 

MSigDB gene sets. In addition every hallmark page contains links to its founder gene sets 

and includes details about specific datasets and phenotype class comparisons that were used 

to refine and validate the hallmark. This information is particularly useful when interpreting 

enrichment analysis results and in follow up studies. In order to take full advantage of 

hallmarks and the exploratory nature of GSEA, we recommend proceeding through a series 

of GSEA analysis stages (see Box 1).

We view this group of 50 hallmarks as an initial set deriving from the gene set clusters 

where the relationship to a biological theme was clear during manual review. Notably, this 

first set already corresponds to a broad coverage of cellular processes representing about 

half of the gene sets in the MSigDB. We plan to move forward with a program to enhance 

and expand the collection, encouraged by the current results that demonstrate an increase in 

signal strength and the good summarization capability of the hallmarks. We believe this 

collection will prove to be a valuable user resource for the community and provide even 

more precise results when used with enrichment analysis methods.

Experimental Procedures

Hallmark generation methodology

Step 1: Identify groups of similar gene sets using consensus clustering—We 

first clustered all the gene sets according to their member genes’ overlaps and regardless of 

their annotations. We used consensus clustering (Monti et al., 2003) with bootstrap 

resampling to allow a more robust determination of cluster stability for multiple values of k, 
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the ultimate number of clusters. In order to find the optimal number of clusters, we inspected 

the cophenetic coefficient as a function of k and searched for a peak value indicating the 

most stable partition (Brunet et al., 2004). We avoid choosing solutions with high values of 

k that produce higher values of the cophenetic coefficient but potentially overfit and 

represent small numbers of gene sets in each cluster. The extreme of this behavior is, for 

example, when the number of clusters equals the number of items, and the fit becomes 

perfect.

The input dataset to this procedure consisted of 8,380 gene sets from MSigDB v4.0 

(collections C1 through C6) each containing between 5 and 1,994 genes (features). We 

decided to include the C1 collection containing genes in cytogenetic bands because these 

often indicate regions of similar chromatin structure, or regions affected by oncogenic copy 

number alterations, which could result in co-regulation and may be important in 

development and cancer related datasets. We used agglomerative hierarchical clustering 

with average linkage as implemented in the fastclust R package (Müllner, 2013). For the 

clustering distance metric we used the Jaccard’s distance (Jaccard, 1902; Levandowsky and 

Winter, 1971). For two gene sets S1, S2 the Jaccard distance is:

(1)

where is the number of elements in the intersection of 

 is the number of elements in the union of the sets.

The bootstrapping resampling procedure for consensus clustering involved sampling with 

replacement from a pool of 31,847 genes comprising the union of all the 8,380 original gene 

sets. We performed 100 resampling iterations and carried out consensus clustering for 50 ≤ k 

≤ 8,000 in increments of 50. We used cophenetic coefficients (ρ) of the consensus clustering 

results to estimate the optimal number of clusters. The cophenetic analysis showed two 

peaks: one at k = 450 (ρ = 0.9668) and another at k = 600 (ρ = 0.9670, Figure S3). After 

inspecting results for both values of k, we found the partition with k = 450 to be too coarse 

and heterogeneous for our purposes. On the other hand, clusters made with k = 600 seemed 

to be at the level of granularity that was more appropriate for making hallmark sets. We 

therefore chose the partition at k = 600 to produce clusters of gene sets for the subsequent 

steps in the hallmark methodology.

Step 2: Filter clusters and identify biological themes—After initial manual 

assessment, we excluded some of the clusters from further consideration based on their 

small size in terms of number of genes or gene sets. We left out clusters that had fewer than 

150 genes total when we merged the genes in all their member gene sets to allow for 

sufficient number of genes for subsequent refinement by meta-analysis. We also removed 

clusters with fewer than six gene sets as the smaller clusters usually lacked sufficient 

information (in terms of descriptions of and overlaps among their constituent gene sets) to 

deduce meaningful biological theme. The filtering left 168 clusters for the next stage.
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Upon manual inspection of these clusters, we assigned biological themes to 73 clusters 

where the theme was clearly identifiable. To do this, we relied on the MSigDB annotations 

of both the gene sets, in the form of their names and descriptions, and their individual genes. 

In a number of cases, we also used complementary annotation tools such as DAVID (Huang 

et al., 2009b) to obtain additional clues about the most relevant pathways represented by 

them.

Step 3: Identify gene expression datasets for refinement—We queried the GEO 

(Barrett et al., 2007) and ArrayExpress (Rustici et al., 2013) to find relevant human, mouse 

or rat expression datasets for each of the 73 clusters of the previous step. Each dataset was 

required to contain at least 3 samples in each phenotypic class. We also verified that these 

datasets were not used to define any of the hallmarks. For subsequent steps we chose 43 of 

these clusters, for which we identified at least 3 datasets for refinement and a fourth 

independent one for validation. These 43 clusters were annotated with 50 biological themes. 

Seven clusters gave rise to two due to heterogeneity within founding gene sets 

(Supplemental Experimental Procedures, Note 1 and Table S4). We plan to continue 

assigning themes and processing the remaining clusters to develop additional hallmarks in 

the future.

Step 4: Define raw hallmark sets—We defined raw hallmarks for each of the 50 

hallmarks produced by the previous step. A raw hallmark is the union of a cluster of founder 

gene sets’ genes after excluding all the “unknown genes”. We considered a gene as 

“unknown” if it has been identified exclusively by automatic computational predictions or 

represented a poorly documented sequence such as an EST. Specifically, we defined a gene 

as “unknown” if its official gene symbol (according to NCBI Entrez and HUGO) matched 

naming conventions of an EST (e.g., “KIAA”, “LOC”, “MGC”, “FLJ”, or “DKFZp” 

followed by digits).

Step 5: Refining raw hallmark sets—We assessed how well each gene in each raw 

hallmark discriminated the relevant phenotypes in each of the datasets identified in step 3. 

We again used the IC between the phenotype or class vector and the gene expression 

profiles as the discrimination metric. We assessed the statistical significance of each gene’s 

IC score and produced nominal p-values using a sample permutation test to create an 

empirical null distribution. This was done independently for each gene expression test 

dataset. A meta-analysis produced summary p-values across these datasets using Fisher’s 

method (Fisher, 1948) as implemented in R package MetaDE (Wang et al., 2012). We used 

summary p-values to compute False Discovery Rates (FDR) following the approach of 

(Benjamini and Hochberg, 1995). The genes in the raw hallmark were then sorted by their 

FDR values and the top scoring genes with summary FDR values less than 0.01 comprised 

the final hallmark set. When the number of genes obtained by this method was less than 15 

(or more than 200) the top scoring 15 (or 200) genes were chosen regardless of their FDR 

values. Thus the refined hallmarks consist of at least 15 and at most 200 genes, which is the 

recommended size for use with GSEA. In the refinement procedure we focused on up-

regulated genes and used one-tailed tests. The rationale for this stems from our empirical 
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observation that expression patterns of down-regulated genes are often context dependent 

and tend to generalize poorly across datasets, while up-regulated genes are more consistent.

Step 6: Independent validation and final hallmark set—The final hallmark set 

consists of genes that, at the same time, represent multiple gene sets and also display 

coherent, discriminating behavior across a number of test datasets. Every hallmark was 

validated on at least one additional independent dataset. The validation consisted of 

computing the ssGSEA scores for the hallmark in the independent datasets and confirming 

that the nominal p-value of the IC score of the hallmark vs. target phenotype was less than 

0.05.

Procedures for computing Jaccard’s coefficients, microarray data processing, the 

information coefficient metric, gene set enrichment analysis, and data visualization are in 

Supplemental Experimental Procedures.

Box 1

Practical Guidelines for using the MSigDB Hallmark Gene Set Collection

I. Establish a “bird’s-eye view” of the data by carrying out GSEA using the hallmark 

collection. Because the hallmarks have been carefully generated and tested, a significant 

result in this analysis should be considered as having high confidence and worthy of 

additional follow up.

II. Repeat GSEA using the founder gene sets for each of the top scoring hallmarks to 

explore more specific or detailed findings.

III. Complement the analysis using other sub-collections of MSigDB gene sets for 

specific purposes. For example the C3 (master regulators/transcription factors) or C6 

(oncogenic pathways) collections can provide additional insight via signals not yet 

represented in the hallmarks.

In some cases, the hallmark gene sets can be useful in generating target profiles to match 

against genomic variables (e.g., mutation status, copy number alterations, drug 

sensitivity, etc.) associated with the biological themes that the hallmarks represent.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis of Hedgehog signaling in medulloblastoma. The figure shows ssGSEA scores 

ranked by their degree of association (IC) between the Hedgehog and photoreceptor 

phenotype for: A) the 50 hallmarks and, B) the Hedgehog hallmark and 9 of its top scoring 

founder gene sets. The IC scores, p-values and FDR’s appear on the right side of the heat 

maps. Black and grey colors denote medulloblastoma subtypes (Hedgehog and 

photoreceptor subtypes respectively).
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Figure 2. 
Ranks of gene sets grouped by biological themes. The horizontal axis denotes rankings of 

gene sets enriched in the GBM data with respect to necrosis. The biological themes are on 

the right side of the graph. The vertical bars indicate ranks of gene sets. Black bars denote 

the 245 significantly enriched sets. Gray bars stand for the gene sets that were not enriched 

significantly. The uncategorized gene sets are not shown. The rows indicate 11 biological 

themes. The red box shows gene sets that are pushed down the list by high scoring gene sets 

representing hypoxia/glycolysis, EMT, and NFkB signaling.
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Figure 3. 
Matching hallmark enrichment scores to phenotypes defined by protein levels. The top row 

of the heat maps shows Reverse Phase Protein Array (RPPA) profiles of selected proteins 

sorted in descending order from left to right. The chosen protein expression profiles are from 

top to bottom: A) MYC (c-Myc-R-C), B) ESR1 (ER-alpha-R-V), C) AR (AR-R-V), D) 

BCL2 (Bcl-2-M-V), E) CDH2 (N-cadherin-R-V), F) SMAD3 (Smad3-R-V), G) STAT3 

pY705 (STAT3_pY705-R-V), H) STAT5A (STAT5-alpha-R-V) and I) KDR scores.
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Table 1

Summary of the hallmark gene sets: name, process category, description, number of founder sets and number 

of genes it contains.

Hallmark name Process category Description Number 
of
founder 
sets

Number
of genes

1 APICAL_JUNCTION cellular component Apical junction complex consisting 
of adherens and tight junctions

37 200

2 APICAL_SURFACE cellular component Membrane proteins in the apical 
domain

12 44

3 PEROXISOME cellular component Peroxisomes 28 107

4 ADIPOGENESIS development Adipocyte development 36 200

5 ANGIOGENESIS development Blood vessel formation 14 36

6 EPITHELIAL_MESENCHYMAL_TRANSITION development Epithelial mesenchymal transition 107 200

7 MYOGENESIS development Muscle differentiation 64 200

8 SPERMATOGENESIS development Sperm development and male 
fertility

24 135

9 PANCREAS_BETA_CELL development Genes specific to pancreatic beta 
cells

24 40

10 DNA_REPAIR DNA damage DNA repair 44 150

11 UV_RESPONSE_DOWN DNA damage UV response: down-regulated genes 17 144

12 UV_RESPONSE_UP DNA damage UV response: up-regulated genes 16 158

13 ALLOGRAFT_REJECTION immune Allograft rejection 190 200

14 COAGULATION immune Coagulation cascade 71 138

15 COMPLEMENT immune Complement cascade 71 200

16 INTERFERON_ALPHA_RESPONSE immune Interferon alpha response 82 97

17 INTERFERON_GAMMA_RESPONSE immune Interferon gamma response 82 200

18 IL6_JAK_STAT3_SIGNALING immune IL6 STAT3 signaling during acute 
phase response

24 87

19 INFLAMMATORY_RESPONSE immune Inflammation 120 200

20 BILE_ACID_METABOLISM metabolic Biosynthesis of bile acids 28 112

21 CHOLESTEROL_HOMEOSTASIS metabolic Cholesterol homeostasis 28 74

22 FATTY_ACID_METABOLISM metabolic Fatty acid metabolism 53 158

23 GLYCOLYSIS metabolic Glycolysis and gluconeogenesis 87 200

24 HEME_METABOLISM metabolic Heme metabolism 36 200

25 OXIDATIVE_PHOSPHORYLATION metabolic Oxidative phosphorylation and 
citric acid cycle

93 200

26 XENOBIOTIC_METABOLISM metabolic Metabolism of xenobiotics 124 200

27 APOPTOSIS pathway Programmed cell death; caspase 
pathway

80 161

28 HYPOXIA pathway Response to hypoxia; HIF1A 
targets

87 200

29 PROTEIN_SECRETION pathway Protein secretion 74 96
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Hallmark name Process category Description Number 
of
founder 
sets

Number
of genes

30 UNFOLDED_PROTEIN_RESPONSE pathway Unfolded protein response; ER 
stress

22 113

31 REACTIVE_OXYGEN_SPECIES_PATHWAY pathway Reactive oxygen species (ROS) 
pathway

13 49

32 E2F_TARGETS proliferation E2F targets 420 200

33 G2M_CHECKPOINT proliferation Cell cycle G2/M checkpoint 420 200

34 MYC_TARGETS_V1 proliferation MYC targets variant 1 404 200

35 MYC_TARGETS_V2 proliferation MYC targets variant 2 6 58

36 P53_PATHWAY proliferation p53 pathway 85 200

37 MITOTIC_SPINDLE proliferation Mitotic spindle assembly 108 200

38 ANDROGEN_RESPONSE signaling Androgen response 8 117

39 ESTROGEN_RESPONSE_EARLY signaling Early estrogen response 61 200

40 ESTROGEN_RESPONSE_LATE signaling Late estrogen response 61 200

41 IL2_JAK_STAT5_SIGNALING signaling IL2 STAT5 signaling 13 200

42 KRAS_SIGNALING_UP signaling KRAS signaling, up-regulated 
genes

14 200

43 KRAS_SIGNALING_DOWN signaling KRAS signaling, down-regulated 
genes

16 200

44 MTORC1_SIGNALING signaling mTORC1 signaling 487 200

45 NOTCH_SIGNALING signaling Notch signaling 49 32

46 PI3K_AKT_MTOR_SIGNALING signaling PI3K signaling via AKT to 
mTORC1

591 105

47 HEDGEHOG_SIGNALING signaling Hedgehog signaling 79 36

48 TGF_BETA_SIGNALING signaling TGF beta signaling 29 54

49 TNFA_SIGNALING_VIA_NFKB signaling TNFA signaling via NFkB 132 200

50 WNT_BETA_CATENIN_SIGNALING signaling Cannonical beta catenin pathway 49 42
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