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Abstract

Summary: The CRISPR/Cas9 system was recently developed as a powerful and flexible technology

for targeted genome engineering, including genome editing (altering the genetic sequence) and

gene regulation (without altering the genetic sequence). These applications require the design of

single guide RNAs (sgRNAs) that are efficient and specific. However, this remains challenging, as it

requires the consideration of many criteria. Several sgRNA design tools have been developed for

gene editing, but currently there is no tool for the design of sgRNAs for gene regulation. With accu-

mulating experimental data on the use of CRISPR/Cas9 for gene editing and regulation, we imple-

ment a comprehensive computational tool based on a set of sgRNA design rules summarized from

these published reports. We report a genome-wide sgRNA design tool and provide an online web-

site for predicting sgRNAs that are efficient and specific. We name the tool CRISPR-ERA, for clus-

tered regularly interspaced short palindromic repeat-mediated editing, repression, and activation

(ERA).

Availability and implementation: http://CRISPR-ERA.stanford.edu.

Contact: stanley.qi@stanford.edu or xwwang@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The bacterial adaptive immune system, CRISPR (clustered regularly

interspaced short palindromic repeats), was recently developed as a

powerful and multi-purpose technology for genome engineering,

including editing (modifying the genomic sequence) (Cong et al.,

2013; Mali et al., 2013), and regulation (repressing or activating ex-

pression of genes) (Gilbert et al., 2013, 2014; Qi et al., 2013). The

system is highly programmable, utilizing a single protein, the nucle-

ase Cas9 for editing or the nuclease-deficient dCas9 for regulation.

A single guide RNA (sgRNA) is required for precise and program-

mable DNA targeting (Doudna and Charpentier, 2014). Effective

and specific genome engineering requires careful design of sgRNAs,

which remains a major challenge. Computational tools have been

used to facilitate the design of sgRNAs for CRISPR editing but not

for other applications such as transcriptional regulation. These com-

putational tools should enable automated sgRNA design and off-

target site validation (Bae et al., 2014; Doench et al., 2014; Heigwer

et al., 2014; O’Brien and Bailey, 2014; Xiao et al., 2014). A major

goal of our designer tool is to address the discrepancy for designing

sgRNAs that allow efficient and highly specific repression or activa-

tion of genes and for generating genome-wide sgRNA libraries for

genetic screening in different organisms.
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Here, we describe CRISPR-ERA webserver, an automated and

comprehensive sgRNA design tool for CRISPR-mediated editing,

repression, and activation (ERA) (Fig. 1). CRISPR-ERA utilizes a

fast algorithm to search for genome-wide sgRNA binding sites and

evaluates their efficiency and specificity using a set of rules summar-

ized from published data for CRISPR editing, repression and activa-

tion (Cong et al., 2013; Doudna and Charpentier, 2014; Gilbert

et al., 2014; Qi et al., 2013; Ran et al., 2013). The design features

are annotated and the target sites can be visualized in a genome

browser. We also provide a local version for the generation of

whole-genome sgRNA libraries.

2 Methods

For each target gene or genomic site, CRISPR-ERA first searches

all targetable sites in that particular organism for patterns of

N20NGG (N¼ any nucleotide). Each target sequence is then calcu-

lated for two scores (Supplementary Methods): (i) an efficacy score

(E-score) based on the sequence features such as GC content

(%GC), presence of poly-thymidine (which is a terminator for ef-

fective transcription of sgRNAs), and location information such as

the distance from target gene transcriptional start sites (TSS); and

(ii) a specificity score (S-score) based on the genome-wide off-target

binding sites. For each sgRNA design, we compute the genome-

wide sequences that contain an adjacent NRG (R¼A or G)

protospacer adjacent motif (PAM) site and zero, one, two, or three

mismatches complementary to the sgRNA using Bowtie (Langmead

et al., 2009), which are regarded as off-target binding sites. The

penalty score for NAG off-target is smaller than NGG off-target.

The sgRNAs are finally ranked by the sum of E-score and S-score

(Fig. 1; Supplementary Fig. S1).

We implement a user-friendly web server (http://CRISPR-ERA.

stanford.edu) that hosts the web application for the sgRNA designer

tool. The webserver will host a broad category of sequenced organ-

isms. Currently, it provides sgRNA design service for nine most

commonly used prokaryotic and eukaryotic organisms including

Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae,

Drosophila melanogaster, Caenorhabditis elegans, Danio rerio,

Rattus norvegicus, Mus musculus, and Homo sapiens, etc.

(Supplementary Table S1.). The web application enables rapid

searching in the pre-assembled sgRNA database using an indexing

searching approach (Supplementary Methods). The program out-

puts the sequence, target location, off-target details of the possible

sgRNAs, their E- and S-scores etc. Results can be visualized using

the UCSC genome browser to highlight the custom tracks

(Supplementary Fig. S2 and S3).

Fig. 1. CRISPR-ERA workflow and example. The CRISPR-ERA algorithm takes input information, including types of genome manipulation, organism, and gene

name or genome location, and then computes and evaluates sgRNAs within the targeted genome region. By default, for editing, the algorithm chooses sgRNA

sequences within coding region; for repression, the algorithm computes sgRNA binding sites within a 3 kb region centered at TSS (or the sense strand of the 50

end of the gene for bacteria only); for activation, the algorithm computes sgRNA binding sites up to 1.5 kb upstream of TSS. In this figure, mouse gene Sox2 is

shown as an example. E, efficacy score; S, specificity penalty score (Supplementary Methods)
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3 Conclusions

CRISPR-ERA enables easy, fast, and predictive design of sgRNAs

for broad applications of CRISPR in genome editing, gene repres-

sion and activation. The tool can be applied to other types of

CRISPR applications such as genome imaging (Chen et al., 2013)

and CRISPR synthetic circuit design (Kiani et al., 2014), and ex-

panded to other organisms. We also provide the source code for the

generation of whole-genome sgRNA libraries, useful for genome-

wide screening based on CRISPR, CRISPRi or CRISPRa (Gilbert

et al., 2014, Shalem et al., 2013; Wang et al., 2013).
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