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Abstract

Hypothesis weighting improves the power of large-scale multiple testing. We describe a method 

that uses covariates independent of the p-values under the null hypothesis, but informative of each 

test’s power or prior probability of the null hypothesis. Independent hypothesis weighting (IHW) 

increases power while controlling the false discovery rate (FDR). IHW is a practical approach to 

discover associations in large datasets as encountered in genomics and high-throughput biology. 

Availability: www.bioconductor.org/packages/IHW

Multiple testing is an important part of many high-throughput data analysis workflows. A 

common objective is to maximize the number of discoveries while controlling the FDR, i. e., 

the expected fraction of false discoveries. Commonly used procedures, such as that of 

Benjamini and Hochberg, achieve this objective by working solely off the list of p-values [1–

5]. However, such an approach has suboptimal power when the individual tests differ in their 

statistical properties, such as sample size, true effect size, signal-to-noise ratio, or prior 

probability of being false.

For example, in RNA-seq differential expression analysis, each test is associated with a 

different gene, and because of differences in the number of reads mapped the genes greatly 

differ in their signal-to-noise ratio. In genome-wise association studies (GWAS), 

associations are sought between genetic polymorphisms and phenotypic traits; however, the 

power to detect an association is lower for rarer polymorphisms (all else being equal). In 

GWAS of gene expression phenotypes (eQTL), cis-effects are a priori more likely than 

associations between a gene product and a distant polymorphism.

To take into account such differences in the statistical properties of the tests, one can 

associate each test with a weight, a non-negative number as a measure of its priority 

(Supplementary Note 1). The weights fulfill a budget criterion, commonly that they average 

to one. Hypotheses with higher weights get prioritized [6]. The procedure of Benjamini and 
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Hochberg (BH) [1] can be modified to allow weighting simply by replacing the original p-

values pi with their weighted versions pi /wi (where wi is the weight of hypothesis i) [6]. 

This approach controls the FDR if the weights are pre-specified and thus independent of the 

data. However, the optimal choice of weights is rarely known in practice, and a generally 

applicable data-driven method would be desirable [7–11].

Independent hypothesis weighting (IHW) is a multiple testing procedure that applies the 

weighted BH method [6] using weights derived from the data. The input to IHW is a two-

column table of p-values and covariates. The covariate can be any continuous-valued or 

categorical variable that is thought to be informative on the statistical properties of the 

hypothesis tests, while it is independent of the p-value under the null hypothesis [9]. Such 

covariates exist in many applications and are often apparent to domain experts (Table 1). The 

conditional independence property can be verified either mathematically [9] or empirically 

[12]. Simple diagnostic plots of the data can help assess these assumptions (Fig. 1).

IHW is motivated by considering multiple testing as a resource allocation problem [6]: given 

a budget of acceptable FDR, how can it be distributed among the hypotheses in such a way 

as to obtain the best possible power overall? The first idea is to use the covariate to assign 

hypothesis weights. We approximate the covariate-weight relationship by a step-wise 

constant function. No further assumptions (e. g., monotonicity) are needed.

The second idea is that the number of discoveries of the weighted BH procedure with given 

weights is an empirical indicator of the method’s power. Therefore, a good choice of the 

covariate-weight function should lead to a high number of discoveries.

An initial implementation (“naive IHW”) is easy to explain. The algorithm divides the tests 

into groups based on the covariate. Then, we associate each group with a weight, so that all 

hypotheses within a group are assigned the same weight. For each possible choice of 

weights we apply the weighted BH procedure at level α and calculate the total number of 

discoveries. We choose the weights leading to the highest number of discoveries.

In many applications, this approach is already satisfactory, but it has two shortcomings: 

First, the underlying optimization problem is difficult and does not easily scale to problems 

with millions of tests. Second, in certain situations, described below, this algorithm leads to 

loss of type I error control. The reason for the latter is analogous to overfitting in statistical 

learning, and we use methods from this field to overcome the shortcomings: convex 

relaxation, data splitting and regularization (Online Methods and Supplementary Note 2). 

The full IHW algorithm employs these three extensions.

IHW increases empirical detection power compared to the BH procedure. We illustrate this 

claim on three exemplary applications (Supplementary Note 3). The first, by Bottomly et al. 
[13, 14], is an RNA-seq dataset used to detect differential gene expression between mouse 

strains. p-values were calculated using DESeq2 [12]. Here we used the mean of normalized 

counts for each gene, across samples, as the informative covariate. We saw an increased 

number of discoveries compared to BH (Fig. 2a). In addition, we observed that the learned 

weight function prioritized genes with higher mean normalized counts (Supplementary Fig. 

1a).
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Second, we analyzed a quantitative mass-spectrometry (SILAC) experiment in which yeast 

cells treated with rapamycin were compared to yeast treated with DMSO (2 × 6 biological 

replicates) [15]. Differential protein abundance of 2,666 proteins was evaluated using 

Welch’s t-test [15]. As a covariate we used the total number of peptides that were quantified 

across all samples for each protein. IHW again showed increased power compared to BH 

(Fig. 2b), and proteins with more quantified peptides were assigned higher weight, as 

expected (Supplementary Fig. 1b).

In a third example, we searched for associations between SNPs and histone modification 

marks (H3K27ac) [16] on human Chromosome 21. This yielded 180 million tests. As a 

covariate we used the genomic distance between the SNP and the ChIP-seq signal. The 

power increase compared to BH was dramatic (Fig. 2c). IHW automatically assigned most 

weight to small distances (Fig. 2d). Thus IHW acted similarly to the common practice in 

eQTL-analysis of searching for associations only within a certain distance, a form of 

Independent Filtering. However, it had the advantage that no arbitrary choice of distance 

threshold was needed, and that the weights were more nuanced than a hard distance 

threshold. IHW does not exclude SNP-phenotype pairs far away, and these can still be 

detected as long as they have a sufficiently small p-value.

The extensions to naive IHW are needed to ensure type I error control. Naive IHW, as well 

as previous approaches to data-driven hypothesis weighting or filtering, do not maintain 

FDR control in situations where all hypotheses are true (Fig. 2e) or where there is 

insufficient power to detect the false hypotheses (Supplementary Fig. 2a). In addition, the 

local fdr methods (Clfdr and FDRreg) often show strong deviations from the target FDR in a 

direction (conservative or anti-conservative) that is not apparent a priori (Fig. 2f,g). Thus, 

among all methods benchmarked across these scenarios, only BH, IHW (but not naive IHW) 

and LSL-GBH generally control the FDR. The results of our method comparisons are 

summarized in Table 2 (Fig. 2 and Supplementary Fig. 2), and the simulations are described 

in Supplementary Note 4.

IHW can apply a size investing strategy. IHW assigns low weight to covariate-groups with 

low signal (such as Fig. 1d). While this may be expected, a less intuitive effect can pertain to 

groups with very small p-values. IHW can move away weight from these towards groups 

with more intermediate p-values, since the former will be rejected even with a lower weight. 

This is called size investing [17]. Several other methods (Table 2), including Independent 

Filtering, stratified BH, LSL-GBH and FDRreg, cannot apply size investing and might even 

lose power compared to the BH method (Supplementary Fig. 2d,f and Supplementary Note 

5).

It is instructive to consider the relation between IHW and the concept of local true discovery 

rates. p-values are a reduction of data into one number, which typically does not contain all 

the important information (Table 1; [18, 19]). One might wonder whether there are other 

quantities that are better suited for selecting discoveries. The theoretically optimal candidate 

is the local true discovery rate (tdr) [4]. The tdr of the ith hypothesis is [4]
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(1)

A schematic explanation is given in Fig. 3a (see also Supplementary Figs. 3 and 4). fi is the 

density of the distribution of the p-value p. It is a mixture of two distributions, fi = π0,if0 + 

π1,if1,i, where the densities f0 and f1,i are conditional on the null or the alternative being true, 

respectively, and π0,i and π1,i (which sum up to 1) are the corresponding prior probabilities. 

The null distribution of a properly calibrated test is uniform, therefore we can set f0(p) = 1 

irrespective of p and i. In Fig. 3b-d three hypotheses are shown with different tdr curves 

corresponding to different power profiles.

It can now be shown that to maximize power at a given FDR, one should reject the 

hypotheses with the highest tdr [20, 21]. In other words, if we knew the functions in 

Equation (1) and could use tdri (pi) as our test statistics, then without any further effort we 

would have a method for FDR control with optimal power.

Similarly to the central idea of IHW, one can now assume that the many different, unknown 

univariate functions tdri (p), one for each hypothesis i, can be approximated by a single 

bivariate function tdr(p, x), where x is the covariate. The joint density of p and x (Fig. 3e) 

gives rise to the joint density of tdr and x (Fig. 3f). We can see how in such a scenario the 

decision boundary of the BH method tends to be suboptimal. As it is defined solely in terms 

of p-values (Fig. 3e), it differs from the optimal region, whose boundary is a vertical line of 

constant tdr (Fig. 3f).

However, in practice, we neither know the quantities in Equation (1) nor the bivariate 

function tdr(p, x) and have to estimate them [22]. Unfortunately, this estimation problem is 

difficult, and even with the use of additional approximations, such as splines [23] or 

piecewise constant functions [24], there does not seem to be a practical implementation.

With IHW we circumvent explicit estimation of the bivariate tdr function and instead derive 

a powerful testing procedure by assigning data-driven hypothesis weights. In addition, the 

IHW method readily extends to other weighted multiple testing procedures [6]. In 

Supplementary Note 6 (and Supplementary Fig. 5) we describe IHW-Bonferroni, a new 

powerful method for control of the familywise error rate (FWER). In contrast, local tdr 

methods are specific to the FDR.

We have introduced a weighted multiple testing method that learns the weights from the 

data. Its appeal lies in its generic applicability. It does not require assumptions about the 

relationship between the covariate and the power of the individual tests, such as 

monotonicity, which is necessary for Independent Filtering. It can apply size investing 

strategies, since it does not assume that the alternative distributions are the same across the 

different hypotheses. It is computationally robust and scales to millions of hypotheses.

The idea of using informative covariates for hypothesis weighting or for shaping optimal 

decision boundaries is not new (Table 2; [24–26]). In this work, we provide a general and 
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practical approach. Most importantly, we show how to overcome two major limitations of 

previous approaches: type I error control and stability.

We gave examples of suitable covariates for a variety of applications in Table 1. Further 

work could establish additional domain-specific choices of covariates, formalize and 

automate the assessment of diagnostic plots such as Fig. 1 and extend IHW to higher 

dimensional covariates.

Various approaches to increasing power compared to the BH method have focused on 

estimating the fraction of true nulls among all hypotheses instead of conservatively 

approximating it by 1, as the BH method does [2]. In practice, this tends to have limited 

impact, since in the most interesting situations the number of true discoveries is small 

compared to all tests and no substantial power increase is gained. On the other hand, such an 

extension could be beneficial for IHW, since often the groups that get assigned a high weight 

also have a reduced proportion of true nulls.

The issue of dependence between hypotheses deserves attention. For example, the proof of 

the BH method was initially provided under the assumption of independent hypothesis tests 

and later extended to positive regression dependence [27]. Beyond that, BH has turned out to 

be remarkably robust to correlations encountered in analyses of real data. In our experience, 

IHW inherits this property of BH, whenever the covariate is not involved in the joint 

dependence of the null p-values.

In our method we have explicitly avoided estimating the densities in Equation (1). 

Nevertheless, the local true discovery rate is an interesting quantity in its own right, since it 

provides a posterior probability for each individual hypothesis. Our weighted p-values do 

not provide this information. Thus, development of stable estimation procedures for the local 

local true discovery rate that incorporate informative covariates is needed and would be 

complementary to our work [19, 22–24].

Code availability

The IHW package is available from Bioconductor at http://www.bioconductor.org/packages/

IHW. It comes with detailed documentation and a vignette that showcases the application of 

IHW to a real dataset. The vignette also provides guidance on the choice of informative 

covariates and suggests diagnostic plots, so that users can determine if their covariate 

satisfies the required conditions.

Executable documents (Rmarkdown) reproducing all analyses shown here can be 

downloaded at http://bioconductor.org/packages/IHWpaper.

Both packages are also available as Supplementary Software to this manuscript.
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Online Methods

Description of the IHW algorithm

The hypothesis tests are divided into G different groups based on the covariate, typically of 

about equal size. Each group g is associated with weight wg. The following optimization 

problem is solved: find the weight vector w = (w1 , …, wG) that maximizes the number of 

rejections of the weighted BH method at level α. This method, naive IHW, is modified by 

the following three extensions.

E1. Instead of the above optimization task, we solve a convex relaxation of it. In statistical 

terms this corresponds to replacing the empirical cumulative distribution functions (ECDF) 

of the p-values with the Grenander estimators (least concave majorant of the ECDF). The 

resulting problem is convex and can be efficiently solved even for large numbers of 

hypotheses.

E2. We randomly split the hypotheses into k folds. For each fold, we apply convex IHW to 

the other k− 1 folds and assign the learned weights to the remaining fold. Thus the weight 

assigned to a given hypothesis does not directly depend on its p-value, but only on its 

covariate.

E3. The performance of the algorithm can be further improved by ensuring that the weights 

learned with k– 1 folds generalize to the held-out fold. Therefore, we introduce a 

regularization parameter λ ≥ 0, and the optimization is done over a constrained subset of the 

weights. For an ordered covariate, we require that,

i. e., weights of successive groups should not be too different. For an unordered covariate, 

we use instead the constraint

i.e., deviations from 1 are penalized. In the limit case λ = 0, all weights are the same, so 

IHW with λ = 0 is just the BH method. IHW with λ → ∞ is the unconstrained version. 

Choice of λ is a model selection problem, so within each split in E2 we apply a second 

nested layer of cross-validation. E3 is optional; whether or not to apply it will depend on the 

data. It will be most beneficial if the number of hypotheses per group is relatively small.

A complete description of the algorithm, including an efficient computational 

implementation of the optimization task, is provided in Supplementary Note 2. 

Supplementary Note 7 describes its theoretical justification.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Histograms stratified by the covariate as a diagnostic plot.
a) The histogram of all p-values shows a mixture of a uniform distribution (corresponding to 

the true null hypotheses) and an enrichment of small p-values to the left (corresponding to 

the alternatives). Such a well-calibrated histogram is the starting point for most multiple 

testing methods. b-d) Histograms after splitting the hypotheses into three groups based on 

the values of the covariate. Shown is an example of a good covariate: each histogram still 

shows a uniform component, but the mixture proportion and/or the shape of the alternative 

distribution differ between the groups. If all histograms look the same, the covariate is 

uninformative, and its use would not lead to an increase in power. If the tails are no longer 

uniform, independence under the null is violated, and application of IHW is not valid.
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Figure 2. Performance evaluation.
Panels a-c show the number of discoveries with IHW and BH on real data as a function of 

the target FDR. a) RNA-Seq dataset [13] with mean of normalized counts for each gene as 

the covariate. b) SILAC dataset [15], with number of peptides quantified per protein as the 

covariate. c) hQTL dataset [16] for Chromosome 21, with genomic distance between SNPs 

and ChIP-seq signals as the covariate. Independent Filtering with different distance cutoffs 

was also applied. d) Weight function learned by IHW at α = 0.1 for the hQTL dataset. 

Shown are the curves for the five folds in the data splitting scheme. Panels e-h benchmark 

different methods based on simulations. Brief descriptions of each method are in Table 2. e–
f) Type I error control if all null hypotheses are true. Shown is the true FDR against the 

nominal significance level α. e) All methods shown make too many false discoveries. f) BH, 

FDRreg, and IHW control the FDR. LSL-GBH and Clfdr are slightly anticonservative. g-h) 
Implications of different effect sizes. The two-sample t-test was applied to Normal samples 

(n = 2 × 5, σ = 1) with either the same mean (nulls) or means differing by the effect size 

indicated on the x-axis (alternatives). The fraction of alternatives was 0.05. The pooled 

sample variance was used as the covariate. The nominal level was α = 0.1 (dotted line). g) 
The y-axis shows the actual FDR. h) Power analysis. All methods show improvement over 

BH.
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Figure 3. True discovery rate and informative covariates.
a) Schematic representation of the density fi, which is composed of the alternative density 

f1,i weighted by its prior probability π1,i and the uniform null density weighted by π0,i. b-d) 
The true discovery rate (tdr) of individual tests can vary. In b), the test has high power, and 

π0,i is well below 1. In c), the test has equal power, but π0,i is higher, leading to a reduced 

tdr. In d), π0,i is like in b), but the test has little power, again leading to a reduced tdr. e) If 
an informative covariate is associated with each test, the distribution of the p-values from 

multiple tests is different for different values of the covariate. The contours represent the 
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joint density of p-values and covariate. The BH procedure accounts only for the p-values and 

not the covariates (dashed red line). In contrast, the decision boundary of IHW is a step 

function; each step corresponds to one group, i. e., to one weight. f) By Equation (1), the 

density of the tdr also depends on the covariate. The decision boundary of the BH procedure 

(dashed red line) leads to a suboptimal set of discoveries, in this example with higher than 

optimal tdr for intermediate covariate values and too low otherwise. In contrast, IHW 

approximates a line of constant tdr, implying efficient use of the FDR budget. An important 

feature of IHW is that it works directly on p-values and covariates rather than explicitly 

estimating the tdr.
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Table 1

Examples of covariates.

Application Covariate

Differential expression analysis Sum of read counts per gene across all samples [12]

Genome-wide association study (GWAS) Minor allele frequency

Expression-QTL analysis Distance between the genetic variant and genomic location of the phenotype

ChIP-QTL analysis Comembership in a topologically associated domain [16]

t-test Overall variance [9]

Two-sided tests Sign of the effect

Various applications Signal quality, sample size
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Table 2

Short description of the different methods benchmarked and summary of the results of Fig. 2e–h and 

Supplementary Fig. 2.

Method Short description Type I error 
control

Gain in power Comment

π0=1 t-test t-test (vs BH) size investing

BH Method of Benjamini and 
Hochberg [1] to control false-
discovery rate (FDR) for multiple 
exchangeable hypotheses.

Yes Yes – –

IHW Independent hypothesis 
weighting, as proposed here.

Yes Yes Yes Yes

Naive
IHW

Naive independent hypothesis 
weighting, as proposed here.

No No Yes Yes

Greedy Independent Filtering The Independent Filtering 
procedure [9] modified to use a 
data-driven filter threshold which 
maximizes the number of 
discoveries.

No No Yes No The covariate-
weights function is 
a binary step, 
monotonic.

SBH Stratified Benjamini-Hochberg 
[28]: Apply the BH procedure at 
level α within each stratum, then 
combine the discoveries across 
the strata.

No No Yes No

TST-GBH The Group BH procedure [10]: 
An adaptive weighted BH 
procedure applied with weights 
proportional to π1/π0 within each 
group. π0 is estimated using the 
TST estimator [2].

No No Yes No

LSL-GBH The Group BH procedure [10], 
where π0 is estimated using the 
LSL estimator

Yes Yes Yes No

Clfdr In the Clfdr procedure [20], the 
local fdr is estimated separately 
within each group and the 
estimates are pooled together. For 
the fdr estimation here we use the 
modified Grenander estimator [5].

Yes No Yes Yes

FDRreg The FDR regression method [23] 
estimates the local fdr by 
assuming all hypotheses have the 
same alternative density and π0 

varies smoothly as a function of 
the covariate.

Yes No Yes No Requires z-scores.
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