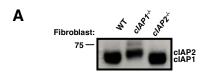
## **Supporting Information**

## Mahoney et al. 10.1073/pnas.0711122105

## SI Text

Immunoblotting and Immunoprecipitations. Total cell lysis buffer (50 mM Tris-HCl; 150 mM NaCl; 1% Triton X-100; 1% SDS) was added directly to the culture wells, and the lysates were "sheared" using a 28-g insulin syringe. Protein content was determined using the Lowry assay (Bio-Rad Laboratories). Total cell lysates were prepared in SDS sample buffer, and 5–50 μg of total protein was separated by SDS-PAGE on 10% Bis-Tris gels and transferred to nitrocellulose membranes. Membranes were probed with primary antibodies diluted in 5% skim milk powder (SMP) overnight at 4°C, followed by HRP-conjugated secondary antibodies diluted in 5% SMP for 1 h at room temperature. Membranes were then treated with ECL reagent, exposed to x-ray film and developed (Kodak X-Omat 2000A). For endogenous immunoprecipitations,  $\approx 1 \times 10^7$  cells were washed twice with PBS and lysed in buffer (20 mM Tris, pH 7.5; 0.2% Nonidet P-40; 10% glycerol; 150 mM NaCl) on ice for 15 min. TNF-R1 and TRAF2 were immunoprecipitated overnight at 4°C with 1 µg of antibody, and complexes were recovered with 50 μl of protein-G-agarose slurry. Protein complexes were separated and individual proteins denatured in SDS sample buffer.

**Luciferase Activity Analyses.** To measure luciferase activity, cells were lysed directly on plates in lysis buffer (25 mM Gly-Gly; 15 mM MgSO<sub>4</sub>; 1% Triton X-100; 1 mM DTT). 10  $\mu$ l of cell lysate was added to 90  $\mu$ l of assay buffer (80 mM Gly-Gly; 12 mM MgSO<sub>4</sub>; 16 mM KPO<sub>4</sub>; 2 mM ATP; 2 mM DTT) and 100  $\mu$ l of Luciferin Reagent (0.1 mM Luciferin; 90 mM Gly-Gly; 15 mM MgSO<sub>4</sub>) and read, in triplicate, on a luminometer.


**Viability Assay.** Cell viability was assessed using the WST viability assay, as outlined in the manufacturer's instructions (Promega).

**Primary Cell Extractions.** For primary myoblast and fibroblast extraction, 4-week-old mice were killed by cervical dislocation, and lower limb muscles were carefully dissected away from the bone. Muscle samples were minced with scissors and digested with collagenase-Dispase solution (500 mg Collagenase B

[Roche]; 50 ml Dispase II (Roche); 250  $\mu$ l 0.5 M CaCl<sub>2</sub>). Myoblasts were filtered through a 0.22- $\mu$ M membrane, spun at  $300 \times g$  for 5 min, resuspended in Hams Complete Media (HCM; Ham's F-10 Media supplemented with 20 FCS, 2.5 ng/ml bovine FGF, penicillin, and streptomycin) and enriched by "preplating" onto a standard 100-mm culture plate for 1 h. Nonadherent myoblasts were transferred to a 60-mm collagen-coated plate in HCM, whereas the adherent fibroblasts were grown in DMEM supplemented with 10% FCS. After approximately 48 h in culture, the myoblasts were preplated again for 20 min. It took approximately 10–14 days to generate enough myoblasts for experimentation.

For primary hepatocyte extraction, 3-month-old mice were anesthetized with Somnitol, and the liver was perfused first with EGTA and then with collagenase (type IV; Sigma). The liver was carefully dissected out, and hepatocytes were carefully released into a Petri dish containing Williams Media E (Invitrogen) supplemented with L-Glutamine (Gibco) by gentle agitation with fine forceps. The hepatocytes were then filtered through a nitex membrane and centrifuged at 250  $\times$  g for 5 min. The cell pellet was resuspended in 30 ml of Williams Media E, carefully triturated, and centrifuged again at  $250 \times g$  for 5 min. The cell pellet was then resuspended in 20 ml of Complete Media (Williams Media E supplemented with 10% FCS, penicillin, and streptomycin), counted on a hemocytometer, and  $2.5 \times 10^5$ viable cells were seeded onto 35-mm plates coated with fibronectin. Two hours later the cells were washed, and 2 ml of fresh complete media was added. The cells were used for experiments the following day.

**SiRNA-Mediated Knock-Down.** The following sequences were used for all experiments: *non-targeting*: GGA UCC UUG ACA AUA CCA A[dT][dT] and UUG GUA UUG UCA AGG AUC C[dT][dT]; *cIAP1*: GCA AGU GCU GGA UUC UAU U[dT][dT] and AAU AGA AUC CAG CAC UUG C[dT][dT]; *cIAP2*: GCA CAA GUC CCU ACC ACU U[dT][dT] and AAG UGG UAG GGA CUU GUG C[dT][dT]; *XIAP*: GGA CAU CCU CAG UUA ACA A[dT][dT] and UUG UUA ACU GAG GAU GUC C[dT][dT].



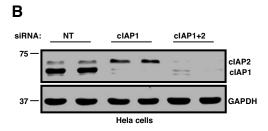
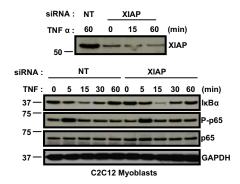
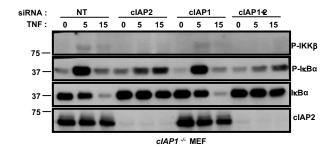





Fig. S1. Characterization of our rabbit anti-rat IAP1 antibody. (A) Primary fibroblasts were extracted from WT as well as cIAP1 and 2 null mice, cultured, and total cell lysates were separated on an 8% gel and immunoblotted for cIAP1 and 2 using our anti-RIAP1 antibody. (B) HeLa cells were cultured and treated with siRNA targeting either cIAP1  $\pm$  2, and total protein lysates were separated on a 10% gel and immunoblotted using anti-RIAP1. NT, nontargeting.



**Fig. S2.** XIAP is not involved in TNF $\alpha$ -mediated NF- $\kappa$ B activation. C2C12 myoblasts were treated with nontargeting (NT) or XIAP-targeting siRNA for 24 h before TNF $\alpha$  treatment. Protein lysates were collected and immunoblotted for the indicated proteins.



В

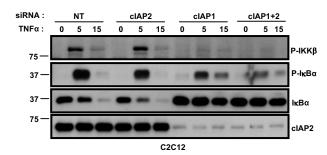



Fig. S3. Either cIAP1 or 2 is required for the phosphorylation of IKK $\beta$  and I $\alpha$ B $\alpha$ . (A) cIAP1 null MEFs were treated with siRNA for 24 h, and protein levels were assessed at the indicated time points after TNF $\alpha$  treatment. (B) C2C12 myoblasts were treated with siRNA for 24 h, and protein levels were assessed at the indicated time points after TNF $\alpha$  treatment. NT, nontargeting.

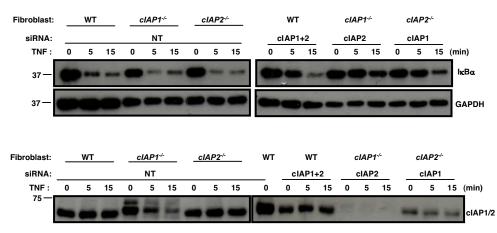
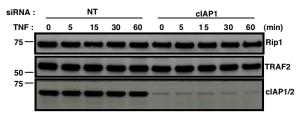




Fig. S4. cIAP1 and 2 redundantly regulate TNF $\alpha$ -mediated I $\kappa$ B $\alpha$  degradation in primary fibroblasts. Primary fibroblasts were extracted from skeletal muscle of WT as well as cIAP1 and 2 null mice, cultured, and treated with the indicated siRNA duplexes. 24 h after siRNA-mediated knockdown, the cells were treated with TNF $\alpha$  (10 ng/ml), and total cell lysates were collected and immunoblots performed. NT, nontargeting.



**Fig. S5.** Rip1 and TRAF2 levels remain unchanged in response to TNF $\alpha$ . C2C12 myoblasts were treated with nontargeting (NT) or cIAP1-targeting siRNA for 24 h. TNF $\alpha$  was given for the indicated time points and protein levels assessed by immunoblot.

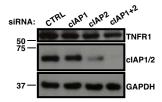



Fig. 56. cIAP1 and 2 knockdown does not alter TNF-R1 protein levels. WT MEFs were grown and treated with siRNA for 24 h, after which time total cell lysates were collected and immunoblotted. CTRL, control.

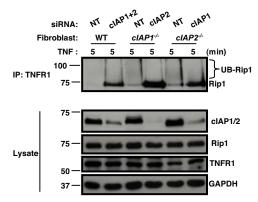



Fig. 57. TNF $\alpha$ -mediated ubiquitination of Rip1 requires either cIAP1 or 2 in primary fibroblasts. Primary fibroblasts were extracted from skeletal muscle, cultured, and treated with siRNA. 24 h after knockdown, the cells were treated with TNF $\alpha$  (10 ng/ml) for 5 min, and TNF-R1 immunoprecipitations (IP) followed by the indicated immunoblots were performed.

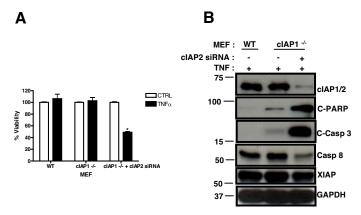



Fig. S8. Either cIAP1 or 2 is required to protect MEF cells against TNF $\alpha$ -mediated apoptosis. (*A*) MEFs were treated with siRNA for 24 h, followed by TNF $\alpha$  for 24 h, and cell viability was measured. Data are expressed as % viability  $\pm$  SD relative to no TNF treatment controls (set at 100%), n=4 per condition. (*B*) Protein lysates from MEFS treated with siRNA (24 h) followed by TNF $\alpha$  (24 h) were immunoblotted for various apoptotic proteins.