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Methods
Preprocessing of sequence datasets

Unmapped single-end sequencing reads from the Pickrell et al. study! were obtained
from http://eqtl.uchicago.edu/ in FASTQ format. A number of subjects were
assayed twice, we used the first replicate for those (but see below).

Unmapped paired-end sequencing reads from the Montgomery et al. study? were
obtained from the European Nucleotide Archive, http://www.ebi.ac.uk/ena/ in
FASTQ format. For our analysis, we used the first read of the mate-pairs.

All reads were trimmed from the 3’ end to have a length of 35bp. They were aligned
to hg19 using Bowtie3 with mapping parameters ““m 1 -v 2 -y”.

Annotation for the human genome was obtained from ENSEMBL (version 61) and
union gene models were constructed*. A union gene model for a given gene, as
defined in the Genominator R package, is the union of all bases belonging to any
isoform of the gene>. Bases belonging to multiple genes are removed. Overlap
between sequencing reads and union gene models were determined by identifying
each read with its center position and declaring an overlap if this center position
belongs to the gene model.

For each dataset, log2-transformed RPKMs® were formed as:
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with G being the number of reads belonging to the gene model for a fixed gene, S
being the total number of reads belonging to all the gene models for the sample, and
L being the total length of the gene model for the gene in question in bp.

Preprocessing of microarray datasets

Celfiles from the Choy et al. study’ were obtained from GEO (GSE11582). We
selected all celfiles corresponding to unrelated Yorubian individuals and normalized
them together using RMAS8. After normalization, we furthermore selected the first
technical replicate for each sample (only a few had multiple technical replicates)
and only kept samples that were processed at the Broad. Probesets were mapped to
ENSEMBL gene identifiers using the hgul33a.db package from Bioconductor, which
encodes mapping results from Affymetrix. Probesets mapping to multiple ENSEMBL



gene identifiers were discarded. Expression measures from RMA are on the log2-
scale.

Normalized (within population) data from Stranger et al. study® were obtained from
GEO (GSE6536). Probes were mapped to ENSEMBL gene identifiers using mappings
provided by ENSEMBL version 61. Probes mapping to multiple ENSEMBL gene
identifiers were discarded. Expression measures were calculated on the log2-scale.

Matching of microarray and sequencing datasets

After preprocessing, the datasets were matched based on ENSEMBL gene identifiers.
For each comparison, we only retained samples that were assayed in both datasets
being compared. Genes with zero sequencing reads in all samples in the comparison
were discarded. After sample matching, the expression measures for sequencing
(log2 transformed RPKMs) were quantile normalized.

For Figure 1 we only retained genes that had an RPKM (calculated as above) greater
than 5. For the array data that was assayed on an Affymetrix platform we
furthermore required that all samples had an RMA-expression value greater than 5.
No such filtering was performed for the [llumina data. The same values were used
to make scatterplots of coefficients of variations (Supplementary Fig. 1).

Probe-local expression measures

The union gene models described above imply that the expression measures for
RNA-Seq are obtained over large genomic intervals, while microarrays either use a
single probe (Illumina) or a set of probes near the 3’ end of the transcript
(Affymetrix). We wanted to investigate whether our results would change if we use
a gene model defined locally around the probe(s) on the microarrays. The idea is to
define a probe-local gene model as the union of all exons overlapping the probe or
probeset.

We obtained mappings of the microarray probes to the hg19 transcriptome from the
MySQL interface to ENSEMBL version 61. For each probe we obtained all the
ENSEMBL exons overlapping either the 3’ or 5’ end of the probe (this was done in
order to deal with probes overlapping exon-exon junctions). For the [llumina array
we defined a probe-local gene model to be the union of all exons overlapping the
probe, discarding probes overlapping exons from multiple genes. For the Affymetrix
array we likewise defined a probe-local gene model to be the set of exons
overlapping any probes in a given probeset, discarding probesets which overlapped
multiple genes or where 5 or less (out of 11) probes did not overlap an exon.

RPKMs were calculated as above for these local gene models, including requiring
probe-local gene models to have RPKMs of 5 or greater. Defining and filtering
probe-local gene models in this way allowed us to match more microarray probes or
probesets to the RNA-Seq data.



Analysis of technical replicates

In the Pickrell et al. study 11 subjects were assayed twice, with separate RNA
extractions from the same cell line and library preparations. In the Choy et al. study
14 subjects were assayed twice, again with separate RNA extractions from the same
cell line and library preparations. These two sets of subjects were analyzed as
above (without requiring the two sets of samples to cover the same individuals).
Instead of filtering as described above, we retained exactly the genes retained in the
analysis of the full datasets described above.

For each gene we fitted a mixed effect model,

Yy=u+o+eg

where Yj is the log2 RPKM for individual i, replicate j, pu is a fixed effect describing
the population level gene expression, a;is a random effect with variance o,

describing the biological (individual to individual) variation and ¢€;is an error term

with variance O,,, describing technical variation. This model was fitted using the

Imer function from the R package Ime4, and we computed the ratio:

as a measure of the amount of biological variation compared to total variation.
These values were used as basis for Supplementary Figure 2a.

Increased Variability in Sequencing May Be Due to Larger Dynamic Range

In Figure 1 and Supplementary Figure 1, on average gene expression is more
variable as measured with sequencing compared to microarrays. An analysis of
spike-in experiments suggests that sequencing experiments accurately measure
expression levels {Mortazavi, 2008 #56}. So the increased estimates of variability
may reflect true biological variability and mean that sequencing measurements
simply have a greater dynamic range. A larger scale spike-in experiment with
biological replicates would be needed to confirm this result.
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Pubmed ID Journal # of # of # of Biological

(Year) Biological Technical Replicates
Groups Replicates

1845126610 Science 1 2 2
(2008)

1905694111 Science 1 1 2
(2008)

185160456 Nature Methods 3 2 1
(2008)

1859974112 Science 2 2 1
(2008)

1851604613 Nature Methods 2 3 1
(2008)

1897877214 Nature 15 1 1
(2008) (6 in 1 group)

1923411315 PNAS 2 1 2
(2009)

1958187516 Nature Biotechnology 1 3 1
(2009)

1934998017 Nature Methods 4 1 2
(2009)

2043646418 Nature Biotechnology 4 1 1
(2010)

208106681 Genome Research 9 1 1
(2010)

2098067920 Blood 2 1 2
(2010)

2105749621 Nature Methods 2 1 1
(2010)

2045296722 Genome Research 4 1 2
(2010)

2036398023 Genome Research 1 1 1
(2010)

202207581 Nature 1 2 69
(2010)

202207562 Nature 1 1 60
(2010)

Supplementary Table 1 RNA-sequencing studies with n<3 biological replicates.
The first column is the study name, the second column the journal and publication
year, the third column is the number of biological groups assayed, the fourth column

is the number of technical replicates, and the fifth column is the number of

biological replicates. The studies analyzed in the main text are highlighted in blue.




Q

Sequencing CV

(2]

Sequencing SD

S
o o
L &
Wi
&
o
cor: 0.556 n: 5003
| |
0.25 0.75
Array CV
Te] o « £ - u..
‘_' — % “_#\ / P 2.
¥ ALY !
(A%
S LY
R 38
IS
0
o o)
cor: 0.405 n: 6892
| |
0.5 1.5
Array SD

(o2

Sequencing CV

0.25

o

Sequencing SD

0.5

0.75

1.5

(]
cor: 0.432 n: 2463
| |
0.25 0.75
Array CV
sl 44

cor: 0.431 n: 5509

0.5 1.5
Array SD

Supplementary Figure 1 Comparing Different Measures of Biological Variability. (a) A
plot of the coefficient of variation of expression values as measured with microarrays in
the Stranger et al. study® (x-axis) and sequencing in the Montgomery et al. study? (y-axis).
The coefficient of variation estimates from sequencing are larger than the estimates from
microarrays, substantiating the result in Figure 1. These are the exact same genes as
Figure 1a. (b) As (a), but with expression values as measured with microarrays in the
Choy et al. study’ (x-axis) and sequencing in the Pickrell et al. study® (y-axis). The coeffi-
cient of variation estimates from sequencing are again larger than estimates from micro-
arrays. (c) A plot of the standard deviation of expression values as measured with micro-
arrays in the Stranger et al. study® (x-axis) and sequencing in the Montgomery et al.
study? (y-axis), where only reads overlapping exons containing microarray probes are
used to measure expression. The estimates of expression variability from sequencing are
similar to the estimates from microarrays. (d) As c but with expression values as mea-
sured with microarrays in the Choy et al. study’ (x-axis) and the Pickrell et al. study*
(y-axis). The estimates of expression variability from sequencing are again almost the

same as estimates from microarrays. In all four panels, the two higlighted genes are the
same as in Figure 1.
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Supplementary Figure 2 Technical vs. biological variability in microarray and sequencing
experiments. (a) A plot of the centered mean expression for technical replicates of the two
genes COX4NB and RASGRP1 as measured with sequencing (top row) and microarrays
(bottom row). These are the same two genes depicted as in Figure 1c, but unlike Figure 1c
it is not the same samples assayed by microarrays and sequencing. (b) A histogram of the
estimated proportion of variance attributed to biology for sequencing (blue) and microar-
rays (red). More genes have a high proportion of variability attributable to biology in the
sequencing experiments.



