Supporting Information for: ### **RNA-Seq from Single Nuclei** Rashel V. Grindberg^{1†}, Joyclyn L. Yee-Greenbaum^{1a}, Michael J. McConnell^{2a}, Mark Novotny¹, Andy L. O' Shaughnessy^{1‡}, Georgina M. Lambert³, Marcos J. Araúzo-Bravo⁷, Jun Lee⁶, Max Fishman¹, Gillian E. Robbins¹, Xiaoying Lin⁵, Pratap Venepally⁴, Jonathan H. Badger¹, David W. Galbraith³, Fred H. Gage^{2*}, Roger S. Lasken^{1*} #### This PDF file includes: Supporting Information Figures S1-S16 Supporting Information Tables S1-S6 Supporting Information Methods S1-S5 ¹J. Craig Venter Institute, 10355 Science Center Drive, San Diego, CA 92121, USA ²Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037-1002, USA ³School of Plant Sciences and BIO5 Institute, University of Arizona, 1140 E. South Campus Drive, Tucson, AZ 85721-0036, USA ⁴J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA ^{5‡}Applied Biosystems, part of Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, USA ⁶LeGene Biosciences, 7929 Silverton Avenue, Suite 601, San Diego, CA 92126 $^{^{7\}dagger}$ Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, NRW, Germany ^a Equal contributions ^{‡,†}Current affiliations ^{*}Corresponding authors: Roger S. Lasken (Email: rlasken@jcvi.org) and Fred H. Gage (Email: gage@salk.edu) # **Figures** Figure S1. Evaluation of FACS sorted single cells and single nuclei using fluorescence microscopy. Single cells and nuclei were sorted onto a slide containing $100 \,\mu l$ of 1X PBS. Imaging was done by phase contrast microscopy (a,c) and epifluorescence microscopy (b,d). (a,b): Sorted NPC cells (400X). (c,d): Sorted NPC nuclei (600X), stained with propidium iodide (d) (600X). White line is a 25 $\,\mu$ m calibration ruler. Figure S2. Heat map of TaqMan Ct values for the sorted NPC-EYFP nuclei and whole cells. Samples were FACS sorted corresponding to (1, 2, 5, 10, 100 cells or nuclei), sorted negative microspheres of NPC-YFP whole cells and nuclei (1, 2, 5, 10, 100 beads), and non-template controls (NTC). The heat map scale ranges from 12 to 47 Ct (representing high to low expression). Gray sections in the heat map indicate no Ct detection. Eight replicates were tested for single cells or nuclei and only one sample was tested for the 2, 5, 10 and 100 cells or nuclei. A single positive event obtained from one control microsphere sort was associated with a Ct value of 39, which is a marginal value for reliable detection, and about 13 cycles later than Ct values obtained when a single cell or nucleus was sorted. **Figure S3.** Absence of contaminating transcripts transmitted through flow sorting. FACS was employed to recover 2 μm fluorescent microspheres spiked into the NPC whole cells and the nuclear preparations. Biparametric flow analysis of (a): a diluted sample of the fluorescent microspheres (b): whole cells (c): whole cells containing spiked microspheres and (d): PI-stained nuclei containing spiked microspheres. The gate employed for sorting the microspheres (box) does not overlap the positions of the whole cells or the nuclei. Ten replicates were tested for single negative microspheres of cells or nuclei and only one sample was tested for the 2, 5, 10 and 100 cells or nuclei. **Figure S4. Confirmation of cDNA synthesis by qPCR.** qPCR was employed to detect *Gapdh* transcripts within cDNA derived from biological triplicates of 1, 10 and 100 nuclei and cells. A linearized plasmid containing the *Gapdh* sequence was used as positive control. Triplicate wash buffer and triplicate qPCR no template controls (NTCs) lacked signals. **Figure S5.** Unique sequencing read distributions for single cell and single nuclei replicates. All unique reads that map to the genome were counted and divided into three categories showing that the single nucleus samples have more intronic and intergenic reads than in the single cells (on average 16.7% more). A read was labeled as intronic if it mapped completely within an intron, as exonic if it was completely contained within an exon (as defined by the reference genome) and intergenic if it did not overlap a gene. All reads mapping to 5'- and 3'- untranslated regions were categorized as exonic. **Figure S6. Exon-specific plot coverage of exemplar genes.** The housekeeping gene *eukaryotic translation elongation factor 2 (Eef2)* and the neural progenitor cell-specific gene *Vimentin (Vim)* are illustrated. Reads map to exons and not to introns, indicating accurate mapping of processed transcripts from single nuclei. Figure S7. Intronic artifact reads are minimal and can be identified bioinformatically. Reads to annotated introns from the mouse genome (build mm9) are plotted against location of the chromosome. In this example, the 687,233 reads mapped to a single intron near a polyTC enriched island of 28 nucleotides in length (TTTGTCTTCTCTCTCTCTCTCTCTCCTCTCCT), indicating a mapping artifact. Based on all intronic reads, 95% of the introns have less than 200 reads (on average 82 reads per intron). Therefore, intronic reads arising from mapping artifacts can be identified and removed bioinformatically. **Figure S8. Expression of gene features at various RPKM thresholds.** The annotated exons and introns of the transcripts and the intergenic regions from the mouse genome (build mm9) are plotted against the expression levels, over an interval starting at RPKM of 0 and ending at 100,000. Intron and intergenic reads have a peak RPKM of 0.10 (blue and green lines), which differs from exons detected at higher RPKM values (peak RPKM of 10). The intergenic regions can serve as controls for background mapping signal. Nearly all mapped exons have an RPKM value between 0.1 and 1000 confirming a dynamic range of 4 logs and a sensitivity approaching a single transcript per cell. N-1, N-10, and N-100 refer to 1, 10 and 100 nuclei respectively and C-1, C-10, and C-100 refers to 1, 10 and 100 cells respectively. Figure S9. External confirmation of cell-type specific sequencing of NPC nuclei. Comparison of single nuclei and cell samples to external RNA-Seq comparators (GSE33060 from (1), GSM818956 (NPC), GSM818951 (Neuron biological replicate 1) and GSM818952 (Neuron biological replicate 2). (a) heat map of highly expressed genes, (b) hierarchical clustering, (c) principal component (PCA) and (d) pairwise scatter plot analysis determines that NPC single nuclei and cells are more similar to the external NPCs than to DG and Str controls. Log₂ transformation and quantile normalization of all samples was performed. Due to the differences in technical preparation between data sets, we do not expect 100% correlation of all NPC samples. However, these technical differences do not account for all of the differences as the DG (prepared as for NPC single nuclei) cluster further away from single NPCs than the GSE33060 data set. **Figure S10.** Transcripts with 5 or more copies are successfully interrogated. The ordinate is a term reflecting the variation of RPKM relative to the total reads. As the number of reads approaches 46 million (abscissa), the different RPKM bins (see colored lines and key) are saturated at 100% indicating that sequencing to a greater depth will not improve the confidence level. Genes with RPKM of 1 or greater (or about 5 transcripts per cell) are well addressable in this cell type under the probed conditions. Figure S11. Single sample biological replicates display more variability than pooled replicates. (a): Principal Component Analysis (PCA). The first principal component (PC1) captures 21% of the gene expression variability and the second principal component (PC2) captures 16% of the variability. Together these principal components account for 37% of the gene expression variability in all samples and all replicates. Symbols: The N1 (single nucleus) populations are depicted by red icosahedra, N10 (10 nuclei) by green icosahedra, the N100 (100 nuclei) by blue icosahedra, the C1 (1 cell) by red spheres, the C10 (10 cells) by green spheres and the C100 (100 cells) by blue spheres. (b): Pairwise scatter plots of biological replicates within a group. The replicates represented here are a single nucleus, ten nuclei and one hundred nuclei (see Supplementary Fig. 12a and b for comparisons of all samples). Every point in a pairwise scatter plot represents the gene expression level (RPKM) of a transcript in two samples. The horizontal projection corresponds to the expression level in the first sample and the vertical projection corresponds with the expression level in the second sample. The more similar two samples are, the more points in the scatter plots group near the diagonal. Lines parallel to the diagonal indicate a 2-fold difference in expression. A log₂ scale was used and the Fisher's correlation coefficient (R) was calculated with respect to the total number of transcripts (21,611) in the dataset. **Figure S12.** A decrease in variability is associated with sample pooling, as indicated by pairwise scatterplots of biological triplicates within a group. The replicates used to perform the pairwise scatter plots were: (a): N1-1 through -3, N10-1 through -3, N100-1 through -3, (b): C1-1 through -3, C10-1 through -3, C100-1 through -3. These are some (18) pairwise scatter plot comparisons within 6 sample sizes (N-1, N-10, N-100, C-1, C-10 and C-100). Every point in a pairwise scatter plot represents the gene expression level of a transcript in two samples. The horizontal projection corresponds to the expression level in the first sample and the vertical projection corresponds with the expression level in the second sample. The more similar two samples are, the more points in the scatter plots group near the diagonal. Lines parallel to the diagonal indicate a 2-fold difference in expression. A log₂ scale was used and the Fisher's correlation coefficient (*R*) was calculated
with respect to the total number of transcripts (21,611) in the dataset. Figure S13. Heat map of transcripts that are highly variable among the single cells and single nuclei. Variability decreases with pooled samples. The color bar codifies the gene expression in log₂ scale. The highly expressed genes are red. **Figure S14.** Coverage of pri-miRNA. Deep coverage of the 5' end of pri-miRNA demonstrates full-length cDNA synthesis (arrow). The lower coverage in the central hairpin region of the pri-miRNA is presumably an artifact of cDNA synthesis, as the polymerase pauses entering the central hairpin structure from both polarities, as it copies the first strand and then the second stand cDNA. However, we cannot formally disprove that some of the 5' reads were derived from clipped species via terminal transferase poly-A tailing enabling second strand synthesis. Possibly, if clipped species are stable, they have novel functions. They could also contribute to the analysis of processing mechanisms and rates. **Figure S15. GFP fluorescence and Prox1 antibody co-localize in dentate gyrus cells.** Dentate gyrus tissue from a transgenic mouse expressing GFP under the *Prox1* promoter (a) enables the observation of endogenous Prox1 protein expression (b) *in vivo*, (c): merged. Images are displayed as a 60x z-stack projection. Figure S16. Identification of cell types through clustering. (a): Hierarchical clustering indicates that replicates with 10 or more cells or nuclei tend to cluster, whereas single cells and nuclei do not. This implies local variation in transcriptional profiles within single cells and nuclei. Clustering of samples was performed using the correlation metric and the average linkage method. Shorter horizontal links connecting two branches indicate closer similarities between the populations. (b): PCA analysis of all samples. The first principal component (PC1) captures 38% of the gene expression variability, and the second principal component (PC2) captures 12% of the variability. The first principal separates between N1, N10, N100, C1, C10, C100 samples (negative coordinates) and dentate gyrus (DG), stromal (Str) samples (positive coordinates). The second principal separates between N10, N100, C10, C100, DG samples (negative coordinates) and N1, C1, Str samples (positive coordinates). Symbols: The N1 populations are depicted by red icosahedra, the N100 by green icosahedra, the N100 by blue icosahedra, the C1 by red spheres, the C10 by green spheres, the C100 by blue spheres, the DG by black dodecahedra, and the Str by cyan dodecahedra. # **Tables** **Table S1.** Absence of contaminating transcripts from FACS sorted spike-in microsphere controls in whole cell and nuclei samples, based on qPCR. | | _ | | | | | | | | | | | | |---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------------|----------------------|----------------------|----------------------|----------| | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 5 | 10 | 100 | | ActB | ND | Hsp90ab | ND | Eef2 | ND | Rpl13 | ND | Vim | ND | ND | ND | ND | ND | ND | 38.1 | ND | ND | ND | ND | ND | | Fabp7 | ND | H2afz | ND NE | | GAPDH | ND NE | | | | _ | _ | _ | _ | _ | | _ | | | _ | | | | 100 | 1 c. 1 | 100 | No. | | 1 | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 5 | 10 | 10 | | ActB | ND | ND | ND | ND | ND | ND | 1
ND | ND | 2
ND | 5
ND | 10
ND | 10
NC | | ActB
Hsp90ab | | | 12000 | | | | 100000 | 10000 | 1000 | | 1000 | | | | ND NC | | Hsp90ab | ND
ND NC
NC | | Hsp90ab
Eef2 | ND
ND
ND NC
NC | | Hsp90ab
Eef2
Rpl13
Vim | ND
ND
ND NC
NC | | Hsp90ab
Eef2
Rpl13 | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND ND ND ND ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | ND
ND
ND
ND | NE | **Table S2.** Sequencing read distribution of each sample. | | Total | Mapped | % | Not mapped | % | Filtered | % | |---------------|-------------|------------|-------|-------------|-------|------------|-------| | NPC cells | | | | | | | | | 1 cell -1 | 88,997,195 | 46,364,183 | 52.10 | 39,799,020 | 44.72 | 2,833,992 | 3.18 | | 1 cell -2 | 130,341,634 | 52,390,968 | 40.20 | 76,793,663 | 58.92 | 1,157,003 | 0.89 | | 1 cell -3 | 47,845,402 | 21,737,512 | 45.43 | 25,440,448 | 53.17 | 667,442 | 1.39 | | 10 cells -1 | 57,571,578 | 30,500,820 | 52.98 | 26,267,024 | 45.62 | 803,734 | 1.40 | | 10 cells -2 | 48,498,112 | 30,645,411 | 63.19 | 17,382,824 | 35.84 | 469,877 | 0.97 | | 10 cells -3 | 29,458,542 | 11,842,450 | 40.20 | 17,268,045 | 58.62 | 348,047 | 1.18 | | 100 cells -1 | 37,701,354 | 21,960,024 | 58.25 | 15,467,146 | 41.03 | 274,184 | 0.73 | | 100 cells -2 | 20,756,129 | 13,614,385 | 65.59 | 6,976,694 | 33.61 | 165,050 | 0.80 | | 100 cells -3 | 59,111,226 | 34,141,121 | 57.76 | 24,530,651 | 41.50 | 439,454 | 0.74 | | NPC nuclei | | | | | | | | | 1 nucleus -1 | 103,775,925 | 40,046,520 | 38.59 | 60,537,577 | 58.33 | 3,191,828 | 3.08 | | 1 nucleus -2 | 161,855,470 | 47,637,824 | 29.43 | 112,932,010 | 69.77 | 1,285,636 | 0.79 | | 1 nucleus -3 | 33,789,450 | 7,515,379 | 22.24 | 25,791,447 | 76.33 | 482,624 | 1.43 | | 10 nuclei -1 | 39,045,664 | 12,602,634 | 32.28 | 14,012,036 | 35.89 | 12,430,994 | 31.84 | | 10 nuclei -2 | 23,692,971 | 7,668,648 | 32.37 | 15,711,450 | 66.31 | 312,873 | 1.32 | | 10 nuclei -3 | 26,683,050 | 12,904,655 | 48.36 | 13,577,879 | 50.89 | 200,516 | 0.75 | | 100 nuclei -1 | 13,850,974 | 8,977,623 | 64.82 | 4,594,622 | 33.17 | 278,729 | 2.01 | | 100 nuclei -2 | 14,663,334 | 7,796,708 | 53.17 | 6,558,245 | 44.73 | 308,381 | 2.10 | | 100 nuclei -3 | 4,557,367 | 2,363,315 | 51.86 | 2,084,839 | 45.75 | 109,213 | 2.40 | | DG nuclei | | | | | | | | | 1 nucleus -1 | 37,303,022 | 30,934,184 | 82.93 | 6,051,810 | 16.22 | 317,028 | 0.85 | | 1 nucleus -2 | 86,092,621 | 70,274,129 | 81.63 | 15,102,771 | 17.54 | 715,721 | 0.83 | | control | 45,676,405 | 34,547,610 | 75.64 | 10,925,111 | 23.92 | 203,684 | 0.45 | **Table S3.** Neural progenitor cell markers and housekeeping genes with non-intronic (exon specific) reads. | Gene name | Full gene name | MGI ID | |-----------|---|-------------| | Actb | actin, beta | MGI:87904 | | Aldoc | aldolase C, fructose-bisphosphate | MGI:101863 | | Apoe | apolipoprotein E | MGI:88057 | | Ascl1 | achaete-scute complex homolog 1 | MGI:96919 | | Atp1a1 | ATPase, Na+/K+ transporting, alpha 1 polypeptide | MGI:88105 | | Bex2 | brain expressed X-linked 2 | MGI:1338017 | | Ccnd1 | cyclin D1 | MGI:88313 | | Cct3 | chaperonin containing Tcp1, subunit 3 (gamma) | MGI:104708 | | Cct5 | chaperonin containing Tcp1, subunit 5 (epsilon) | MGI:107185 | | Cct7 | chaperonin containing Tcp1, subunit 7 (eta) | MGI:107184 | | CD15 | fucosyltransferase 4 | MGI:95594 | | CD81 | CD81 antigen | MGI:1096398 | | CD9 | CD9 antigen | MGI:88348 | | Chmp2a | charged multivesicular body protein 2A | MGI:1916203 | | Dbi | diazepam binding inhibitor | MGI:94865 | | Eef1a1 | eukaryotic translation elongation factor 1 alpha 1 | MGI:1096881 | | Eef2 | eukaryotic translation elongation factor 2 | MGI:95288 | | Fabp7 | fatty acid binding protein 7, brain | MGI:101916 | | Fos | FBJ osteosarcoma oncogene | MGI:95574 | | FoxG1 | forkhead box G1 | MGI:1347464 | | Fut4 | fucosyltransferase 4 | MGI:95594 | | H2afz | H2A histone family, member Z | MGI:1888388 | | Hist1h1c | histone cluster 1, H1c | MGI:1931526 | | Hist1h1e | histone cluster 1, H1e | MGI:1931527 | | Hist1h4i | histone cluster 1, H4i | MGI:2448432 | | Hsp90ab1 | heat shock protein 90 alpha (cytosolic), class B member 1 | MGI:96247 | | Hspa8 | heat shock protein 8 | MGI:105384 | | Id1 | inhibitor of DNA binding 1 | MGI:96396 | | Id2 | inhibitor of DNA binding 2 | MGI:96397 | | Ldhb | lactate dehydrogenase B | MGI:96763 | | Nestin | nestin | MGI:101784 | | Olig2 | oligodendrocyte transcription factor 2 | MGI:1355331 | | Pa2g4 | proliferation-associated 2G4 | MGI:894684 | | Pou3f2 | POU domain, class 3, transcription factor 2 | MGI:101895 | | Pou3f4 | POU domain, class 3, transcription factor 4 | MGI:101894 | | PPIA | peptidylprolyl isomerase A | MGI:97749 | | Rpl13 | ribosomal protein L13 | MGI:105922 | | Rpl14 | ribosomal protein L14 | MGI:1914365 | | Rps2 | ribosomal protein S2 | MGI:105110 | | Rps3 | ribosomal protein S3 | MGI:1350917 | | Rpsa | ribosomal protein SA | MGI:105381 | | Sfpq | splicing factor proline/glutamine rich | MGI:1918764 | | Sox1 | SRY-box containing gene 1 | MGI:98357 | | Sox11 | SRY-box containing gene 11 | MGI:98359 | |--------|--|-------------| | Sox2 | SRY-box containing gene 2 | MGI:98364 | | Sox21 | SRY-box containing gene 21 | MGI:2654070 | | Sox3 | SRY-box containing gene 3 | MGI:98365 | | Strap | serine/threonine kinase receptor associated protein | MGI:1329037 | | Tomm22 | translocase of outer mitochondrial membrane 22 homolog | MGI:2450248 | | Vim | vimentin | MGI:98932 | **Table S4.** Differential accumulation of transcripts between nuclei and whole cells. | | | | p-
value(Nucl
ei vs.
Whole | FoldChange
(Nuclei vs.
Whole | FoldChange | |---------------------------------------|---------------|----------------------------|-------------------------------------|------------------------------------|--------------------------| | Column ID
NM_207261>Kcnk1 | Gene Symbol | Transcript | cells) | cells) | (Nuclei vs. Whole cells) | | 8
NM_001080553>Gs | Kcnk18 | NM_207261
NM_00108055 | 0.0259213
0.0076710 | 32.9303 | Nuclei up vs Whole cells | | g1 | Gsg1 | 3 | 6
0.0076710 | 31.5359 | Nuclei up vs Whole cells | | NM_010352>Gsg1
NM_001038590>Cld | Gsg1 | NM_010352
NM_00103859 | 9 | 31.5359 | Nuclei up vs Whole
cells | | n19
NM_028092>Slc39a | Cldn19 | 0 | 0.0185929 | 30.5443 | Nuclei up vs Whole cells | | 5
NM 053110>Gpnm | Slc39a5 | NM_028092 | 0.0279075 | 30.1003 | Nuclei up vs Whole cells | | b
NM 029326>17000 | Gpnmb | NM_053110 | 0.0122546 | 29.2083 | Nuclei up vs Whole cells | | 18L24Rik | 1700018L24Rik | NM_029326 | 0.0456587 | 28.7776 | Nuclei up vs Whole cells | | NM_016873>Wisp2
NM_172776>D6300 | Wisp2 | NM_016873 | 0.0329411 | 27.0517 | Nuclei up vs Whole cells | | 02G06Rik
NM_001037800>Cd | D630002G06Rik | NM_172776
NM_00103780 | 0.0334497 | 24.3775 | Nuclei up vs Whole cells | | 209b | Cd209b | 0 | 0.0237352 | 23.0353 | Nuclei up vs Whole cells | | NM_009880>Cdx1 | Cdx1 | NM_009880 | 0.0433389 | 22.0012 | Nuclei up vs Whole cells | | NM_147073>Olfr33
NR_027137>Gm105 | Olfr33 | NM_147073 | 0.0370179 | 21.9078 | Nuclei up vs Whole cells | | 65 | Gm10565 | NR_027137 | 1.24E-08 | 18.4231 | Nuclei up vs Whole cells | | NM_172944>Itgae
NM_001159275>Slc | Itgae | NM_172944
NM_00115927 | 0.0316746 | 17.887 | Nuclei up vs Whole cells | | 25a2
NM_027072>Plac8l | Slc25a2 | 5 | 0.0302349 | 17.8153 | Nuclei up vs Whole cells | | 1
NR_033588>AY5129 | Plac8l1 | NM_027072 | 0.0120059
0.0009372 | 16.956 | Nuclei up vs Whole cells | | 31 | AY512931 | NR_033588 | 18
0.0029289 | 16.8646 | Nuclei up vs Whole cells | | NM_008438>Kera | Kera | NM_008438 | 4 | 16.6684 | Nuclei up vs Whole cells | | NM_010611>Kcnq2
NM_001079865>Ce | Kcnq2 | NM_010611
NM_00107986 | 0.0330587 | 16.0979 | Nuclei up vs Whole cells | | s2f | Ces2f | 5 | 0.0325815 | 15.745 | Nuclei up vs Whole cells | | NR_003248>Foxl2os
NM_147080>Olfr61 | Foxl2os | NR_003248 | 0.0212267 | 15.2969 | Nuclei up vs Whole cells | | 5
NM_001145015>Ar | Olfr615 | NM_147080
NM_00114501 | 0.0160466
0.0060464 | 14.8496 | Nuclei up vs Whole cells | | hgap40
NM_001170851>Klr | Arhgap40 | 5
NM_00117085 | 3 | 14.7046 | Nuclei up vs Whole cells | | a2
NM_001034851>Fa | KIra2 | 1
NM_00103485 | 0.0327288 | 14.5646 | Nuclei up vs Whole cells | | m134b | Fam134b | 1 | 0.0342995 | 14.0756 | Nuclei up vs Whole cells | | NM_008006>Fgf2
NM_001166638_du | Fgf2 | NM_008006
NM_00116663 | 0.0423801 | 13.9405 | Nuclei up vs Whole cells | | p3>Gm4303_dup3
NM_001166639_du | Gm4303_dup3 | -
8_dup3
NM_00116663 | 0.0432971 | 13.7245 | Nuclei up vs Whole cells | | p3>Gm4305_dup3
NM_001166641_du | Gm4305_dup3 | _
9_dup3
NM_00116664 | 0.0432971 | 13.7245 | Nuclei up vs Whole cells | | p3>Gm4307_dup3
NM_001009548>49 | Gm4307_dup3 | _
1_dup3
NM_00100954 | 0.0432971 | 13.7245 | Nuclei up vs Whole cells | | 30529F22Rik | 4930529F22Rik | 8 | 0.0198921 | 12.9524 | Nuclei up vs Whole cells | | NM_008293>Hsd3b | | | | | | |--------------------------------------|---------------|--------------------------|------------------------|---------|--------------------------| | 1 | Hsd3b1 | NM_008293 | 0.0373183
0.0028029 | 12.8473 | Nuclei up vs Whole cells | | NM_194069>Ifi27l1
NM_173779>Ankrd | Ifi27l1 | NM_194069 | 4 | 12.7908 | Nuclei up vs Whole cells | | 58
NM 139301>Catspe | Ankrd58 | NM_173779 | 0.0424858
0.0033487 | 12.6388 | Nuclei up vs Whole cells | | r1 | Catsper1 | NM_139301 | 8 | 12.5615 | Nuclei up vs Whole cells | | NM_001003952>Sv
al3 | Sval3 | NM_00100395
2 | 0.0088607 | 12.2222 | Nuclei up vs Whole cells | | NM_022014>Fn3k | Fn3k | NM_022014 | 0.0046470 | 12.0932 | Nuclei up vs Whole cells | | NM_001008426>G
m5531 | Gm5531 | NM_00100842
6 | 0.0004235 | 12.0269 | Nuclei up vs Whole cells | | NM_011872>Klk7 | Klk7 | NM_011872 | 0.0043883
3 | 11.7867 | Nuclei up vs Whole cells | | NM_018792>Hils1
NM_001033206>Pw | Hils1 | NM_018792
NM_00103320 | 0.0249981 | 11.6674 | Nuclei up vs Whole cells | | wp2b | Pwwp2b | 6 | 0.0298047 | 11.4168 | Nuclei up vs Whole cells | | NM_199013>Irgc1
NM_001113391>Cd | lrgc1 | NM_199013
NM_00111339 | 0.0421075 | 11.2067 | Nuclei up vs Whole cells | | 247
NR 028591>Gm140 | Cd247 | 1 | 0.031263 | 10.964 | Nuclei up vs Whole cells | | 05 | Gm14005 | NR_028591 | 0.0179678 | 10.857 | Nuclei up vs Whole cells | | NM_029061>Ccdc7
NR_029414>Gsdmcl | Ccdc7 | NM_029061 | 0.0426827 | 10.7846 | Nuclei up vs Whole cells | | -ps
NM_001195258>G | Gsdmcl-ps | NR_029414
NM_00119525 | 0.0345501 | 10.6806 | Nuclei up vs Whole cells | | m14378
NM 001099688>Fb | Gm14378 | 8
NM 00109968 | 0.0342597 | 10.5989 | Nuclei up vs Whole cells | | xo39 | Fbxo39 | 8 | 0.0174352 | 10.548 | Nuclei up vs Whole cells | | NM_198415>Ckmt2
NM_001172481>As | Ckmt2 | NM_198415
NM 00117248 | 0.0234437 | 10.283 | Nuclei up vs Whole cells | | pn | Aspn | 1 | 0.0433687 | 9.56592 | Nuclei up vs Whole cells | | NM_178738>Prss35 | Prss35 | NM_178738 | 0.0253698 | 9.49154 | Nuclei up vs Whole cells | | NM_011286>Rph3a | Rph3a | NM_011286 | 0.0166845
0.0019631 | 9.33287 | Nuclei up vs Whole cells | | NM_030596>Dsg3
NM_001037166>G | Dsg3 | NM_030596
NM_00103716 | 5 | 9.15125 | Nuclei up vs Whole cells | | m4925
NM_001081106>Cyt | Gm4925 | 6
NM_00108110 | 0.0168733 | 8.95151 | Nuclei up vs Whole cells | | l1 | Cytl1 | 6 | 0.0160729 | 8.90225 | Nuclei up vs Whole cells | | NM_178257>Il22ra1 | Il22ra1 | NM_178257 | 0.0351971 | 8.84032 | Nuclei up vs Whole cells | | NM_011477>Sprr2k
NM_001110267>Ve | Sprr2k | NM_011477
NM_00111026 | 0.034149 | 8.68925 | Nuclei up vs Whole cells | | gfa
NM_001110268>Ve | Vegfa | 7
NM_00111026 | 0.0238397 | 8.67245 | Nuclei up vs Whole cells | | gfa
NM_001110266>Ve | Vegfa | 8
NM_00111026 | 0.0238395 | 8.67244 | Nuclei up vs Whole cells | | gfa | Vegfa | 6 | 0.0238395 | 8.67243 | Nuclei up vs Whole cells | | NM_145831>Dmrt2 | Dmrt2 | NM_145831 | 0.0414498 | 8.6041 | Nuclei up vs Whole cells | | NM_017372>Lyz2
NM_027600>49215 | Lyz2 | NM_017372 | 0.0118585 | 8.59227 | Nuclei up vs Whole cells | | 04E06Rik | 4921504E06Rik | NM_027600 | 0.0265725 | 8.56998 | Nuclei up vs Whole cells | | NR_001570>Xist
NM_175476>Arhga | Xist | NR_001570 | 0.0396399 | 8.53533 | Nuclei up vs Whole cells | | p25
NM_177676>49314 | Arhgap25 | NM_175476 | 0.0349165
0.0053400 | 8.30042 | Nuclei up vs Whole cells | | 09K22Rik | 4931409K22Rik | NM_177676 | 9 | 8.21177 | Nuclei up vs Whole cells | | NM 145845>Vmn1r | | | | | | |-------------------------------------|---------------|-------------------------------|------------------------|---------|--------------------------| | 192
NM 028737>49314 | Vmn1r192 | NM_145845 | 0.0479842 | 8.16903 | Nuclei up vs Whole cells | | 06B18Rik
NM 001045526>A4 | 4931406B18Rik | NM_028737
NM_00104552 | 0.0171372 | 8.13054 | Nuclei up vs Whole cells | | 30084P05Rik | A430084P05Rik | 6 | 0.0161973 | 8.04145 | Nuclei up vs Whole cells | | NM_030710>Slamf6 | Slamf6 | NM_030710 | 0.0428082
0.0078262 | 8.02463 | Nuclei up vs Whole cells | | NM_008109>Gdf5 | Gdf5 | NM_008109 | 4 | 8.02408 | Nuclei up vs Whole cells | | NM_010045>Darc
NM_001122736>lgf | Darc | NM_010045
NM_00112273 | 0.0161304 | 7.99827 | Nuclei up vs Whole cells | | 2 | lgf2 | 6 | 0.0277919 | 7.99344 | Nuclei up vs Whole cells | | NM_010558>II5
NM_028654>49304 | II5 | NM_010558 | 0.0458584
0.0002175 | 7.78246 | Nuclei up vs Whole cells | | 04H21Rik | 4930404H21Rik | NM_028654 | 52
0.0055346 | 7.51968 | Nuclei up vs Whole cells | | NM_019506>Gdf2
NM_001004184>Slc | Gdf2 | NM_019506
NM_00100418 | 5
0.0021744 | 7.5095 | Nuclei up vs Whole cells | | 28a1 | Slc28a1 | 4 | 9 | 7.46534 | Nuclei up vs Whole cells | | NM_172142>Nfkbid | Nfkbid | NM_172142 | 0.0315665 | 7.44135 | Nuclei up vs Whole cells | | NM_008092>Gata4 | Gata4 | NM_008092 | 1.01E-05 | 7.32932 | Nuclei up vs Whole cells | | NM_020577>As3mt
NM_001177756>Pfk | As3mt | NM_020577
NM_00117775 | 0.0174042 | 7.24199 | Nuclei up vs Whole cells | | fb3 | Pfkfb3 | 6 | 0.0298474 | 7.11594 | Nuclei up vs Whole cells | | NM_001177753>Pfk
fb3 | Pfkfb3 | NM_00117775
3 | 0.0298484 | 7.11548 | Nuclei up vs Whole cells | | NM_153795>Fermt
3 | Fermt3 | NM 153795 | 0.019649 | 7.08292 | Nuclei up vs Whole cells | | NM_183193>Foxi2
NM_001177755>Pfk | Foxi2 | _
NM_183193
NM_00117775 | 0.0139603 | 7.03085 | Nuclei up vs Whole cells | | fb3
NM 001164804>Co | Pfkfb3 | 5
NM_00116480 | 0.0301947 | 7.01076 | Nuclei up vs Whole cells | | ro2a
NM_001142960>Bcl | Coro2a | 4
NM 00114296 | 0.0268896 | 6.96116 | Nuclei up vs Whole cells | | 2l15 | Bcl2l15 | 0 | 0.0156664 | 6.93665 | Nuclei up vs Whole cells | | NM_010741>Ly6c1
NM_001146351>Ep | Ly6c1 | NM_010741
NM_00114635 | 0.0230316 | 6.9216 | Nuclei up vs Whole cells | | hb6 | Ephb6 | 1 | 0.0172309 | 6.89613 | Nuclei up vs Whole cells | | NM_007680>Ephb6
NM_001097977_du | Ephb6 | NM_007680
NM_00109797 | 0.017231 | 6.89612 | Nuclei up vs Whole cells | | p1>Gm14151_dup1 | Gm14151_dup1 |
7_dup1 | 0.0292118 | 6.86337 | Nuclei up vs Whole cells | | NM_172815>Rspo2 | Rspo2 | NM_172815 | 0.0325743
0.0057231 | 6.85351 | Nuclei up vs Whole cells | | NM_007887>Dub1
NM_001011812>Olf | Dub1 | NM_007887
NM_00101181 | 1 | 6.83837 | Nuclei up vs Whole cells | | r951 | Olfr951 | 2 | 0.0483078 | 6.74582 | Nuclei up vs Whole cells | | NM_019784>Tex21 | Tex21 | NM_019784 | 0.042456 | 6.68585 | Nuclei up vs Whole cells | | NM_008318>lbsp | Ibsp | NM_008318 | 0.0212626 | 6.67522 | Nuclei up vs Whole cells | | NM_019549>Plek
NM_001039720>90 | Plek | NM_019549
NM_00103972 | 0.0231236 | 6.63543 | Nuclei up vs Whole cells | | 30619P08Rik | 9030619P08Rik | 0 | 0.017819 | 6.57481 | Nuclei up vs Whole cells | | NM_021508>Myoz1
NM_177686>Clec12 | Myoz1 | NM_021508 | 0.0187761 | 6.51622 | Nuclei up vs Whole cells | | a | Clec12a | NM_177686 | 0.0488787 | 6.50617 | Nuclei up vs Whole cells | | NM_021609>Ccbp2
NR_033433>290007 | Ccbp2 | NM_021609 | 0.0121685 | 6.49224 | Nuclei up vs Whole cells | | 9G21Rik | 2900079G21Rik | NR_033433 | 0.0316663 | 6.48121 | Nuclei up vs
Whole cells | | NM_016704>C6 | C6 | NM_016704 | 0.0039169 | 6.46163 | Nuclei up vs Whole cells | |---|--|--|--|--|--| | NM_026290>49305 | | | | | | | 11I11Rik | 4930511I11Rik | NM_026290 | 0.026612
0.0095559 | 6.31005 | Nuclei up vs Whole cells | | NM_007651>Cd53 | Cd53 | NM_007651 | 9 | 6.3002 | Nuclei up vs Whole cells | | NM_198096>Arap1
NM_201608>H2- | Arap1 | NM_198096 | 0.0211743 | 6.27331 | Nuclei up vs Whole cells | | M10.3 | H2-M10.3 | NM_201608 | 0.03795 | 6.27 | Nuclei up vs Whole cells | | NM_023907>Foxi1
NM_010250>Gabra | Foxi1 | NM_023907 | 0.0405673
0.0028762 | 6.23746 | Nuclei up vs Whole cells | | 1 | Gabra1 | NM_010250 | 5 | 6.21055 | Nuclei up vs Whole cells | | NM_027220>Prss32
NM_027572>Slc22a | Prss32 | NM_027220 | 0.0322237 | 6.20369 | Nuclei up vs Whole cells | | 16
NM_001172207>Lrt | Slc22a16 | NM_027572
NM_00117220 | 0.0454912
0.0012475 | 6.1977 | Nuclei up vs Whole cells | | m2 | Lrtm2 | 7 | 4 | 6.19644 | Nuclei up vs Whole cells | | NM_146978>Olfr12
58 | Olfr1258 | NM_146978 | 0.0349401
0.0036028 | 6.1166 | Nuclei up vs Whole cells | | NM_170673>Cpne9
NM_001177897>98 | Cpne9 | NM_170673
NM_00117789 | 3 | 6.0776 | Nuclei up vs Whole cells | | 30107B12Rik
NM_198642>50314 | 9830107B12Rik | 7 | 0.0417668 | 6.06758 | Nuclei up vs Whole cells | | 14D18Rik
NM_001085419>G | 5031414D18Rik | NM_198642
NM_00108541 | 6.38E-05
0.0069875 | 6.0036 | Nuclei up vs Whole cells | | m13102
NM 146077>Trim3 | Gm13102 | 9 | 0.0099838 | 5.92878 | Nuclei up vs Whole cells | | 1 | Trim31 | NM_146077 | 2 | 5.9131 | Nuclei up vs Whole cells | | NM_008685>Nfe2 | Nfe2 | NM_008685 | 0.0131159 | 5.90672 | Nuclei up vs Whole cells | | 11101 00110422921111 | | INIVI UUTTO422 | | | | | NM_001164229>Nrf
1 | Nrf1 | NM_00116422
9 | 0.0375182 | 5.81975 | Nuclei up vs Whole cells | | _ | Nrf1
Xirp1 | _ | 0.0375182
0.0123851
0.0016832 | 5.81975
5.81227 | Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 1 | | 9 | 0.0123851 | | | | 1
NM_011724>Xirp1 | Xirp1 | 9
NM_011724 | 0.0123851
0.0016832 | 5.81227 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3 | Xirp1
Per3 | 9
NM_011724
NM_011067
NM_178669 | 0.0123851
0.0016832
6 | 5.81227
5.81188 | Nuclei up vs Whole cells Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6 | Xirp1
Per3
Clrn3 | 9
NM_011724
NM_011067
NM_178669
NM_00107770 | 0.0123851
0.0016832
6
0.0231537 | 5.81227
5.81188
5.67265 | Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a | Xirp1 Per3 Clrn3 Ptpn6 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6 | 5.81227
5.81188
5.67265
5.67008 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2 | 5.81227
5.81188
5.67265
5.67008
5.59742 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479 | 5.81227
5.81188
5.67265
5.67008
5.59742
5.58035 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt
nl7 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2 | 5.81227
5.81188
5.67265
5.67008
5.59742
5.58035
5.56641 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_199473
NM_00108166 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt
nl7
NR_033472>Gm107 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_199473
NM_00108166
3 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt
nl7
NR_033472>Gm107
68
NM_178747>Gulo | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 Gm10768 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_00108166
3
NR_033472 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871
05 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 5.48074 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt
nl7
NR_033472>Gm107
68
NM_178747>Gulo
NM_146849>Olfr11 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 Gm10768 Gulo | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_00108166
3
NR_033472
NM_178747 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871
05
0.03333997 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 5.48074 5.46703 | Nuclei up vs Whole cells | | 1
NM_011724>Xirp1
NM_011067>Per3
NM_178669>Clrn3
NM_001077705>Pt
pn6
NM_053079>Slc15a
1
NM_010596>Kcna7
NM_001109753>Sv
2b
NM_199473>Col8a2
NM_001081663>Bt
nl7
NR_033472>Gm107
68
NM_178747>Gulo
NM_146849>Olfr11
57 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 Gm10768 Gulo Olfr1157 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_00108166
3
NR_033472
NM_178747
NM_146849 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871
05
0.0333997
0.0148258 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 5.48074 5.46703 5.45135 | Nuclei up vs Whole cells | | 1 NM_011724>Xirp1 NM_011067>Per3 NM_178669>Clrn3 NM_001077705>Pt pn6 NM_053079>Slc15a 1 NM_010596>Kcna7 NM_001109753>Sv 2b NM_199473>Col8a2 NM_001081663>Bt nl7 NR_033472>Gm107 68 NM_178747>Gulo NM_146849>Olfr11 57 NM_010149>Epor NM_170730>Ank3 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 Gm10768 Gulo Olfr1157 Epor |
9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_00108166
3
NR_033472
NM_178747
NM_146849
NM_010149 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871
05
0.0333997
0.0148258
0.0154369 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 5.48074 5.46703 5.45135 5.43651 | Nuclei up vs Whole cells | | 1 NM_011724>Xirp1 NM_011067>Per3 NM_178669>Clrn3 NM_001077705>Pt pn6 NM_053079>Slc15a 1 NM_010596>Kcna7 NM_001109753>Sv 2b NM_199473>Col8a2 NM_001081663>Bt nl7 NR_033472>Gm107 68 NM_178747>Gulo NM_146849>Olfr11 57 NM_010149>Epor NM_170730>Ank3 NR_033543>Gm162 | Xirp1 Per3 Clrn3 Ptpn6 Slc15a1 Kcna7 Sv2b Col8a2 Btnl7 Gm10768 Gulo Olfr1157 Epor Ank3 | 9
NM_011724
NM_011067
NM_178669
NM_00107770
5
NM_053079
NM_010596
NM_00110975
3
NM_199473
NM_00108166
3
NR_033472
NM_178747
NM_146849
NM_010149
NM_010149 | 0.0123851
0.0016832
6
0.0231537
0.0483223
0.0073102
6
0.0050849
9
0.0041479
2
0.0002666
56
0.0280777
0.0009871
05
0.0333997
0.0148258
0.0154369
0.0351953 | 5.81227 5.81188 5.67265 5.67008 5.59742 5.58035 5.56641 5.52074 5.4975 5.48074 5.46703 5.45135 5.43651 5.39619 | Nuclei up vs Whole cells | | NM 178767>Tmem | | | | | | |--|---------------|--------------------------|-----------------------------|---------|-----------------------------| | 195
NM 001163498>Ru | Tmem195 | NM_178767
NM_00116349 | 0.0310538 | 5.24047 | Nuclei up vs Whole cells | | ndc2a | Rundc2a | 8 | 0.0386938 | 5.23843 | Nuclei up vs Whole cells | | NM_173031>BC066
135 | BC066135 | NM_173031 | 0.0437084 | 5.20013 | Nuclei up vs Whole cells | | NM_177638>Crb3 | Crb3 | NM_177638 | 0.0373266 | 5.18924 | Nuclei up vs Whole cells | | NM_178036>Lcn10 | Lcn10 | NM_178036 | 0.0312151 | 5.18779 | Nuclei up vs Whole cells | | NM_172887>Fry | Fry | NM_172887 | 0.015197 | 5.10664 | Nuclei up vs Whole cells | | NM_013731>Sgk2 | Sgk2 | NM_013731 | 0.0200449 | 5.10575 | Nuclei up vs Whole cells | | NM_183222>Fcrl5 | Fcrl5 | NM_183222 | 0.0090503
5 | 5.10286 | Nuclei up vs Whole cells | | NM_001001714>So
hlh1 | Sohlh1 | NM_00100171
4 | 0.0461846 | 5.05325 | Nuclei up vs Whole cells | | NM_001160268>Ple
kha6 | Plekha6 | NM_00116026
8 | 0.0072096
1 | 5.03858 | Nuclei up vs Whole cells | | NR_033207>201001
6l18Rik | 2010016I18Rik | NR_033207 | 0.0143607 | 5.02758 | Nuclei up vs Whole cells | | NM_199154>Tas2r1
07 | Tas2r107 | NM_199154 | 0.0459807 | 5.01125 | Nuclei up vs Whole cells | | NR_033616>Pldi | Pldi | NR 033616 | 0.0194964 | 5.00535 | Nuclei up vs Whole cells | | NM 016911>Srpx | Srpx | NM 016911 | 0.0401532 | 5.00023 | Nuclei up vs Whole cells | | NM_001145096>Hh | 5. p | NM_00114509 | 0.0098313 | 5.00025 | Tradici ap 10 Triidic celle | | la1 | Hhla1 | 6 | 4 | 4.99336 | Nuclei up vs Whole cells | | NM_023653>Wnt2
NM_027770>Col24a | Wnt2 | NM_023653 | 0.0192982 | 4.99215 | Nuclei up vs Whole cells | | 1 | Col24a1 | NM_027770 | 0.0013306 | 4.98628 | Nuclei up vs Whole cells | | NM_009578>Ikzf1 | lkzf1 | NM_009578 | 0.0257547 | 4.97489 | Nuclei up vs Whole cells | | NM_183015>Ccnb3
NM_030728>99300 | Ccnb3 | NM_183015 | 0.0310704 | 4.97337 | Nuclei up vs Whole cells | | 13L23Rik | 9930013L23Rik | NM_030728 | 0.0213917 | 4.96949 | Nuclei up vs Whole cells | | NM_008026>Fli1
NM_013811>Dnahc | Fli1 | NM_008026 | 0.0068206 | 4.96308 | Nuclei up vs Whole cells | | 8
NM 173029>Adcy1 | Dnahc8 | NM_013811 | 0.030975 | 4.94225 | Nuclei up vs Whole cells | | 0 | Adcy10 | NM_173029 | 0.0174529
0.0002615 | 4.93766 | Nuclei up vs Whole cells | | NM_008091>Gata3 | Gata3 | NM_008091 | 54
0.0089009 | 4.93522 | Nuclei up vs Whole cells | | NM_177076>Fbxl13 | Fbxl13 | NM_177076 | 8 | 4.88594 | Nuclei up vs Whole cells | | NR_036630>Gm108
2
NM_028772>Dmgd | Gm1082 | NR_036630 | 0.0482847 | 4.84621 | Nuclei up vs Whole cells | | h | Dmgdh | NM_028772 | 0.0124709 | 4.83315 | Nuclei up vs Whole cells | | NM_025276>Evpl
NM_022995>Pmepa | Evpl | NM_025276 | 0.0354202
0.0006554 | 4.82927 | Nuclei up vs Whole cells | | 1 | Pmepa1 | NM_022995 | 78 | 4.79457 | Nuclei up vs Whole cells | | NM_008090>Gata2 | Gata2 | NM_008090 | 0.0099680
4
0.0091789 | 4.78947 | Nuclei up vs Whole cells | | NM 011318>Apcs | Apcs | NM 011318 | 7 | 4.78801 | Nuclei up vs Whole cells | |
NM_019992>Stap1 | Stap1 | _
NM_019992 | 0.0136753 | 4.77481 | Nuclei up vs Whole cells | | NM_009821>Runx1 | Runx1 | NM 009821 | 5.33E-05 | 4.75382 | Nuclei up vs Whole cells | | NM_153062>Slc37a | | _ | | | | | 1 | Slc37a1 | NM_153062 | 0.0111562 | 4.74738 | Nuclei up vs Whole cells | | NM_175448>Clvs2 | Clvs2 | NM_175448 | 0.0450876 | 4.74168 | Nuclei up vs Whole cells | | NM_010278>Gfi1 | Gfi1 | NM_010278 | 0.0297163 | 4.6982 | Nuclei up vs Whole cells | | NINA 000400×16v4 | | | | | | |--|---|--|---|---|--| | NM_008498>Lhx1
NM_153541>Zbtb8 | Lhx1 | NM_008498 | 6.73E-05 | 4.69455 | Nuclei up vs Whole cells | | b
NM 001013390>Sc | Zbtb8b | NM_153541
NM_00101339 | 0.0173955
0.0021484 | 4.68923 | Nuclei up vs Whole cells | | n4b
NM 001008230>Rt | Scn4b | 0
NM_00100823 | 6 | 4.66839 | Nuclei up vs Whole cells | | p2 | Rtp2 | 0 | 0.0427621
0.0088497 | 4.6602 | Nuclei up vs Whole cells | | NM_153105>Cldn19
NM_001081254>Fa | Cldn19 | NM_153105
NM_00108125 | 7 | 4.63905 | Nuclei up vs Whole cells | | m186b
NM 176942>Gabra | Fam186b | 4 | 0.0296634 | 4.6377 | Nuclei up vs Whole cells | | 5
NM_013660>Sema4 | Gabra5 | NM_176942 | 0.0338321
0.0064670 | 4.63728 | Nuclei up vs Whole cells | | d
NM 001001489>BC | Sema4d | NM_013660
NM_00100148 | 4
0.0070207 | 4.63064 | Nuclei up vs Whole cells | | 021785 | BC021785 | 9 | 5 | 4.59825 | Nuclei up vs Whole cells | | NR_015571>493047
1G03Rik | 4930471G03Rik | NR_015571 | 0.0235436 | 4.58923 | Nuclei up vs Whole cells | | NM_010226>Foxs1 | Foxs1 | NM_010226 | 0.03708 | 4.58877 | Nuclei up vs Whole cells | | NM_201370>Wee2 | Wee2 | NM_201370 | 0.0355595 | 4.56445 | Nuclei up vs Whole cells | | NM_010130>Emr1
NM_001037937>De | Emr1 | NM_010130
NM_00103793 | 0.0373065
0.0039915 | 4.56396 | Nuclei up vs Whole cells | | pdc6 | Depdc6 | 7 | 1 | 4.54455 | Nuclei up vs Whole cells | | NM_172508>Dse
NM_001039214>M | Dse | NM_172508
NM_00103921 | 0.0447869 | 4.49143 | Nuclei up vs Whole cells | | ex3c | Mex3c | 4 | 0.0369534 | 4.47659 | Nuclei up vs Whole cells | | NM_009308>Syt4
NM_001013755>57 | Syt4 | NM_009308
NM_00101375 | 0.0351425
0.0072107 | 4.44649 | Nuclei up vs Whole cells | | 30409E04Rik
NM_001145950>57 | 5730409E04Rik | 5 | 3 | 4.43919 | Nuclei up vs Whole cells | | INIVI OUTTAGGGGGG | | | | | | | 30409E04Rik | 5730409E04Rik | NM_00114595
0 | 0.0072107
3
0.0019271 | 4.43919 | Nuclei up vs Whole cells | | _ | 5730409E04Rik
Kcnj2 | _ | | 4.43919
4.43509 | Nuclei up vs Whole cells Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 | | 0 | 3
0.0019271 | | | | 30409E04Rik
NM_008425>Kcnj2 | Kcnj2 | 0
NM_008425 | 3
0.0019271
1 | 4.43509 | Nuclei up vs Whole cells | | 30409E04Rik
NM_008425>Kcnj2
NM_011704>Vnn1
NM_177431>Adamt
s20 | Kcnj2
Vnn1 | 0
NM_008425
NM_011704
NM_177431 | 3
0.0019271
1
0.0194034 | 4.43509
4.39625 | Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh | Kcnj2
Vnn1
Adamts20 | 0
NM_008425
NM_011704
NM_177431
NM_00103353 | 3
0.0019271
1
0.0194034
0.0437042 | 4.43509
4.39625
4.39294 | Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn | Kcnj2
Vnn1
Adamts20
Klhl32 | 0
NM_008425
NM_011704
NM_177431
NM_00103353 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713 | 4.43509
4.39625
4.39294
4.37583 | Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm | Kcnj2
Vnn1
Adamts20
Klhl32
Sfn | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357 | 4.43509
4.39625
4.39294
4.37583
4.36993 | Nuclei up vs Whole
cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells
Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip | Kcnj2
Vnn1
Adamts20
Klhl32
Sfn
Laptm5 | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754
NM_010686 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c | Kcnj2
Vnn1
Adamts20
Klhl32
Sfn
Laptm5
Cytip | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754
NM_010686
NM_139200 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754
NM_010686
NM_139200
NM_028075
NM_028343 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 NM_001170954>A4 | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c Tmem135 | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754
NM_010686
NM_139200
NM_028075
NM_028343
NM_00117095 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982
0.0007223 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491
4.32606 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 NM_001170954>A4 galt | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c Tmem135 A4galt | 0
NM_008425
NM_011704
NM_177431
NM_00103353
1
NM_018754
NM_010686
NM_139200
NM_028075
NM_028075
NM_028343
NM_00117095
4 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982
0.0007223
18
0.0486485 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491
4.32606
4.32384 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 NM_001170954>A4 galt NM_008082>Galr1 | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c Tmem135 A4galt Galr1 | 0 NM_008425 NM_011704 NM_177431 NM_00103353 1 NM_018754 NM_010686 NM_139200 NM_028075 NM_028343 NM_00117095 4 NM_008082 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982
0.0007223
18
0.0486485
0.0079621 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491
4.32606
4.32384
4.31636 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 NM_001170954>A4 galt NM_008082>Galr1 NM_008873>Plau | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c Tmem135 A4galt Galr1 Plau | 0 NM_008425 NM_011704 NM_177431 NM_00103353 1 NM_018754 NM_010686 NM_139200 NM_028075 NM_028343 NM_00117095 4 NM_008082 NM_008873 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982
0.0007223
18
0.0486485
0.0079621
8
0.0422918 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491
4.32606
4.32384
4.31636
4.29196 | Nuclei up vs Whole cells | | 30409E04Rik NM_008425>Kcnj2 NM_011704>Vnn1 NM_177431>Adamt s20 NM_001033531>Klh l32 NM_018754>Sfn NM_010686>Laptm 5 NM_139200>Cytip NM_028075>Tnfrsf 13c NM_028343>Tmem 135 NM_001170954>A4 galt NM_008082>Galr1 NM_008873>Plau NM_026862>Cd177 NM_010932>Pnoc | Kcnj2 Vnn1 Adamts20 Klhl32 Sfn Laptm5 Cytip Tnfrsf13c Tmem135 A4galt Galr1 Plau Cd177 | 0 NM_008425 NM_011704 NM_177431 NM_00103353 1 NM_018754 NM_010686 NM_139200 NM_028075 NM_028343 NM_00117095 4 NM_008082 NM_008873 NM_0026862 | 3
0.0019271
1
0.0194034
0.0437042
0.0270713
0.0432357
0.0121067
0.0490818
1.92E-05
0.016982
0.0007223
18
0.0486485
0.0079621
8
0.0422918
0.0014264 | 4.43509
4.39625
4.39294
4.37583
4.36993
4.35278
4.34626
4.34491
4.32606
4.32384
4.31636
4.29196
4.28245 | Nuclei up vs Whole cells | | NM_177289>Cbfa2t | | | 0.0002495 | | | |-------------------------------------|---------------|--------------------------|------------------------|---------|--------------------------| | 3 | Cbfa2t3 | NM_177289 | 49 | 4.25997 | Nuclei up vs Whole cells | | NM_181072>Myo1e
NM_001161413>Slc | Myo1e | NM_181072
NM_00116141 | 0.0305234 | 4.24747 | Nuclei up vs Whole cells | | 3a2
NR 033398>Gm915 | Slc3a2 | 3 | 0.035037
0.0002846 | 4.23982 | Nuclei up vs Whole cells | | 9
NM 001081052>Nh | Gm9159 | NR_033398
NM_00108105 | 21 | 4.23244 | Nuclei up vs Whole cells | | s
NM 001190406>Ga | Nhs | 2
NM_00119040 | 0.0362923 | 4.22133 | Nuclei up vs Whole cells | | s2l1 | Gas2l1 | 6 | 0.0366568
0.0030332 | 4.21 | Nuclei up vs Whole cells | | NM_173749>Pamr1
NM_175342_dup1> | Pamr1 | NM_173749
NM_175342_d | 7 | 4.19254 | Nuclei up vs Whole cells | | Cphx_dup1
NM_001037909>C1 | Cphx_dup1 | up1
NM 00103790 | 0.0119937 | 4.16963 | Nuclei up vs Whole cells | | 30026I21Rik
NM_175219>C1300 | C130026I21Rik | 9 | 0.0352156 | 4.15699 | Nuclei up vs Whole cells | | 26I21Rik | C130026I21Rik | NM_175219 | 0.0352156 | 4.15699 | Nuclei up vs Whole cells | | NM_023887>Gcnt2
NM_001159538>Fg | Gcnt2 | NM_023887
NM_00115953 | 0.0392181 | 4.14987 | Nuclei up vs Whole cells | | d2 | Fgd2 | 8 | 0.0416497 | 4.14857 | Nuclei up vs Whole cells | | NM_013710>Fgd2 | Fgd2 | NM_013710 | 0.0416497 | 4.14857 | Nuclei up vs Whole cells | | NM_008213>Hand1
NM_001126487>G | Hand1 | NM_008213
NM_00112648 | 0.0495461 | 4.08572 | Nuclei up vs Whole cells | | m1027 | Gm1027 | 7 | 0.0413552 | 4.04348 | Nuclei up vs Whole cells | | NM_007807>Cybb
NM_008550>Man2 | Cybb | NM_007807 | 0.043819 | 3.97422 | Nuclei up vs Whole cells | | b2 | Man2b2 | NM_008550 | 0.0278977
0.0017207 | 3.9379 | Nuclei up vs Whole cells | | NM_011077>Phex
NM_001110163>Pd | Phex | NM_011077
NM_00111016 | 7 | 3.93516 | Nuclei up vs Whole cells | | e4dip | Pde4dip | 3 | 0.0485885 | 3.9334 | Nuclei up vs Whole cells | | NM_008239>Foxq1
NM_146734>Olfr47 | Foxq1 | NM_008239 | 0.0285887 | 3.90165 | Nuclei up vs Whole cells | | 8 | Olfr478 | NM_146734 | 0.0300762 | 3.89321 | Nuclei up vs Whole cells | | NM_207210>Dyrk4 | Dyrk4 | NM_207210 | 0.0454084
0.0074902 | 3.88809 | Nuclei up vs Whole cells | | NM_028623>Cst6
NM_001039187>Ce | Cst6 | NM_028623
NM_00103918 | 2 | 3.88741 | Nuclei up vs Whole cells | | acam1 | Ceacam1 | 7 | 0.0214607 | 3.8863 | Nuclei up vs Whole cells | | NM_177709>Tusc5
NM_194064>Nanos | Tusc5 | NM_177709 | 0.0160145 | 3.88607 | Nuclei up vs Whole cells | | 2
NM_001081348>He | Nanos2 | NM_194064
NM_00108134 | 0.0193511 | 3.88504 | Nuclei up vs Whole cells | | cw1 | Hecw1 | 8 | 7.24E-05
0.0053474 | 3.88218 | Nuclei up vs Whole cells | | NM_008599>Cxcl9 | Cxcl9 | NM_008599 | 5 | 3.87246 | Nuclei up vs Whole cells | | NM_019753>Cdh17
NM_025763>49334 | Cdh17 | NM_019753 | 0.04787 | 3.86726 | Nuclei up vs Whole cells | | 36I01Rik | 4933436I01Rik | NM_025763 | 0.0469292 | 3.86688 | Nuclei up vs Whole cells | | NM_177123>Spef2
NM_001168510>Ffa | Spef2 | NM_177123
NM_00116851 | 0.0417809 | 3.85869 | Nuclei up vs Whole cells | | r2 | Ffar2 | 0 | 0.0363798 | 3.8576 | Nuclei up vs Whole cells | | NM_144943>Cd207
NM_001146198>Nk | Cd207 | NM_144943
NM_00114619 | 0.0345845 | 3.85702 | Nuclei up vs Whole cells | | x2-1
NM_011109>Pla2g2 | Nkx2-1 | 8 | 0.0347061 | 3.85601 | Nuclei up vs Whole cells | | d | Pla2g2d | NM_011109 | 0.0133866 | 3.83723 | Nuclei up vs Whole cells | | NM 008002>Fgf10 | Fgf10 | NM_008002 | 0.0168744 | 3.8314 | Nuclei up vs Whole cells | |------------------------------------|---------------|--------------------------|------------------------|---------|--------------------------| | NM_001039146>V | - | NM_00103914 | 0.0100711 | | · | | mn1r90
NM 001037923>Le | Vmn1r90 | 6
NM 00103792 | 0.0369416 | 3.82455 | Nuclei up vs Whole cells | | kr1 | Lekr1 | 3 | 0.0428099
0.0027960 | 3.82336 | Nuclei up vs Whole cells | | NM_028721>Nphp3
NR_033456>Gm471 | Nphp3 | NM_028721 | 7 | 3.82306 | Nuclei up vs Whole cells | | 0 | Gm4710 | NR_033456 | 0.0477874 | 3.81875 | Nuclei up vs Whole cells | | NM_021541>Cryba2 | Cryba2 | NM_021541 | 0.0398934 | 3.79228 | Nuclei up vs Whole cells | | NM_177054>Casc4
NM_144803>Chrna | Casc4 | NM_177054 | 0.0456436
0.0030460 | 3.77095 | Nuclei up vs Whole cells | | 2
NM_001038607>Kc | Chrna2 | NM_144803
NM_00103860 | 6 | 3.74055 | Nuclei up vs Whole cells | |
nh1
NM_001163816>Va | Kcnh1 | 7
NM_00116381 | 0.0022302 | 3.73567 | Nuclei up vs Whole cells | | v1 | Vav1 | 6 | 0.0255311 | 3.72379 | Nuclei up vs Whole cells | | NM_001163386>49
30579F01Rik | 4930579F01Rik | NM_00116338
6 | 0.0467671 | 3.71744 | Nuclei up vs Whole cells | | NM_178877>Nhedc | | | | | | | 2 | Nhedc2 | NM_178877 | 0.0427693 | 3.70719 | Nuclei up vs Whole cells | | NM_178673>Fstl5 | Fstl5 | NM_178673 | 0.0303172 | 3.65906 | Nuclei up vs Whole cells | | NM_007873>Doc2b
NM_001085421>Ts | Doc2b | NM_007873
NM_00108542 | 0.045567 | 3.65746 | Nuclei up vs Whole cells | | pyl5 | Tspyl5 | 1 | 0.0233135 | 3.65567 | Nuclei up vs Whole cells | | NM_183139>Pld6
NM_001195097>34 | Pld6 | NM_183139
NM_00119509 | 0.0331996 | 3.65239 | Nuclei up vs Whole cells | | 25401B19Rik | 3425401B19Rik | 7 | 0.0183732 | 3.63956 | Nuclei up vs Whole cells | | NM_172444>Thsd4
NM_177039>A5300 | Thsd4 | NM_172444 | 0.0415086 | 3.63813 | Nuclei up vs Whole cells | | 16L24Rik
NM_001034859>G | A530016L24Rik | NM_177039
NM_00103485 | 0.0207886 | 3.63246 | Nuclei up vs Whole cells | | m4841
NM_001159532>Te | Gm4841 | 9
NM 00115953 | 0.0157037 | 3.6149 | Nuclei up vs Whole cells | | x21
NM_017394>Slc7a1 | Tex21 | 2 | 0.0281809 | 3.59758 | Nuclei up vs Whole cells | | 0 | Slc7a10 | NM_017394 | 0.0300168 | 3.58777 | Nuclei up vs Whole cells | | NM_010054>Dlx2
NM_001033795>Zcc | Dlx2 | NM_010054
NM_00103379 | 0.0231757 | 3.57968 | Nuclei up vs Whole cells | | hc16 | Zcchc16 | 5 | 0.0112874 | 3.56306 | Nuclei up vs Whole cells | | NM_008402>Itgav | Itgav | NM_008402 | 0.0279642 | 3.55822 | Nuclei up vs Whole cells | | NM_011998>Chst4 | Chst4 | NM_011998 | 0.0157403 | 3.55604 | Nuclei up vs Whole cells | | NM_025973>Pgc | Pgc | NM_025973 | 0.0405279 | 3.54237 | Nuclei up vs Whole cells | | NM_010289>Gja10
NM_001033304>53 | Gja10 | NM_010289
NM_00103330 | 0.04527 | 3.53342 | Nuclei up vs Whole cells | | 30417C22Rik | 5330417C22Rik | 4 | 0.045189 | 3.51917 | Nuclei up vs Whole cells | | NM_001025067>Lri | Lrig2 | NM_00102506
7 | 2 515 05 | 3.51901 | Nuclei up vs Whole cells | | g2
NM_001164787_du | LIIgZ | ,
NM 00116478 | 2.51E-05
0.0025323 | 5.51901 | Nuclei up vs Whole cells | | p1>Sprr2a2_dup1
NM_011468_dup1> | Sprr2a2_dup1 | 7_dup1
NM 011468 d | 4
0.0025323 | 3.51301 | Nuclei up vs Whole cells | | Sprr2a1_dup1 | Sprr2a1_dup1 | up1 | 4 | 3.51301 | Nuclei up vs Whole cells | | NM_172861>Slc7a1
4 | Slc7a14 | NM_172861 | 0.0004701
35 | 3.50659 | Nuclei up vs Whole cells | | NM_172564>Tns4 | Tns4 | NM_172564 | 0.0283971 | 3.50137 | Nuclei up vs Whole cells | | NM_010683>Lamc1 | Lamc1 | NM_010683 | 0.0197939 | 3.49422 | Nuclei up vs Whole cells | | NM_023709>Capn9 | Capn9 | NM_023709 | 0.0236392 | 3.47254 | Nuclei up vs Whole cells | | | | | | | | | NM 152550x Occur | Occura | NINA 1E2EEO | 0.0200056 | 2.46702 | Nuclai un va Whala calla | |-------------------------------------|---------------|--------------------------|------------------------|----------|----------------------------| | NM_153559>Qsox2
NM_001161355>Ti | Qsox2 | NM_153559
NM_00116135 | 0.0200056 | 3.46793 | Nuclei up vs Whole cells | | md2 | Timd2 | 5 | 0.0441534 | 3.4665 | Nuclei up vs Whole cells | | NM_001177579>G | | NM_00117757 | 0.0091690 | | | | m10471 | Gm10471 | 9 | 7 | 3.46323 | Nuclei up vs Whole cells | | NM_001174047>Ca
cna2d2 | Cacna2d2 | NM_00117404
7 | 0.0098975
5 | 3.46041 | Nuclei up vs Whole cells | | NM 001174048>Ca | Cacilazuz | ,
NM_00117404 | 0.0098975 | 3.40041 | Nuclei up vs whole cells | | cna2d2 | Cacna2d2 | 8 | 6 | 3.46041 | Nuclei up vs Whole cells | | NM_001174049>Ca | | NM_00117404 | 0.0098975 | | | | cna2d2 | Cacna2d2 | 9 | 6 | 3.46041 | Nuclei up vs Whole cells | | NM_001174050>Ca | Cacna2d2 | NM_00117405
0 | 0.0098975
6 | 3.46041 | Nuclei up vs Whole cells | | cna2d2
NM 020263>Cacna | Cacilazuz | U | 0.0098975 | 3.40041 | Nuclei up vs whole cells | | 2d2 | Cacna2d2 | NM_020263 | 6 | 3.46041 | Nuclei up vs Whole cells | | NM_001126322>G | | NM_00112632 | | | · | | m11595 | Gm11595 | 2 | 0.0495075 | 3.45743 | Nuclei up vs Whole cells | | NINA 44CO205 C+2 | C+2 | NNA 14C020 | 0.0002778 | 2.454 | Nivele: va \A/h ala salla | | NM_146028>Stac2
NR_024257>493041 | Stac2 | NM_146028 | 26 | 3.454 | Nuclei up vs Whole cells | | 2013Rik | 4930412O13Rik | NR 024257 | 0.0312299 | 3.45286 | Nuclei up vs Whole cells | | | | | 0.0003186 | | | | NM_015826>Dmrt1 | Dmrt1 | NM_015826 | 59 | 3.4375 | Nuclei up vs Whole cells | | NR_027858>Nlrp1c- | | | | | | | ps
NM 001004150>A4 | Nlrp1c-ps | NR_027858
NM_00100415 | 0.0289108
0.0015560 | 3.396 | Nuclei up vs Whole cells | | galt | A4galt | 0 | 6 | 3.39192 | Nuclei up vs Whole cells | | NM 177086>Zmat4 | Zmat4 | NM 177086 | 0.0364836 | 3.39062 | Nuclei up vs Whole cells | | _ | | _ | | | · | | NM_145136>Myocd | Myocd | NM_145136 | 0.0477561
0.0023219 | 3.3874 | Nuclei up vs Whole cells | | NM_172521>Nut | Nut | NM_172521 | 9 | 3.38407 | Nuclei up vs Whole cells | | NM_009421>Traf1 | Traf1 | NM_009421 | 0.0459212 | 3.37438 | Nuclei up vs Whole cells | | NR_015593>D13000 | | _ | | | • | | 9I18Rik | D130009I18Rik | NR_015593 | 0.013378 | 3.35635 | Nuclei up vs Whole cells | | NM_010456>Hoxa9 | Hoxa9 | NM_010456 | 0.0361866 | 3.34416 | Nuclei up vs Whole cells | | NM_001024727>G | | NM_00102472 | 0.0051404 | | | | m16387 | Gm16387 | 7 | 8 | 3.33949 | Nuclei up vs Whole cells | | NM_173385>Cilp | Cilp | NM_173385 | 0.017037 | 3.33086 | Nuclei up vs Whole cells | | NM_027937>Caskin
1 | Caskin1 | NM 027937 | 0.0393128 | 3.33072 | Nuclei up vs Whole cells | | NM 001167832>Zfp | Caskiiii | NM 00116783 | 0.0393128 | 3.33072 | Nuclei up vs vviiole celis | | 764 | Zfp764 | 2 | 0.0229346 | 3.31341 | Nuclei up vs Whole cells | | NM_146203>Zfp764 | Zfp764 | NM 146203 | 0.0229347 | 3.31341 | Nuclei up vs Whole cells | | NM_001102563>Prr | • | NM_00110256 | | | • | | t2 | Prrt2 | 3 | 0.0257805 | 3.30376 | Nuclei up vs Whole cells | | NM_001079932>Tri | T.: | NM_00107993 | 0.04.45.40.4 | 2 2025 4 | Nicolo? M/loolooollo | | m72
NM_001127177>Pt | Trim72 | 2
NM 00112717 | 0.0145404
0.0010972 | 3.30254 | Nuclei up vs Whole cells | | pn2 | Ptpn2 | 7 | 5 | 3.30097 | Nuclei up vs Whole cells | | NM_172486>Zfp677 | Zfp677 | NM_172486 | 0.0259954 | 3.29973 | Nuclei up vs Whole cells | | NM 018873>Srcin1 | Srcin1 | NM_018873 | 0.0492297 | 3.29457 | Nuclei up vs Whole cells | | _ | | _ | | | | | NM_145592>Dkk4 | Dkk4 | NM_145592 | 0.0147257
0.0051632 | 3.29406 | Nuclei up vs Whole cells | | NR 027651>Meg3 | Meg3 | NR 027651 | 2 | 3.29376 | Nuclei up vs Whole cells | | NM_001145978>Pa | - | NM_00114597 | | | • | | rp4 | Parp4 | 8 | 0.0400015 | 3.28839 | Nuclei up vs Whole cells | | NM_206958>Ltbp1 | Ltbp1 | NM_206958 | 0.0375915 | 3.287 | Nuclei up vs Whole cells | | NM_133690>Atp1b | A - 4 - 4 | NINA 422.000 | 0.0003909 | 2.27222 | No alatina na Mila I | | 4 | Atp1b4 | NM_133690 | 55 | 3.27338 | Nuclei up vs Whole cells | | NM_207298>Cerca | | | | | | |--------------------------------------|---------------|--------------------------|------------------------|---------|--------------------------| | m
NR 033491>Gm104 | Cercam | NM_207298 | 0.0409793 | 3.27037 | Nuclei up vs Whole cells | | 66 | Gm10466 | NR_033491 | 0.0114894
0.0029917 | 3.26599 | Nuclei up vs Whole cells | | NM_009675>Aoc3 | Aoc3 | NM_009675 | 8 | 3.2616 | Nuclei up vs Whole cells | | NM_133191>Eps8l2
NM_001145927>C5 | Eps8l2 | NM_133191
NM_00114592 | 0.031332 | 3.25486 | Nuclei up vs Whole cells | | 30028021Rik
NM 001104638>V | C530028O21Rik | 7
NM_00110463 | 0.0322913 | 3.2539 | Nuclei up vs Whole cells | | mn2r23 | Vmn2r23 | 8 | 0.0266353 | 3.24864 | Nuclei up vs Whole cells | | NM_007735>Col4a4
NM_001164724>Il3 | Col4a4 | NM_007735
NM_00116472 | 0.0244636 | 3.24057 | Nuclei up vs Whole cells | | 3
NM_178685>Pcdh2 | 1133 | 4 | 0.0412384
0.0099244 | 3.23711 | Nuclei up vs Whole cells | | 0
NM 012045>Pla2g2 | Pcdh20 | NM_178685 | 9 | 3.23413 | Nuclei up vs Whole cells | | f | Pla2g2f | NM_012045 | 0.0178663
0.0077211 | 3.22653 | Nuclei up vs Whole cells | | NM_010466>Hoxc8 | Hoxc8 | NM_010466 | 6 | 3.22101 | Nuclei up vs Whole cells | | NM_029698>Ttc18
NM_001195672>G | Ttc18 | NM_029698
NM_00119567 | 0.0148221 | 3.21102 | Nuclei up vs Whole cells | | m221 | Gm221 | 2 | 0.0318773
0.0006845 | 3.2038 | Nuclei up vs Whole cells | | NM_138750>Prom2 | Prom2 | NM_138750 | 77
0.0006845 | 3.2014 | Nuclei up vs Whole cells | | NM_178047>Prom2
NM_001037859>Csf | Prom2 | NM_178047
NM_00103785 | 78
0.0018689 | 3.2014 | Nuclei up vs Whole cells | | 1r
NM_011204>Ptpn1 | Csf1r | 9 | 1 | 3.19546 | Nuclei up vs Whole cells | | 3
NM_001110240>Slc | Ptpn13 | NM_011204
NM_00111024 | 0.0229828 | 3.19187 | Nuclei up vs Whole cells | | 24a2 | Slc24a2 | 0 | 0.0223882 | 3.17858 | Nuclei up vs Whole cells | | NM_011859>Osr1
NR 030692>A93001 | Osr1 | NM_011859 | 0.0228279 | 3.16607 | Nuclei up vs Whole cells | | 1G23Rik
NM_177278>L3mbtl | A930011G23Rik | NR_030692 | 0.0155406 | 3.1649 | Nuclei up vs Whole cells | | 4
NM 172485>Thsd7 | L3mbtl4 | NM_177278 | 0.0042952 | 3.13005 | Nuclei up vs Whole cells | | b | Thsd7b | NM_172485 | 0.0236392 | 3.12015 | Nuclei up vs Whole cells | | NM_153508>Clstn3
NM 028085>Anks4 | Clstn3 | NM_153508 | 0.011319 | 3.11808 | Nuclei up vs Whole cells | | b
NM 173734>Tmem | Anks4b | NM_028085 | 0.0199275 | 3.10689 | Nuclei up vs Whole cells | | 87a | Tmem87a | NM_173734 | 0.0307979
0.0016796 | 3.09705 | Nuclei up vs Whole cells | | NM_007739>Col8a1
NM_001146268>Pd | Col8a1 | NM_007739
NM_00114626 | 2
0.0001282 | 3.08325 | Nuclei up vs Whole cells | | gfrb | Pdgfrb | 8 | 59
0.0001282 | 3.05599 | Nuclei up vs Whole cells | | NM_008809>Pdgfrb
NM_001113393>Cd | Pdgfrb | NM_008809
NM_00111339 | 61
0.0031634 | 3.05599 | Nuclei up vs Whole
cells | | 247
NM_001113394>Cd | Cd247 | 3
NM_00111339 | 7 0.0031634 | 3.03565 | Nuclei up vs Whole cells | | 247
NM 001085540>Pr | Cd247 | 4
NM 00108554 | 7 | 3.03565 | Nuclei up vs Whole cells | | amef17 | Pramef17 | 0 | 0.0353828 | 3.03166 | Nuclei up vs Whole cells | | NM_019969>Plag1 | Plag1 | NM_019969 | 0.0108907 | 3.0285 | Nuclei up vs Whole cells | | NM_011772>lkzf4 | Ikzf4 | _
NM_011772 | 0.0274504 | 3.02639 | Nuclei up vs Whole cells | | _
NM_009707>Arhga | Arhgap6 | _
NM_009707 | 0.0356864 | 3.01173 | Nuclei up vs Whole cells | | - | - | | | | • | | p6 | | | | | | |-------------------------------------|---------------|--------------------------|------------------------|----------|----------------------------| | NM_001039149>Cd | | NM_00103914 | | | | | 226 | Cd226 | 9 | 0.0488657 | 3.00708 | Nuclei up vs Whole cells | | NM_010074>Dpp4 | Dpp4 | NM_010074 | 0.0408543 | 3.00059 | Nuclei up vs Whole cells | | NM_016766>Mcrs1
NM_134002>Csnk1 | Mcrs1 | NM_016766 | 0.001993 | -3.1206 | Nuclei down vs Whole cells | | g2
NM_001033819>91 | Csnk1g2 | NM_134002
NM_00103381 | 0.0199871 | -3.12415 | Nuclei down vs Whole cells | | 30409123Rik
NM_001099349_du | 9130409I23Rik | 9
NM_00109934 | 0.010026 | -3.29095 | Nuclei down vs Whole cells | | p3>Gm14308_dup3 | Gm14308_dup3 | 9_dup3 | 0.0197868 | -3.29889 | Nuclei down vs Whole cells | | NM_010758>Mag
NR_033220>BC0397 | Mag | NM_010758 | 0.0411256 | -3.3354 | Nuclei down vs Whole cells | | 71
NR_003639>170001 | BC039771 | NR_033220 | 0.0269799
0.0001021 | -3.3733 | Nuclei down vs Whole cells | | 3N18Rik
NM_001039391>Pki | 1700013N18Rik | NR_003639
NM_00103939 | 33 | -3.47506 | Nuclei down vs Whole cells | | g
NM_001042725>Cal | Pkig | 1
NM 00104272 | 0.0453363 | -3.51501 | Nuclei down vs Whole cells | | cr | Calcr | 5 | 0.0480252 | -3.58088 | Nuclei down vs Whole cells | | NM_007588>Calcr
NM_177887>Tmem | Calcr | NM_007588 | 0.0480252 | -3.58088 | Nuclei down vs Whole cells | | 150b
NM_001177406_du | Tmem150b | NM_177887
NM_00117740 | 0.0279536 | -3.6307 | Nuclei down vs Whole cells | | p3>Gm14431_dup3
NM_001177407_du | Gm14431_dup3 | 6_dup3
NM_00117740 | 0.0101731 | -3.65331 | Nuclei down vs Whole cells | | p3>Gm8898_dup3 | Gm8898_dup3 | 7_dup3 | 0.0101731 | -3.65331 | Nuclei down vs Whole cells | | NM_175249>Psapl1
NR_033550>Gm102 | Psapl1 | NM_175249 | 0.0257171 | -3.699 | Nuclei down vs Whole cells | | 48
NM_177382>Cyp2r | Gm10248 | NR_033550 | 0.0192265 | -3.77634 | Nuclei down vs Whole cells | | 1 | Cyp2r1 | NM_177382 | 0.0448083 | -3.92774 | Nuclei down vs Whole cells | | NM_033268>Actn2 | Actn2 | NM_033268 | 0.0457634 | -4.00766 | Nuclei down vs Whole cells | | NM_175519>Kctd8
NM_172923>Al118 | Kctd8 | NM_175519 | 0.0186554 | -4.02592 | Nuclei down vs Whole cells | | 078
NM_178203>Hist1h | Al118078 | NM_172923 | 0.0449712 | -4.29708 | Nuclei down vs Whole cells | | 3b
NM_001126489>Zfp | Hist1h3b | NM_178203
NM_00112648 | 0.0424376 | -4.46837 | Nuclei down vs Whole cells | | 735 | Zfp735 | 9 | 0.0489386 | -4.85045 | Nuclei down vs Whole cells | | NM_030703>Cpn1 | Cpn1 | NM_030703 | 0.0256042
0.0012564 | -5.01338 | Nuclei down vs Whole cells | | NM_031867>Tas1r1
NM_001001327>Vk | Tas1r1 | NM_031867
NM_00100132 | 8
0.0063632 | -5.03614 | Nuclei down vs Whole cells | | orc1l1
NR 015488>A93000 | Vkorc1l1 | 7 | 4 | -5.11608 | Nuclei down vs Whole cells | | 3A15Rik
NM_001134660>Prr | A930003A15Rik | NR_015488
NM_00113466 | 0.0482706 | -5.22585 | Nuclei down vs Whole cells | | 23a
NR_033121_dup2> | Prr23a | 0
NR 033121 du | 0.0289154 | -5.30456 | Nuclei down vs Whole cells | | Gm8348_dup2
NM 001145806>Ca | Gm8348_dup2 | p2
NM 00114580 | 0.0410417 | -5.37492 | Nuclei down vs Whole cells | | pn8 | Capn8 | 6 | 0.0369749 | -5.60523 | Nuclei down vs Whole cells | | NM_027650>Speer3
NM_183158>Cyp2a | Speer3 | NM_027650 | 0.0114941
0.0021255 | -5.64153 | Nuclei down vs Whole cells | | b1 | Cyp2ab1 | NM_183158 | 9 | -5.65339 | Nuclei down vs Whole cells | | NM_029946>Efcab6 | Efcab6 | NM_029946 | 0.0243017 | -5.75752 | Nuclei down vs Whole cells | | NM_009611>Actl7a | Actl7a | NM_009611 | 0.0476764 | -5.82649 | Nuclei down vs Whole cells | | NM_033601>Bcl3
NM_001085534>G | Bcl3 | NM_033601
NM_00108553 | 0.0244082 | -5.89593 | Nuclei down vs Whole cells | |--|--|--|---|---|--| | m5938
NM 198419>Phactr | Gm5938 | 4 | 0.047917 | -5.92387 | Nuclei down vs Whole cells | | 1 | Phactr1 | NM_198419 | 0.0347575
0.0032057 | -5.99857 | Nuclei down vs Whole cells | | NM_008039>Fpr2
NM_134170>Vmn1r | Fpr2 | NM_008039 | 8 | -6.39629 | Nuclei down vs Whole cells | | 32
NM 144821>Al317 | Vmn1r32 | NM_134170 | 0.0367088 | -6.41742 | Nuclei down vs Whole cells | | 395
NM_021325>Cd200 | Al317395 | NM_144821 | 0.0241932 | -6.81518 | Nuclei down vs Whole cells | | r1 | Cd200r1 | NM_021325 | 0.0304908 | -7.00704 | Nuclei down vs Whole cells | | NM_025769>Efcab1
NM_001166627_du | Efcab1 | NM_025769
NM_00116662 | 0.0222441
0.0043429 | -7.33025 | Nuclei down vs Whole cells | | p4>Dynlt1f_dup4 | Dynlt1f_dup4 | 7_dup4 | 3 | -7.34359 | Nuclei down vs Whole cells | | NM_013486>Cd2
NM_175525>D6300 | Cd2 | NM_013486 | 0.0459818 | -7.36452 | Nuclei down vs Whole cells | | 42P16Rik
NM_020503>Tas2r1 | D630042P16Rik | NM_175525 | 0.0348087 | -7.85203 | Nuclei down vs Whole cells | | 19 | Tas2r119 | NM_020503 | 0.0443585
0.0082720 | -7.95372 | Nuclei down vs Whole cells | | NM_133193>Il1rl2
NM_001104547>V | ll1rl2 | NM_133193
NM_00110454 | 9 | -8.04354 | Nuclei down vs Whole cells | | mn2r96
NM_001034101>G | Vmn2r96 | 7
NM_00103410 | 0.0421371 | -8.44227 | Nuclei down vs Whole cells | | m13119
NM 001048196>Krt | Gm13119 | 1
NM_00104819 | 0.0379931 | -8.48303 | Nuclei down vs Whole cells | | ap4-1
NM 001039653>Lh | Krtap4-1 | 6
NM 00103965 | 0.0478059
0.0002944 | -8.68869 | Nuclei down vs Whole cells | | x3 | Lhx3 | 3 | | 0.70265 | Nivele: devine ve M/h ele celle | | хэ | LIIXJ | 5 | 68
0 0085755 | -8.78365 | Nuclei down vs Whole cells | | NM_023729>Asz1 | Asz1 | NM_023729 | 0.0085755
8 | -8.93075 | Nuclei down vs Whole cells | | | | | 0.0085755 | | | | NM_023729>Asz1 | Asz1 | NM_023729 | 0.0085755
8 | -8.93075 | Nuclei down vs Whole cells | | NM_023729>Asz1
NM_013596>Mc5r
NM_021483>Pex5l
NM_007967>Evx2 | Asz1
Mc5r | NM_023729
NM_013596
NM_021483
NM_007967 | 0.0085755
8
0.0489222 | -8.93075
-9.19794 | Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1
NM_013596>Mc5r
NM_021483>Pex5l | Asz1
Mc5r
Pex5l | NM_023729
NM_013596
NM_021483 | 0.0085755
8
0.0489222
0.0214987 | -8.93075
-9.19794
-9.21198 | Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1
NM_013596>Mc5r
NM_021483>Pex5l
NM_007967>Evx2
NM_001018087>Ld | Asz1
Mc5r
Pex5l
Evx2 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808 | 0.0085755
8
0.0489222
0.0214987
0.0402564 | -8.93075
-9.19794
-9.21198
-9.70061 | Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1
NM_013596>Mc5r
NM_021483>Pex5l
NM_007967>Evx2
NM_001018087>Ld
oc1
NM_153096>Zfp353
NM_146783>Olfr26 | Asz1
Mc5r
Pex5l
Evx2
Ldoc1 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858 | Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1
NM_013596>Mc5r
NM_021483>Pex5l
NM_007967>Evx2
NM_001018087>Ld
oc1
NM_153096>Zfp353 | Asz1
Mc5r
Pex5l
Evx2
Ldoc1
Zfp353 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858
-10.0516 | Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 | Asz1
Mc5r
Pex5l
Evx2
Ldoc1
Zfp353
Olfr26
 NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858
-10.0516
-10.1988 | Nuclei down vs Whole cells
Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858
-10.0516
-10.1988
-10.4289 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_009317
NM_00111105
9 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858
-10.0516
-10.1988
-10.4289
-10.626 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_009111105
9
NM_029067
NM_029067
NM_00108128
3 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535 | -8.93075
-9.19794
-9.21198
-9.70061
-9.98858
-10.0516
-10.1988
-10.4289
-10.626 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 NM_001003951>Ce s5a | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 Spata17 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_00111105
9
NM_029067
NM_029067
NM_00108128 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535
0.0444364
0.0362378
0.0340595 | -8.93075 -9.19794 -9.21198 -9.70061 -9.98858 -10.0516 -10.1988 -10.4289 -10.626 -10.7477 -10.9112 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_0091111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 NM_001003951>Ce s5a NM_178215>Hist2h 3b | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 Spata17 Tmem28 | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_00111105
9
NM_029067
NM_029067
NM_00108128
3
NM_00100395 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535
0.0444364
0.0362378 | -8.93075 -9.19794 -9.21198 -9.70061 -9.98858 -10.0516 -10.1988 -10.4289 -10.626 -10.7477 -10.9112 -10.9293 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 NM_001003951>Ce s5a NM_178215>Hist2h 3b NM_199225>Cd300 c | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 Spata17 Tmem28 Ces5a | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_00111105
9
NM_029067
NM_029067
NM_00108128
3
NM_00100395
1 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535
0.0444364
0.0362378
0.0340595
0.0022924 | -8.93075 -9.19794 -9.21198 -9.70061 -9.98858 -10.0516 -10.1988 -10.4289 -10.626 -10.7477 -10.9112 -10.9293 -12.4363 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 NM_001003951>Ce s5a NM_178215>Hist2h 3b NM_199225>Cd300 | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 Spata17 Tmem28 Ces5a Hist2h3b | NM_023729
NM_013596
NM_021483
NM_007967
NM_00101808
7
NM_153096
NM_146783
NM_177923
NM_009317
NM_00111105
9
NM_029067
NM_029067
NM_0108128
3
NM_00100395
1
NM_178215 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535
0.0444364
0.0362378
0.0340595
0.0022924
3 | -8.93075 -9.19794 -9.21198 -9.70061 -9.98858 -10.0516 -10.1988 -10.4289 -10.626 -10.7477 -10.9112 -10.9293 -12.4363 -12.5105 | Nuclei down vs Whole cells | | NM_023729>Asz1 NM_013596>Mc5r NM_021483>Pex5l NM_007967>Evx2 NM_001018087>Ld oc1 NM_153096>Zfp353 NM_146783>Olfr26 NM_177923>H2- M10.2 NM_009317>Tal2 NM_001111059>Cd 34 NM_029067>Spata1 7 NM_001081283>Tm em28 NM_001003951>Ce s5a NM_178215>Hist2h 3b NM_199225>Cd300 c NM_026593>D7300 | Asz1 Mc5r Pex5l Evx2 Ldoc1 Zfp353 Olfr26 H2-M10.2 Tal2 Cd34 Spata17 Tmem28 Ces5a Hist2h3b Cd300c | NM_023729 NM_013596 NM_021483 NM_007967 NM_00101808 7 NM_153096 NM_146783 NM_177923 NM_009317 NM_00111105 9 NM_029067 NM_02108128 3 NM_00100395 1 NM_178215 NM_199225 | 0.0085755
8
0.0489222
0.0214987
0.0402564
0.0212415
0.0227177
0.0441297
0.0284159
0.0087421
0.0269535
0.0444364
0.0362378
0.0340595
0.0022924
3
0.0257218 | -8.93075 -9.19794 -9.21198 -9.70061 -9.98858 -10.0516 -10.1988 -10.4289 -10.626 -10.7477 -10.9112 -10.9293 -12.4363 -12.5105 -12.7242 | Nuclei down vs Whole cells | | | | 0.0046630 | | | |----------|---|---|---|---| | Alb | NM_009654 | 5 | -14.7251 | Nuclei down vs Whole cells | | | NM_00101175 | 0.0050020 | | | | Olfr1031 | 9 | 8 | -16.4963 | Nuclei down vs Whole cells | | | | | | | | Vmn1r236 | NM_134201 | 1.96E-05 | -17.5803 | Nuclei down vs Whole cells | | | NM_00115961 | | | | | Pigp | 7 | 0.0264643 | -17.9118 | Nuclei down vs Whole cells | | Krt13 | NM_010662 | 0.0127378 | -22.7554 | Nuclei down vs Whole cells | | Snord2 | NR_030705 | 0.0438372 | -24.8022 | Nuclei down vs Whole cells | | | NM_00116176 | 0.0010660 | | | | Lmo4 | 9 | 7 | -25.1349 | Nuclei down vs Whole cells | | | Olfr1031
Vmn1r236
Pigp
Krt13
Snord2 | NM_00101175 Olfr1031 9 Vmn1r236 NM_134201 NM_00115961 Pigp 7 Krt13 NM_010662 Snord2 NR_030705 NM_00116176 | Alb NM_009654 5 NM_00101175 0.0050020 Olfr1031 9 8 Vmn1r236 NM_134201 1.96E-05 NM_00115961 Pigp 7 0.0264643 Krt13 NM_010662 0.0127378 Snord2 NR_030705 0.0438372 NM_00116176 0.0010660 | Alb NM_009654
NM_00101175 5
0.0050020 -14.7251 Olfr1031 9 8 -16.4963 Vmn1r236 NM_134201
NM_00115961 1.96E-05
-17.5803 -17.5803
NM_0115961 Pigp 7 0.0264643 -17.9118 Krt13 NM_010662 0.0127378 -22.7554 Snord2 NR_030705
NM_00116176 0.0438372
0.0010660 -24.8022
-24.8022 | **Table S5.** Gene ontology results of genes enriched in nuclei as compared to cells. # Biological Processes | Category | Term | Count | 0/0 | PValue | |---------------|---|-------|-------------|-------------| | | GO:0006355~regulation of transcription, DNA- | | | | | GOTERM_BP_FAT | dependent | 32 | 10.03134796 | 0.015191102 | | GOTERM_BP_FAT | GO:0051252~regulation of RNA metabolic process | 32 | 10.03134796 | 0.018575851 | | GOTERM_BP_FAT | GO:0007155~cell adhesion | 22 | 6.896551724 | 4.86E-05 | | GOTERM_BP_FAT | GO:0022610~biological adhesion | 22 | 6.896551724 | 4.99E-05 | | GOTERM_BP_FAT | GO:0006811~ion transport | 19 | 5.956112853 | 0.012737724 | | | GO:0010557~positive regulation of macromolecule | | | | | GOTERM_BP_FAT | biosynthetic process | 18 | 5.642633229 | 0.001476793 | | | GO:0031328~positive regulation of cellular | | | | | GOTERM_BP_FAT | biosynthetic process | 18 | 5.642633229 | 0.002268093 | | | GO:0009891~positive regulation of biosynthetic | | | | | GOTERM_BP_FAT | process | 18 | 5.642633229 | 0.002490561 | | | GO:0010604~positive regulation of macromolecule | | | | | GOTERM_BP_FAT | metabolic process | 18 | 5.642633229 | 0.008807094 | | GOTERM_BP_FAT |
GO:0045941~positive regulation of transcription | 16 | 5.015673981 | 0.003229158 | | GOTERM_BP_FAT | GO:0010628~positive regulation of gene expression | 16 | 5.015673981 | 0.004148375 | | | GO:0045935~positive regulation of nucleobase, | | | | | | nucleoside, nucleotide and nucleic acid metabolic | | | | | GOTERM_BP_FAT | process | 16 | 5.015673981 | 0.00618514 | | | GO:0051173~positive regulation of nitrogen | | | | | GOTERM_BP_FAT | compound metabolic process | 16 | 5.015673981 | 0.008122409 | | | GO:0045893~positive regulation of transcription, | | | | | GOTERM_BP_FAT | DNA-dependent | 15 | 4.702194357 | 0.002490023 | | | GO:0051254~positive regulation of RNA metabolic | | | | | GOTERM_BP_FAT | process | 15 | 4.702194357 | 0.002657817 | | | GO:0006357~regulation of transcription from RNA | | | | | | | | | |---------------|---|----|-------------|-------------|--|--|--|--|--| | GOTERM_BP_FAT | polymerase II promoter | 15 | 4.702194357 | 0.056220821 | | | | | | | GOTERM_BP_FAT | GO:0006812~cation transport | 14 | 4.388714734 | 0.032321934 | | | | | | | | GO:0045944~positive regulation of transcription | | | | | | | | | | GOTERM_BP_FAT | from RNA polymerase II promoter | 13 | 4.07523511 | 0.005151355 | | | | | | | GOTERM_BP_FAT | GO:0030001~metal ion transport | 13 | 4.07523511 | 0.024062749 | | | | | | | GOTERM_BP_FAT | GO:0042127~regulation of cell proliferation | 13 | 4.07523511 | 0.082085763 | | | | | | | | GO:0051094~positive regulation of developmental | | | | | | | | | | GOTERM_BP_FAT | process | 11 | 3.448275862 | 9.72E-04 | | | | | | | | GO:0007167~enzyme linked receptor protein | | | | | | | | | | GOTERM_BP_FAT | signaling pathway | 11 | 3.448275862 | 0.005736057 | | | | | | | | GO:0045597~positive regulation of cell | | | | | | | | | | GOTERM_BP_FAT | differentiation | 10 | 3.134796238 | 8.88E-04 | | | | | | | GOTERM BP FAT | GO:0048568~embryonic organ development | 10 | 3.134796238 | 0.007593387 | | | | | | **Table S6.** Categories and numbers of noncoding RNAs identified in nuclei and whole cell sample. | category | antisense | lincRNA | miRNA | misc
RNA | noncoding | processed
transcript | retained
intron | snRNA | snoRNA | total | |---------------------|-----------|---------|-------|-------------|-----------|-------------------------|--------------------|-------|--------|-------| | *All Nuclei | 3 | 146 | 86 | 5 | 2 | 76 | 10 | 1 | 64 | 393 | | Nuclei Average | 3 | 138 | 51 | 4 | 2 | 71 | 10 | 1 | 43 | 323 | | N10 group | 3 | 135 | 47 | 4 | 2 | 71 | 9 | 1 | 44 | 316 | | N100 group | 2 | 120 | 30 | 0 | 2 | 65 | 8 | 0 | 28 | 255 | | N1-1 | 2 | 122 | 34 | 3 | 2 | 67 | 8 | 1 | 23 | 262 | | N1-2 | 3 | 130 | 27 | 2 | 2 | 68 | 9 | 1 | 20 | 262 | | N1-3 | 2 | 86 | 17 | 1 | 2 | 51 | 6 | 0 | 20 | 185 | | N10-1 | 2 | 111 | 24 | 1 | 2 | 58 | 7 | 1 | 19 | 225 | | N10-2 | 1 | 105 | 20 | 0 | 2 | 58 | 6 | 1 | 22 | 215 | | N10-3 | 2 | 122 | 24 | 3 | 2 | 67 | 8 | 0 | 31 | 259 | | N100-1 | 1 | 88 | 20 | 0 | 2 | 52 | 6 | 0 | 19 | 188 | | N100-2 | 2 | 96 | 13 | 0 | 2 | 53 | 8 | 0 | 15 | 189 | | N100-3 | 1 | 76 | 11 | 0 | 1 | 43 | 5 | 0 | 16 | 153 | | *All Whole Cells | 3 | 147 | 103 | 2 | 2 | 77 | 10 | 2 | 71 | 417 | | Whole Cells Average | 2 | 138 | 48 | 1 | 2 | 72 | 8 | 1 | 27 | 299 | | C10 group | 3 | 133 | 31 | 1 | 2 | 71 | 9 | 1 | 45 | 296 | | C100 group | 3 | 138 | 56 | 2 | 2 | 74 | 10 | 1 | 62 | 348 | | C1A | 2 | 118 | 24 | 0 | 2 | 61 | 6 | 1 | 18 | 232 | | C1B | 2 | 118 | 24 | 1 | 2 | 64 | 6 | 1 | 10 | 228 | | C1C | 2 | 101 | 15 | 0 | 2 | 55 | 6 | 0 | 15 | 196 | | C10A | 2 | 109 | 19 | 1 | 2 | 58 | 6 | 0 | 20 | 217 | | C10B | 2 | 119 | 13 | 0 | 2 | 66 | 8 | 0 | 20 | 230 | | C10C | 2 | 98 | 14 | 0 | 2 | 55 | 6 | 1 | 28 | 206 | | C100A | 3 | 119 | 24 | 0 | 2 | 65 | 8 | 0 | 34 | 255 | | C100B | 1 | 107 | 22 | 1 | 2 | 62 | 7 | 0 | 35 | 237 | | C100C | 3 | 129 | 39 | 2 | 2 | 67 | 10 | 1 | 49 | 302 | | DG group | 1 | 120 | 22 | 1 | 2 | 62 | 6 | 1 | 11 | 226 | | DG 1-1 | 1 | 113 | 19 | 0 | 2 | 59 | 4 | 1 | 7 | 206 | | DG 1-2 | 0 | 100 | 13 | 1 | 2 | 50 | 6 | 0 | 8 | 180 | | fetal stromal bulk | 1 | 115 | 20 | 3 | 2 | 62 | 8 | 1 | 17 | 229 | ^{* =} values represent non-redundant union of all 3 groups (n1,n10,n100 or c1,c10,c100). group = values represent non-redundant union of 3 replicates within each of 3 groups of nuclei or cells (eg: N1-1,N1-2, N1-3, etc.). Or 2 replicates in case of DG nuclei antisense: transcripts overlapping the genomic extent of one or more coding loci on the opposite strand lincRNA: long intergenic non-coding RNA. Transcripts do not overlap protein-coding locus on same or opposite strand. miRNA: microRNA precursors misc RNA: miscellaneous other RNA noncoding: known transcripts with non-coding function confirmed by literature or experiments processed transcript: does not contain an open reading frame (ORF) which can be unambiguously assigned as a CDS retained intron: has retained intronic sequence compared to a reference variant snRNA: small nuclear RNA snoRNA: small nucleolar RNA #### Methods ### S1 Micromanipulation of single cells and nuclei Following isolation of NP cells and purification of nuclei, each sample was diluted to 1,000 objects (cells, nuclei) per microliter with cold phosphate buffered saline (PBS) (ultrapure-grade phosphate buffers and saline solutions, 1X concentration is 137 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄ and 2 mM KH₂PO₄ (Ambion)). An aliquot (50 μl) of the diluted sample was transferred onto a cold glass slide and viewed with an IX70 Olympus microscope under phase contrast and fluorescence illumination. Cells or nuclei were individually aspirated using a glass micropipette having a 15 μm inner diameter (Eppendorf) connected to a CellTram® Oil Transferman® (Eppendorf), and serially expelled and washed three times in cold, nuclease free PBS. The individual cell or nucleus was then expelled from the micropipette into a 0.2 ml thin-walled PCR tube containing a droplet (1.0 μl) of cold lysis buffer solution. Each sample was immediately either lysed for cDNA synthesis or flash-frozen in liquid nitrogen and stored at -80° C. ### S2 cDNA synthesis, amplification and TaqMan analysis cDNA synthesis and PCR amplification was done according to previous methods (2, 3). Briefly, samples were lysed with heat, and mRNA was reverse-transcribed using a poly(dT) primer. First strand cDNA was polyadenylated with terminal transferase and second-strand cDNA synthesis was done with a second poly(dT) primer. Double stranded cDNA was amplified, limiting the rounds of PCR to preserve relative expression levels. The products of the first round of PCR (18 cycles for the NPCs and 22 cycles for the DGs) were then screened for genes of interest by qPCR. TaqMan loci (Applied Biosystems) qPCR employed a 1:10 dilution of the first round PCR products. An aliquot (0.5 μl) of TaqMan gene expression assay mixed with 5.0 μl of 1x PerfeCTaTM qPCR FastMixTM (Quanta Biosciences) and brought to a final volume of 10 μl with nuclease-free water (Ambion). Real-time thermal cycling conditions were: 95°C for 2 minutes, followed by 50 cycles of 95°C for 10 seconds and 60°C for 30 seconds. ### S3 SOLiD sequencing, mapping, and error correction Fragment libraries were constructed following published protocols for the SOLiD platform (3). In a single-end, 50 base pair read run, multiplexed samples were sequenced on each of two slides. The SOLiD Accuracy Enhancement Tool (SAET) and the transcriptome pipelines in the BioscopeTM Software were used for error correction and high accuracy mapping against the *Mus musculus* genome assembly MGSCv37 (mm9) to which the EYFP transgene transcript sequence was added. The DG nuclei and stromal control were sequenced later with improved protocols (for example in library production and increased bead density on the sequencing plate), which can account for the increase in mapping efficiency (SI Appendix, Table S2). #### S4 Bioinformatics analysis Gene expression was quantified using RPKM values (4). Variance was stabilized by log₂ scaling. Data post-processing and graphics production was done using Matlab functions developed in-house. Hierarchical clustering of gene expression and samples was performed with one minus correlation metric and the unweighted average distance (UPGMA; also known as group average) linkage method (5). Variation of the replicates of each type of sample was quantified using the coefficient of variation (CV): first, for each group of samples corresponding to the same biological entity, the variation of each gene was calculated as the CV of its log_2 RKPM expression across all the replicates of the group. Second, the variation of all the genes of the group was summarized using the mean values. Thus, the variation in a group is defined as the mean $\mu(CV)$ of the coefficient of variation of each gene expression across all the replicates. #### S5 Gene ontology analysis Transcripts enriched in the nuclei were calculated using one-way ANOVA with a P-value \leq 0.05. The list of 352 transcripts (SI Appendix, Table S4) was submitted for functional analysis to the Database for Annotation, Visualization and Integrated Discovery (DAVID; (6)) to identify categories that were overrepresented. The functional annotations were retrieved, and a threshold of a minimum of ten genes per category was set. #### References - 1. Bergsland M, *et al.* (2011) Sequentially acting Sox transcription factors in neural lineage development. *Genes Dev* 25(23):2453-2464. - 2. Tang F, et al. (2009) mRNA-Seq whole-transcriptome analysis of a single cell. *Nat. Methods* 6(5):377-382. - 3. Tang F, *et al.* (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. *Nat. Protoc.* 5(3):516-535. - 4. Mortazavi A, Williams BA, McCue K, Schaeffer L, & Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* 5(7):621-628. - 5. Sokal R & Michener C (1958) A statistical method for evaluating
systematic relationships. *Univ. Kans. Sci. Bull.* 38:1409-1438. - 6. Huang da W, Sherman BT, & Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 4(1):44-57.