Shortcuts

torch.linalg.matrix_exp

torch.linalg.matrix_exp(A) Tensor

Computes the matrix exponential of a square matrix.

Letting K\mathbb{K} be R\mathbb{R} or C\mathbb{C}, this function computes the matrix exponential of AKn×nA \in \mathbb{K}^{n \times n}, which is defined as

matrix_exp(A)=k=01k!AkKn×n.\mathrm{matrix\_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}.

If the matrix AA has eigenvalues λiC\lambda_i \in \mathbb{C}, the matrix matrix_exp(A)\mathrm{matrix\_exp}(A) has eigenvalues eλiCe^{\lambda_i} \in \mathbb{C}.

Supports input of bfloat16, float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if A is a batch of matrices then the output has the same batch dimensions.

Parameters

A (Tensor) – tensor of shape (*, n, n) where * is zero or more batch dimensions.

Example:

>>> A = torch.empty(2, 2, 2)
>>> A[0, :, :] = torch.eye(2, 2)
>>> A[1, :, :] = 2 * torch.eye(2, 2)
>>> A
tensor([[[1., 0.],
         [0., 1.]],

        [[2., 0.],
         [0., 2.]]])
>>> torch.linalg.matrix_exp(A)
tensor([[[2.7183, 0.0000],
         [0.0000, 2.7183]],

         [[7.3891, 0.0000],
          [0.0000, 7.3891]]])

>>> import math
>>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric
>>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]]
tensor([[ 0.5000,  0.8660],
        [-0.8660,  0.5000]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy