
MTA: Introduction to Programming Using Python – 

Skills Measured 

 

NOTE: The bullets that appear below each of the skills measured are intended to illustrate how 

we are assessing that skill. This list is not definitive or exhaustive. 

NOTE: In most cases, exams do NOT cover preview features, and some features will only be 

added to an exam when they are GA (General Availability). 

Exam 98-381: Introduction to Programming Using Python 

Perform Operations using Data Types and Operators (20-25%) 

Evaluate an expression to identify the data type Python will assign to each variable 

 identify str, int, float, and bool data types 

Perform data and data type operations 

 convert from one data type to another type; construct data structures; perform indexing 

and slicing operations 

Determine the sequence of execution based on operator precedence 

 assignment; comparison; logical; arithmetic; identity (is); containment (in) 

Select the appropriate operator to achieve the intended result 

 assignment; comparison; logical; arithmetic; identity (is); containment (in) 

Control Flow with Decisions and Loops (25-30%) 

Construct and analyze code segments that use branching statements 

 if; elif; else; nested and compound conditional expressions 

Construct and analyze code segments that perform iteration 

 while; for; break; continue; pass; nested loops and loops that include compound 

conditional expressions 



Perform Input and Output Operations (20-25%) 

Construct and analyze code segments that perform file input and output operations 

 open; close; read; write; append; check existence; delete; with statement 

Construct and analyze code segments that perform console input and output operations 

 read input from console; print formatted text; use of command line arguments 

Document and Structure Code (15-20%) 

Document code segments using comments and documentation strings 

 use indentation, white space, comments, and documentation strings; generate 

documentation by using pydoc 

Construct and analyze code segments that include function definitions 

 call signatures; default values; return; def; pass 

Perform Troubleshooting and Error Handling (5-10%) 

Analyze, detect, and fix code segments that have errors 

 syntax errors; logic errors; runtime errors 

Analyze and construct code segments that handle exceptions 

 try; except; else; finally; raise 

Perform Operations Using Modules and Tools (1-5%) 

Perform basic operations using built-in modules 

 math; datetime; io; sys; os; os.path; random 

Solve complex computing problems by using built-in modules 

 math; datetime; random 


