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A B S T R A C T

Remote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human
activity from space. This has allowed a host of applications including mapping urban areas, estimating popu-
lation and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found
use in understanding the environmental impacts of light emissions (light pollution), including their impacts on
human health. In this review, we outline the historical development of night-time optical sensors up to the
current state of the art sensors, highlight various applications of night light data, discuss the special challenges
associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an
outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote
sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution,
as well as for calibration and validation of space borne data, are also discussed. Although the development of
night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development.
The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and
strongly highlights the need for a new generation of space borne night lights instruments. This work shows that
future sensors are needed to monitor temporal changes during the night (for example from a geostationary
platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly
analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial
resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify
lighting technologies, map urban functions, and monitor energy use.
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1. Introduction

Human society has modified the Earth to such an extent, that the
present geological era has been termed as the Anthropocene (Crutzen,
2002). Monitoring human activity from space has largely been directed
at mapping land cover and land use changes, such as deforestation
(Hansen et al., 2013). Remote sensing of artificial lights, on the other
hand, provides a direct signature of human activity. Global images of
the Earth at night are now iconic, thanks to NASA media releases such
as the “Bright Lights, Big City” (published in Oct 23rd, 2000, https://
earthobservatory.nasa.gov/Features/Lights) or the “Earth at Night”
(published in April 12th, 2017, https://earthobservatory.nasa.gov/
Features/NightLights) and other communication channels (Pritchard,
2017).

The availability of artificial lights is often associated with wealth
and a modern society (Hölker et al., 2010a; Green et al., 2015). Brighter
lights are strongly associated with increased security in the public
consciousness, despite little evidence of a causal link. As a result, total
installed lighting increased rapidly during the past centuries (Fouquet
and Pearson, 2006), and has continued to increase in most countries
during recent years (Kyba et al., 2017). An example of recent lighting
changes is shown in Fig. 1. Nightscapes change when objects or areas
are illuminated for the first time, as in new roads or neighbourhoods, or
when lighting technologies change (Fig. 1). As a result, economic de-
velopment goes in tandem with lighting.

Artificial lights at night can also provide insights on negative im-
pacts, such as disasters (Molthan and Jedlovec, 2013), and armed
conflict (Román and Stokes, 2015). The importance of monitoring the
Earth at night is also demonstrated by the growing recognition of ar-
tificial light as a pollutant (Navara and Nelson, 2007; Hölker et al.,
2010b), the development of new lighting sources (such as LEDs, which
can increase ecological light pollution; Pawson and Bader, 2014), and
the continuing growth in extent and radiance of artificially lit areas
(Kyba et al., 2017). Light pollution can be defined as “the alteration of
natural light levels in the night environment produced by the in-
troduction of artificial light” (Falchi et al., 2011). Artificial light can
alter species abundance or behavior due to changes in their circadian
rhythms or due to their attraction to or repulsion from light (ecological
light pollution; Longcore and Rich, 2004; Rich and Longcore, 2006),
can decrease our ability to observe stars at night (astronomical light

pollution), and also leads to negative health impacts to humans through
the suppression of melatonin production and insomnia (Hölker et al.,
2010b; Falchi et al., 2011; Lunn et al., 2017).

With the development of new space borne, airborne and ground
sensors for quantifying light at night, new research opportunities are
emerging (Kyba et al., 2015a; Hänel et al., 2018). The first compre-
hensive review on remote sensing of night lights was published by Doll
(2008). Since that time, a variety of new sensors have become available
(Fig. 2; Table 1). More recent reviews on remote sensing of night lights
have either focused solely on applications of the DMSP/OLS sensor
(Elvidge et al., 2009c; Huang et al., 2014; Li and Zhou, 2017), on multi-
temporal applications using DMSP/OLS and VIIRS/DNB (Bennett and
Smith, 2017), on the various applications of night-time imagery (Li
et al., 2016) and on the community of researchers active in this field
(Hu et al., 2017). Since the recent review of Zhang et al. (2015b), new
sensors, algorithms, and applications have emerged (Zhao et al., 2019).
In this paper we therefore aim to provide a comprehensive review on
the field of remote sensing of night lights, focusing on the visible
spectral range, which is mostly related to artificial lights used by people
to light the night so as to extend human activity hours. In our review we
cover space borne, airborne, and ground based observations (recently
reviewed in Hänel et al., 2018). We cover the historical development of
this research area, the available sensors, the current state of the art
algorithms for routine data processing, key applications, the differences
to daytime remote sensing, upcoming space-based night lights missions,
and future research challenges.

2. Historical overview

2.1. Earliest observations of night lights

Historically, technological developments in the energy industry
(such as the transition from candles to gas, and later on to kerosene and
then to electricity) have led over the past centuries to a gradual de-
crease in the price of lighting services, and were associated with in-
creases in lighting efficiency and in the consumption of light per capita
(Nordhaus, 1996; Fouquet and Pearson, 2006). The foundation of the
Edison Electric Light Company can mark the modern era of lighting,
and since the year 1800, the total consumption of light in the United
Kingdom alone has grown by 25,600 times (Fouquet and Pearson,
2006). Walker (1973) reports that already in the 1930s sky illumination
has started to preclude astronomical viewing from certain observatories
(and see Rosebrugh, 1935), and as Bertrand Russell famously wrote in
1935, “In the streets of a modern city the night sky is invisible; in rural

Fig. 1. Lighting changes in Calgary, Alberta (Canada) between 24/12/2010
(top) and 28/11/2015 (bottom). The neighborhood at left has converted from
high pressure sodium to white LED lights, while the highway at right is newly
illuminated with sodium lamps. The area has a roughly 7.5× 3 km extent.
Images based on astronaut photographs ISS026-E−12438 and ISS045-
E−155029.

Fig. 2. Space borne sensors with night-time lights capabilities, as a function of
the year from which digital night-time images are available, and the spatial
resolution of the sensor.
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districts, we move in cars with bright headlights. We have blotted out the
heavens, and only a few scientists remain aware of stars and planets, me-
teorites and comets.” (Russell, 1935).

The Artificial Light at Night (ALAN) Research Literature Database
(http://alandb.darksky.org/, accessed September 16th, 2019) which
covers 2,545 publications on the topic of light pollution (Fig. 3; note
however, that the ALAN database does not include all publications on
light pollution or on remote sensing of night lights), has as one of its
first papers that of Edison (1880). However, publications on light pol-
lution were scarce until the mid-20th century (Fig. 3; compare with
Davies and Smyth, 2018). The first paper mentioning light pollution in
its title (within this database) was only published in 1972, and it al-
ready suspected possible negative health impacts from exposure to ar-
tificial light at night (Burne, 1972). Other papers published in the early
1970s on light pollution were more concerned with the negative im-
pacts that artificial lighting has on the ability of astronomers on view
the night sky (e.g., Riegel, 1973), and the front cover of Vol. 179 No
4080 of Science shows the dramatic increase of city lights in Los An-
geles between 1911 and 1965, as observed from Mount Wilson.

One of the first famous observations of cities’ lights from space is
attributed to US astronaut John Glenn, who in his orbit of the Earth in
February 20th, 1962, saw Perth as the “City of Lights”, thanks to local
citizens and businesses who have turned on as many lights as they could
as a sign of support for his mission (Biggs et al., 2012). In many ways,
the subsequent development of remote sensing of night lights, can be
compared to the general development of Earth observation using day-
time images for environmental monitoring. However, as will be de-
scribed below, remote sensing of night lights suffers from a lack of
sensors, and consequently there is a temporal lag in the development of
algorithms and customer-ready products.

2.2. Space borne sensors for measuring night lights

During nighttime, most passive remote sensing applications have
focused on the thermal or microwave spectral regions, measuring ra-
diation related to heat emission (Weng, 2009). In the following sections
we detail the various sensors and platforms from which remote sensing
of night lights in the visible range has been performed.

2.2.1. DMSP/OLS
The first American satellites for Earth observation, launched in the

1960s, were either aimed for weather monitoring (TIROS-1, launched
on April 1, 1960; Rao et al., 1990) or for military reconnaissance – the
Corona program (McDonald, 1995). The Defense Meteorological Sa-
tellite Program (DMSP), started in the mid-1960s as the meteorological
program of the US Department of Defense, aiming to collect global
cloud cover data day and night. The era of global satellite observation
of electric lighting started in 1971 with the launch of the SAP (Sensor
Aerospace vehicle electronics Package) instrument flown by the De-
fense Meteorological Satellite Program. The SAP collected global ima-
ging data in a panchromatic band spanning from 500 nm to 900 nm and
a long-wave infrared channel. The signal from the visible band was
intensified using a photomultiplier tube. Dickinson et al. (1974) pre-
sented a November 1971 SAP image showing nighttime lights of
Northern Europe and gas flares in the North Sea. The purpose of the low
light imaging was to enable the detection of clouds in the visible using
moonlight as the illumination source (see e.g. Fig. 4). The requirement
for this came from Air Force meteorologists. A second generation low
light imager, known as the Operational Linescan System (OLS) was
carried on DMSP Block 5D satellites, with a first launch in 1976. A
series of nineteen OLS instruments have been flown and data collection
continues to the present (2019). However, the overpass times vary, with
some satellites in dawn-dusk orbits and others in day-night orbits
(Fig. 5). Only the day-night satellites provide nighttime data in suffi-
cient quantities to produce global nighttime lights products. While the
existence of DMSP system was acknowledged in 1972, the use of night-
time images of the Earth within the remote sensing community was
very limited until the 1990s (Fig. 3). This is mostly because until 1992
DMSP/OLS images were written to film and were not available in di-
gital form. The University of Colorado, National Snow and Ice Data

1
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Remote sensing papers in the ALAN database
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All papers in the ALAN database

Papers cited in this manuscript

Fig. 3. Cumulative number of papers on artificial lights in the Artificial Light at
Night (ALAN) Research Literature Database (n= 2545) (http://alandb.darksky.
org/, accessed September 16th, 2019). Also shown are papers where the title of
the paper included the word pollution (n=271), and papers published in re-
mote sensing journals or where either one of the words “remote”, “sensing”,
“satellite”, “DMSP”, “VIIRS”, “Luojia”, “SQM” appeared in the title of the paper
or that Chris Elvidge was one of the co-authors (n=380). The green line shows
the yearly numbers of papers cited in this manuscript (n=384). (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 4. Lunar eclipse over North America on 2014/10/08, viewed by VIIRS
DNB. At far right, the eclipse had not yet begun, and the instrument observed
clouds illuminated by full moonlight. The next strip was taken with the moon
partially eclipsed, and the dark strip when the moon was near to fully eclipsed.
The final strip (at left) was taken one day earlier. Image prepared by
Christopher Kyba based on image and data processing by NOAA's National
Geophysical Data Center. Image available under a CC BY license at https://
tinyurl.com/us-eclipse-20141008.

Fig. 5. DMSP local times at the ascending equatorial crossing.
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Center operated a film archive. Nonetheless, early scientific papers
using DMSP/OLS observations of artificial lights from space were al-
ready published in the 1970s, with regards to astronomical light pol-
lution (Hoag et al., 1973; Walker, 1973) and concerning the ability to
monitor various human activities such as cities’ lights, waste gas

burning, agricultural fires and fishing fleets who use lights (Croft, 1973,
1978, 1979; Welch, 1980) (Fig. 6). Sullivan (1989) produced the first
global map of DMSP nighttime lights by mosaicking hand selected
DMSP film segments (Fig. 7). In comparison, the Corona satellite pro-
gram and its associated photos were declassified much later than the

Fig. 6. DMSP colorized night lights. The white represents lights generated from electricity, the red shading shows fires, the pink shading indicates light from squid
fishing boats, and the blue spots are gas flares from oil rigs. This dataset was compiled from DMSP data between October 1994 and March 1995. The differentiation of
fires, boats, electric lights and gas flares was all done by temporal analysis (do the lights stay constant and do they move). The instrument itself is not able to
distinguish between them. Zoomed in areas are shown for northern Europe (b), Japan and Korea (c), western Africa (d), and northern South America (e). Source of
dataset: https://sos.noaa.gov/datasets/nighttime-lights-colorized/.(For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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DMSP program, in 1995, and have since allowed the development of
various applications (Dashora et al., 2007).

The launch of NOAA Advanced Very-High-Resolution Radiometer
(AVHRR) weather satellites in the late 1970s (on TIROS-N in 1978 and
on NOAA-6 in 1979; Rao et al., 1990), enabled the development of
global 1 km products for monitoring vegetation, surface temperature
and land cover changes, with datasets going back to the early 1980s
(Ehrlich et al., 1994). Similarly, a digital archive for DMSP data was
established at the NOAA National Geophysical Data Center in 1992. In
1994, Chris Elvidge and Kimberly Baugh embarked on a program to
produce global DMSP nighttime lights and fire products from digital
DMSP data at NOAA's National Geophysical Data Center (NGDC) in
Boulder, Colorado. This team pioneered the development of global sa-
tellite observed maps of nighttime lights. Algorithms were developed to
geolocate OLS images and screen out sunlit and moonlit data. The first
NGDC test product was of the USA and had 29 orbits as input. This
product was clearly missing large numbers of lights from known cities
and towns (Fig. 8). To address the shortcoming regarding the large
numbers of missing lights, the team realized they had no assurance that
each area had cloud-free observations. This led to formal tracking of the
numbers of observations and cloud-free coverages to ensure a com-
prehensive and standardized compilation of lighting features. A cloud
detection algorithm was developed using the long wave infrared OLS
data. The second NGDC product, made with 236 orbits with cloud
screening is shown in Fig. 9. For the global products, full years of data
are used to ensure that there are multiple observations remaining after
filtering out sunlit, moonlit and cloud data. Because fires are so readily
detected by both DMSP and VIIRS, NGDC developed an outlier removal
process tuned to filter out fires and retain areas with electric lighting
(Baugh et al., 2010; Elvidge et al., 2017). One of the major short-
comings of the operational DMSP data collections is signal saturation in

bright urban cores. In part, this is due to the fact that the visible band
gain is gradually turned up as lunar illuminance declines. To produce a
global nighttime lights product free of saturation, NOAA worked with
the Air Force to schedule reduced gain OLS data (Elvidge et al., 1999).
Global nighttime lights products were generated for seven years be-
tween 1996 and 2010 based on the preflight OLS calibration (Hsu et al.,
2015). A sample of this data is shown in Fig. 10. Another shortcoming
of the DMSP data is that its images are blurred, a phenomena termed as
“blurring”, “blooming” or “overglow”. This is caused by scattering in
the atmosphere (Sánchez de Miguel et al., 2019a), and discussed further
in section 2.4.2. Abrahams et al. (2018) demonstrated that this blurring
follows a Gaussian point-spread function, and developed an approach to
deblur DMSP data. Other approaches for reducing and correcting the
“blooming” effect on DMSP data were suggested by Townsend and
Bruce (2010), Hao et al. (2015) and Cao et al. (2019). An additional
limitation of DMSP imagery is that data acquired in different years in
not directly comparable due to differences in atmospheric conditions,
variations in sensor settings and sensor degradation; various ap-
proaches have been suggested to overcome these issues, amongst them,
is the use of Pseudo Invariant Features (PIFs) to normalize DMSP
imagery (Wei et al., 2014).

Fig. 7. Section of the first global map of DMSP nighttime lights, produced by
mosaicking film segments by Woody Sullivan, University of Washington.

Fig. 8. NGDC's first map of DMSP nighttime lights, produced from 29 orbits and
no cloud screening.

Fig. 9. NGDC's second generation DMSP nighttime lights product produced
with cloud-screening from 236 orbits acquired in a six month period in 1995.

Fig. 10. DMSP radiance nighttime lights for St. Louis, Missouri.
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Christopher Elvidge and his team NOAA-NGDC have led the de-
velopment of the various annual products of DMSP/OLS (covering the
years between 1992 and 2013), which have been widely used, and are
freely accessible online athttps://ngdc.noaa.gov/eog/dmsp/
downloadV4composites.html. The two major 1 km global products of
DMSP/OLS include average visible stable lights, and average
lights× percentage, and are further described below (Baugh et al.,
2010), however a host of other products have also been developed with
time from DMSP/OLS data, including Global Radiance Calibrated
Nighttime Lights, global impervious surface area (Elvidge et al., 2007a),
global gas flare time series (Elvidge et al., 2009a), and more. By pro-
viding global time series of night lights, numerous papers have been
published utilizing this unique source to study urbanization, socio-
economic changes and threats to biodiversity (Bennett and Smith,
2017). False color composites of DMSP stable lights from different years
have proven to be an effective way to visualize changes in artificial
lighting and to follow patterns of urbanization, expansion of road net-
works, economic expansion or decline and damages to infrastructure as
the result of armed conflicts (Fig. 11).

2.2.2. Landsat and nightsat
Environmental monitoring of the Earth has been dramatically

boosted by the launch of the first Landsat satellite in 1972, and the
ongoing continuation of Landsat missions (whose entire archives be-
came free to the public in 2009), and other civilian governmental sa-
tellites, offering medium spatial resolutions between 5 and 100m at
various spectral and temporal resolutions (Lauer et al., 1997; Roy et al.,
2014). While Landsat satellites do acquire night-time images, these are
mostly useful for their thermal information, as the optical sensors on-
board the TM and ETM + sensors were not designed for low light levels
prevalent at night-time. However, the OLI sensor onboard Landsat 8,
with its improved radiometric sensitivity, has been shown to be able to
detect night-time lights from very bright areas such as gas flares and
city centers (Levin and Phinn, 2016). Unfortunately, no sensor has been
launched yet which offers operational multispectral monitoring of the
Earth's night lights at medium spatial resolution. Nonetheless, the re-
quirements of radiometric, spectral, spatial and temporal resolutions for
such a sensor (termed NightSat) have been defined in a series of papers
(Elvidge et al., 2007b; c, 2010), and are discussed in section 4.8 of this
review paper. While two panchromatic sensors designed for observing
night lights and offering a spatial resolution of about 300m have been
launched in joint missions of CONAE and NASA (the SAC-C HSTC in
2000, and the SAC-D HSC in 2011; Colomb et al., 2003; Sen et al.,
2006), images from them are hardly available and few papers have
utilized them (but see Levin and Duke, 2012).

2.2.3. Remote sensing of night lights from the International Space Station
2.2.3.1. Night-time astronauts photographs. Astronaut photography from
various NASA missions, including the Space Shuttle missions and the
International Space Station (ISS), have long been used for observing a
variety of environmental phenomena from low Earth orbits (Stefanov
et al., 2017). The database of these photos is extensive, includes both
daytime and nighttime photos, and is freely accessible via the Gateway
of Astronaut Photography of the Earth (https://eol.jsc.nasa.gov/). The
very first human acquired images from the Earth at night that we know
of were the images taken by the astronauts of the Space Shuttle during
Hercules/MSI mission (Simi et al., 1995). For example a picture of
Charlotte, US taken in 1993 was used to find the major sources of light
at night, with the result of identifying vertical signs near the roads
toward the airport that were lit on both sides with lights directed
upwards to illuminate the signs.1 This pioneer and other works were
lost during the pre-internet era.

From 2001 until the present, the crew of the ISS has been taking

images of Earth, space, and activities upon the station using digital
single lens reflex (DSLR) cameras. Their nighttime images are the oldest
multispectral images of the visible wavelengths emitted from the Earth
at night. Most night-time ISS images of Earth and space were taken
either for outreach purposes or for the astronaut's pleasure, offering a
unique perspective on our planet (Fig. 12). Nevertheless, they comprise
a unique and valuable dataset. Although there are technical challenges
associated with radiometric calibration of such images (e.g. accounting
for window extinction), work done at the Complutense University of
Madrid over the last decade proves that calibration of ISS night light
images is possible (Sánchez de Miguel et al., 2013a, 2013b, 2018;
Sánchez de Miguel, 2015). One of the main problems of the astronaut
photography is the motion blur produced by the orbital movement of
the ISS. To solve this problem, astronaut Donald Pettit created a
handmade device to compensate the movement of the ISS on the mis-
sion 006 (Pettit, 2009). Later, ESA created a special tripod called
Nightpod (Sabbatini, 2014) used from the ISS030 to the ISS040 at least
(precise date of decommissioning is unknown) (Fig. 13). While DSLR
cameras can be modified and have their IR-filter removed, so as to
measure incoming light also in the infrared band (which is useful both
for astrophotography purposes and for monitoring artificial lights
sources which emit light in the near infra-red; Andreić and Andreić,
2010), the vast majority of astronaut night-time photography of the
Earth, was limited to the visible range alone.

Fig. 11. False color composites of DMSP stable lights version 4, showing: (a)
decrease in lights following the war in Syria; (b) expansion of roads in the
United Arab Emirates (UAE); (c) the lit border between India and Pakistan; (d)
urbanization in China; (e) economic decline in Ukraine and Moldova following
the collapse of the Soviet Union; (f) temporal changes of gas flares from oil
wells in Nigeria. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

1 Private communication. William Howard, 12 Aug 2015.
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The greatest advantages of night-time astronaut photos over other
sources, are in their moderate spatial resolution (often between 5 and
200m), and in being the first to provide color space borne night-time

images (Kyba et al., 2015a; ,Sánchez de Miguel et al., 2019b; Fig. 14),
of hundreds of cities globally, albeit without any ordered acquisition
program (Fig. 13). Various studies have shown the value of those
photos for studying socio-economic properties of cities at finer spatial
resolutions than available by the DMSP/OLS (e.g., Levin and Duke,
2012; Kotarba and Aleksandrowicz, 2016; Kuffer et al., 2018). Cali-
brated DSLR images from the ISS have been used for epidemiological
studies (Garcia-Saenz et al., 2018), energy use and lighting technology
studies (Kyba et al., 2015a,b), environmental impact studies (Pauwels
et al., 2019) and ecological studies (Mazor et al., 2013). In some cases,
researchers have used ISS images without using, or at least without
explaining, a radiometric calibration; however, Sánchez de Miguel et al.
(2013b) have developed a method to perform an absolute photometric
calibration of ISS photos. Two companies currently provide calibration
on demand of ISS images: www.noktosat.com and Eurosens. The “Cities
at Night” project team has occasionally produced radiance calibrated
images for scientific collaborations, and a project based at the Uni-
versity of Exeter is currently working on a data processing pipeline to
produce a public database of calibrated images. The first mosaic of high
resolution ISS images was made by Schmidt (2015), covering the ad-
ministrative boundaries of the country of the Netherlands, and low

resolution mosaics were made using time lapses by Sánchez de Miguel
and Zamorano (2012), covering large parts of the US, Europe and
middle-east.

Fig. 12. Night lights of the Levant, Astronaut photograph ISS053-E−50422,
taken on 28/9/2017, 00:10:11 GMT. At the bottom of the image the densely
populated Delta of the Nile can be seen, while the center of the image covers
Israel, the West Bank, Jordan and Lebanon. The consequences of the conflict in
Syria are hinted in this photo, where Syria is mostly dark, in contrast with lit
towns and cities in Turkey to the north.

Fig. 13. The number of night-time ISS photos identified by the Cities at Night crowdsourcing project (http://citiesatnight.org/index.php/maps/). Note that in several
ISS missions many night-time photos were taken, while in other missions hardly any night-time photos were taken. The data shown does not include the recent three
years.
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2.2.3.2. Citizen science: cities at night. Currently, the astronaut
photographs from the ISS are the largest online multispectral archive
of night-time images of the Earth (https://eol.jsc.nasa.gov), with a
unique potential for light pollution studies and to track changes in
lighting technologies. However, these images lack precise location and
georeferencing, and in addition, all the images of the Earth at night are
mixed with images of astronomical and meteorological images, making
it difficult to identify night-time images from the ISS, as they are often
not tagged adequately. A citizen science program called “Cities at
Night” was therefore launched with its major aim to provide an
improved catalogue of night-time images from the ISS (Sánchez de
Miguel et al., 2014). The project has three steps, classification/tagging
to find the cities images called “Dark skies”, location of the cities called
“Lost at Night” and georeferencing called “Night cities”. Thanks to the
collaboration of more than 20,000 volunteers, the project has been able
to tag more than 190,000 nocturnal images of mid and high spatial
resolution (resolution from 5 to 200m). The project was also able to
locate more than 3000 images of cities with at least one control point
and 700 images of cities with enough control points to be georeferenced
(Sánchez de Miguel, 2015). A fourth app had been created as a gamified
version of “Dark Skies” called “Night Knights” with all the unprocessed
answers of the project available from the beginning, but also some
products (a large processed tagged catalogue of images with low precise

location and smaller sample precise located images) have been released
and are available of the web page of the project (Sánchez de Miguel
et al., 2018). The images located by the volunteers and the researchers
have already been used on several papers concerning light pollution
monitoring (Sánchez de Miguel. 2015), epidemiological studies
(Garcia-Saenz et al., 2018) and ecological studies (Pauwels et al.,
2019). Several groups have used the “Cities at Night” as training sample
for computer vision proposes, including Minh Hieu (2016), Calegari
et al. (2018) and Sadler (2018). Based on this catalogue it can be seen
that ISS night-time photos are not representing all parts of the world,
and are more common in the urban areas of North America, Europe, the
Middle East, eastern China and Japan (Fig. 15a).

2.2.3.3. Additional night-time sensors on the ISS. Another source of
images of the Earth at night from the ISS is dedicated
instrumentation on the ISS. For example, the experiment LRO
(Lightning and Sprites Observation) (Farges and Blanc, 2016) was
able to produce around at least 100 night-time images of urban areas
(see Figure S1 in Farges and Blanc, 2016); such imagery constituted the
largest sample of medium spatial resolution (at about 400m) images of
Earth at night taken before the ISS026 mission. However, these images
include sensitivity in the infrared regime, so they are difficult to
compare to other images. Other instruments of similar science cases
as ASIN recently arrived to the ISS might also be able to acquire some
light pollution measurements. Since 2011, the Japanese Space Agency
(JAXA) has been using a series of highly sensitive cameras on the ISS for
the study of transient luminous event (TLEs) such as lightning of sprites,
or other projects (Yair et al., 2013). In the first videos, the main goal
was the detection of TLEs, but light emissions from the Earth were also
obvious. The second generation of these cameras was installed in 2016,
and there is currently an ongoing collaboration between the University
of Exeter and JAXA to provide radiometric calibration of this data.

2.2.4. VIIRS/DNB
The two MODIS sensors, onboard the Terra and Aqua satellites

(launched in 1999 and 2002, respectively), with their 36 spectral
bands, have led to the development of dozens of global products at
various spatial and temporal resolutions, for monitoring vegetation,
snow, fires, surface temperature etc. (Justice et al., 2002). Providing
continuity to MODIS, the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor onboard the Suomi NPP (Murphy et al., 2001) was
launched in October 2011, and has been fitted with a specific pan-
chromatic sensor designed for measuring night time lights – the Day
and Night Band (DNB) (Miller et al., 2012, 2013). The VIIRS/DNB
presents a significant improvement over the DMSP/OLS sensor, in data
availability (with daily images provided for free), in its higher spatial
resolution (740m, instead of about 3 km for the DMSP), in providing
radiometrically calibrated data which is sensitive to lower light levels
and does not saturate in urban areas, and in the reduced overglow (Liao
et al., 2013; Elvidge et al., 2013a, 2017, Fig. 12). Therefore, global
nighttime lights product generation has switched over from DMSP to
VIIRS data in 2012, with the last annual products of DMSP produced for
the year 2013 (Elvidge et al., 2017). The first products made available
based on VIIRS/DNB data provided global monthly composites of night
lights, starting in April 2012 (available athttps://eogdata.mines.edu/
download_dnb_composites.html), which have already allowed to ad-
vance our understanding on various topics, such as seasonal changes in
night-time brightness (Levin, 2017), and detecting the negative impacts
of military conflicts (Li et al., 2017). Raw VIIRS/DNB imagery are also
freely available for downloading at a nightly basis (in contrast with
DMSP/OLS data), and this has enabled to gain insights on the aniso-
tropic characteristics of artificial lights (Li et al., 2019b). A novel pro-
duct released in 2019, is NASA's Black Marble nighttime lights product
suite (VNP46A1), at a spatial resolution of 500m (Román et al., 2018).
This product provides cloud-free, atmospheric-, terrain-, vegetation-,
snow-, lunar-, and stray light-corrected radiances for estimating daily

Fig. 14. Berlin at day and night: (a) Landsat 8 OLI, April 2017, true color day-
time composite; (b) Astronaut photography from the International Space
Station, ISS047-E−29989, March 2016; (c) Luojia01 night-time image, August
25th, 2018; (d) VIIRS/DNB monthly composite, October 2016. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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nighttime lights (NTL) (Román et al., 2018), thus enabling fine tracking
of conflict affected displaced populations, damages to the electricity
grid following disasters, and identification of events when and where
people congregate (Román and Stokes, 2015).

2.2.5. Commercial satellites and cubesats
A new phase in Earth observation from space ushered in 1999 with

the launch of Ikonos – the world's first high spatial resolution com-
mercial satellite, and the first to offer a 1m panchromatic band from
space (Belward and Skøien, 2015). Since then additional companies
have joined in, and at present the state of the art Earth observation
commercial satellites are Digital Globe's WorldView 3 and 4 (launched
in 2014 and 2016, respectively), offering a panchromatic band of
31 cm, and 28 additional spectral bands at various spatial resolutions of
1.24m, 3.7m and 30m. The first commercial satellite with high spatial
resolution night-time capabilities (at 0.7 m), was the Israeli EROS-B
satellite, which was launched in 2006, but only started offering night-
time acquisition publicly in 2013 (Levin et al., 2014). The first com-
mercial satellite to offer multispectral (red, green and blue) night-time
lights images (at 0.92m) was launched in 2017: the Chinese JL1-3B
(Jilin-1) satellite (Zheng et al., 2018). Such high spatial resolution sa-
tellites enable to study urban land use in finer details (as in Katz and
Levin, 2016) and possibly to start and classify lighting sources.

The current revolution in space borne remote sensing is that of using

small satellite missions (Sandau, 2010). The first company offering
global daily multispectral high spatial resolution (3m) coverage of the
entire Earth is Planet Labs, with its constellation of about 150 nano
satellites (Strauss, 2017). In coming years, researchers may benefit from
similar cubesats offering night-time capabilities (such as NITEsat, pre-
sented in Walczak et al., 2017). Various cubesats have been launched in
recent years, such as the CUbesat MULtispectral Observing System
(CUMULOS), and the multispectral AeroCube, demonstrating the cap-
abilities these new sensors provide for night time imaging (Pack and
Hardy, 2016; Pack et al., 2017, 2018, 2019). An example of a recently
launched cubesat which publicly offers global images of many regions
on Earth at night is LJ1-01 (Luojia-1). This satellite, Luojia-1, was built
by Wuhan University and was launched in June 2018, providing night-
time images at 130m (Fig. 14; Jiang et al., 2018; Li et al., 2018b,
2019a,b,c; images can be downloaded freely from http://59.175.109.
173:8888/app/login_en.html), with each image covering about
250× 250 km. So far, the acquired Luojia-1 images (n=8675, as of
May 2019) provide a complete and frequent coverage of China, as well
as some additional areas such as south-east Asia and Europe. Recent
studies have shown that Luojia-1 images are capable to accurately map
urban extent and to monitor the construction of infrastructure at a
moderate spatial resolution (Li et al., 2018b, 2019a,b,c). Additional
night-time sensors will also become available in coming years, such as
TEMPO, a geostationary satellite which will offer two images per night

Fig. 15. (a) The number of night-time ISS photos identified by the Cities at Night crowdsourcing project (http://citiesatnight.org/index.php/maps/), within
100× 100 km grid cells . (b) The number of all night-time Luojia-1 images acquired so far (n= 8675, May 2019), as received from Wuhan University, with
250× 250 km grid cells.
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over North America (Zoogman et al., 2017).

2.3. Airborne remote sensing of night lights

Topographic mapping using daytime aerial photos started back in
World War I (Collier, 1994). The first aerial night-time photos we are
aware of were taken during World War II, showing anti-aircraft
searchlights, bombs exploding and incendiary fires (Fig. 16). In addi-
tion to space based observations, remote observation of night lights can
be accomplished from aircraft, drone, and balloon-based platforms.
However, proper imaging of city lights from aerial platforms began
much later. Such platforms allow higher spatial resolutions, and do not
require the intensive testing for use in space. While there were some
efforts to map urban night-time lights at fine spatial resolutions using
airborne sensors such as the hyperspectral AVIRIS (over Las Vegas;
Kruse and Elvidge, 2011), a panchromatic camera (over Berlin, at 1 m;
Kuechly et al., 2012), or using a multispectral camera (at 10 cm over
Birmingham or 1m over Ottawa; Hale et al., 2013; Xu et al., 2018),
dedicated aerial campaigns cannot provide continuous global mon-
itoring of urban areas. Another flight over Berlin with a multispectral
camera was performed in 2014, but the radiometric calibration of the
data is not yet complete (Kyba et al., 2015a, Sánchez de Miguel, 2015).
Nighttime imagery from aircraft has been frequently taken, but less
frequently published. For example, flights over London (Royé, 2018),
Amsterdam, Friesland, and Deventer (http://nachtscan.nl/) have pro-
duced night imagery without leading to research publications. Aerial
data from the state of Upper Austria is available online (https://doris.
ooe.gv.at/themen/umwelt/lichtverschmutzung.aspx), but a report
about the flight is available only in German (Ruhtz et al., 2015). In
some cases, night light images have been acquired chiefly for artistic
purposes (Laforet and Pettit, 2015), while in others, there is not suffi-
cient information to allow radiometric calibration.

Few hyperspectral flights have been taken at night-time, perhaps
because the instrumentation is much more complex. However, there
have been a few cases, for example over Los Angeles (Stark et al., 2011)
and Las Vegas (Metcalf, 2012), the ESA-Desirex and CM flights over
Madrid performed by the Instituto Nacional de Técnica Aerospacial in

2008 (Moreno Burgos et al., 2010, Sobrino et al., 2009, Sánchez de
Miguel, 2015), and the flights over Tarragona-Reus-La Bisbal de Falset
(Cataluña, Spain) in 2009 (Tardá et al., 2011). The main limitation of
these datasets is the low signal to noise that hyperspectral instruments
produce in some areas of the city. Although the spatial resolution is
limited compared to photography, it can reach up to 5m. The most
promising aspect of hyperspectral flights is the potential to un-
ambiguously identify the light source technology. This has been de-
monstrated, for example, by Metcalf (2012).

Some experimental projects have made observations using drones
(Sánchez de Miguel, 2015; Fiorentin et al., 2018; Regan, 2018), and
new studies are starting to explore the potential of acquiring data on
night time lights from drones, given the flexibility in deploying them at
different times during the night, the ability to acquire multi-angular
images (Kong et al., 2019), and their potential for providing some near-
sensing validation to space borne measurements. To some extent, the
limited use of drones for remote sensing of night lights may be due to
regulations restricting the use of drones at night over urban areas.
However, the potential of drones is clearly seen by their use in the film
industry, for example in TV productions like “España a ras de cielo”
(RTVE, 2013; http://www.rtve.es/alacarta/videos/espana-a-ras-de-
cielo/espana-ras-cielo-espana-noche/4692661/) and “Bron/Broen”
(SVT, 2011). Balloons offer a more flexible platform for night imagery,
as the regulations are not as strict as for drones. Pioneering experiments
were performed by the Daedalus team (Ocaña et al., 2016), where they
combined detection of meteors with observation of night light emis-
sions. These tests were mainly performed as technological demonstra-
tions. The Far Horizons Project of the Adler planetarium of Chicago has
also made several balloon flights. The purpose of these was to test the
camera of a cubesat that will be launched in the future to monitor the
conversion of street lamps in Chicago from sodium vapor lamps to
white LEDs (Walczak et al., 2017).

2.4. Ground based measurements of night sky brightness

A major gap in the remote sensing of night lights, stretching back to
the time that DMSP/OLS data first became available, has been the lack
of field data to “ground truth” the observations. Most optical remote
sensing is mainly obtained done during the day with very different il-
lumination conditions, as the only light source is the Sun, and atmo-
spheric corrections are performed to derive the surface reflectance of
objects, which can be ground truthed using field or lab measurements
using a spectrometer (Vermote et al., 1997). At night-time, we are not
interested in surface reflectance but in the emission of artificial lights;
however, there are many relevant light sources in the visible band that
can be equally important under some conditions such as city lights, gas
flares, volcanos, lightning, moonlight, starlights or airglow. In addition,
the dynamic range of the phenomena observed goes from 0.01 nW/
cm2/sr to more than 1000 nW/cm2/sr (for sensors with higher spatial
resolutions sensors than VIIRS/DNB, the radiance from upward directed
sources will be far larger). The factors that make observing night lights
challenging (see Section 4) also complicate acquiring ground reference
data. For example, changing lights and changing atmospheric factors
such as aerosols and water vapor mean that even aerial data acquired
several hours before or after a satellite overpass cannot be directly
compared. One indirect solution to the problem has been to compare
ground based night sky brightness measurements to either the light
observed from space directly, or else to models of diffuse sky brightness
based on night lights data (e.g., Wallner and Kocifaj, 2019).

The brightening of the night sky by artificial light emissions is re-
ferred to as “skyglow”, and is one of the most familiar forms of light
pollution (Rosebrugh, 1935; Riegel, 1973; Kyba and Hölker, 2013;
Aubé, 2015). Generally speaking, the artificially illuminated clear sky is
brightest in the direction of nearby light sources, and darkest either at
zenith or slightly displaced from zenith in the direction of undeveloped
areas (Fig. 17). The main source of skyglow is light emitted towards the

Fig. 16. A vertical aerial photograph taken during a raid on Berlin on the night
of 2–3 September 1941. The broad wavy lines are the tracks of German
searchlights and anti-aircraft fire. Also illuminated by the flash-bomb in the
lower half of the photograph are the Friedrichshain gardens and sports stadium,
St Georgs Kirchhof and Balten Platz.
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horizon, because the path length to space is longest in this direction,
greatly raising the scattering probability (Falchi et al., 2011). It is im-
portant to note that ground-based remote sensing measurements of
night lights are usually done towards nadir, so these emissions are not
generally imaged during night light observations (however see Kyba
et al., 2013b). Observations of night sky brightness therefore comple-
ment remote sensing of night lights in two ways: first, they can be used
as a ground truth, and second, they provide indirect information about
light emissions at angles that are not directly imaged from space.

The influence of cloud cover on the surface light environment is
important for understanding the ecological impacts of skyglow (Rich
and Longcore, 2006; Kyba et al., 2011; Kyba and Hölker, 2013). In
areas with little or no artificial lighting, clouds darken the night sky,
while in areas with artificial lighting they make it considerably
brighter. Some locations can experience both at once, in different
viewing directions (Fig. 18, Jechow et al., 2018a). Atmospheric scat-
tering is biased towards blue light on clear nights (Kocifaj et al., 2019),
but clouds scatter at all wavelengths. For this reason, the artificially
illuminated clear night sky is far bluer than the overcast night sky, or in
other words the “amplification” of light caused by clouds is far stronger
in the red (Kyba et al., 2012; Aubé et al., 2016). At the moment, un-
derstanding of the light environment on overcast and partly cloudy
nights remains poor (Jechow et al., 2018a). While local models exist
(e.g. Solano Lamphar and Kocifaj, 2016), global models of skyglow on
overcast nights are not available, relatively few observations of cloudy
sky radiance have been published, and local models of skyglow on
overcast nights have not been validated with experimental data.

2.4.1. Current status of ground based observations of the artificially
illuminated night sky

Hänel et al. (2018) recently reviewed the commonly used techni-
ques for observing the night sky brightness and skyglow, so only a brief
summary is provided here. There are three basic techniques: point
observations with broadband radiometers (most common), multi-
spectral all-sky photographic observations, and point observations with
spectrometers (most rare). Of the three techniques, Hänel et al. (2018)
concluded that all sky imaging techniques “provide the best relation
between ease-of-use and wealth of obtainable information on the night
sky” (see e.g. Jechow et al., 2017a,b, 2019a,b). However, Hänel et al.
noted that a combination of the different techniques is ideal, as point
observations can be used for long-term tracking, while being occa-
sionally supplemented with all-sky photography. Note that both point
observations taken in multiple directions (Zamorano et al., 2013) and
image mosaicking (Duriscoe et al., 2007) can also be used to acquire
information about the full sky dome.

In the past, night sky brightness observations were mainly per-
formed by professional observatories and institutionally affiliated sci-
entists (e.g. Walker, 1970; Zhang et al., 2015a). The recently in-
troduction of low-cost night light radiometers, starting with the Sky
Quality Meter (SQM), has greatly expanded the number of surveyed
sites, and enabled the active participation of citizen scientists. The SQM
instrument enables monitoring night-time brightness in a rapid fashion,

either along transects while walking, biking (Katz and Levin, 2016) or
attached to a car (Xu et al., 2018), or temporally, allowing to monitor
temporal changes in night sky brightness (Pun et al., 2014; den Outer
et al., 2011). In addition to instrumental observations, citizen scientists
are able to make visual observations of night sky brightness by ex-
amining stellar visibility. The most widespread of these projects is
“Globe at Night” (Walker et al., 2008), which has been running since
2006. While visual observations have lower precision than instrumental
observations (Kyba et al., 2013a), they have the advantage of correctly
accounting for spectral changes in night sky brightness due to changing
lighting technology (Sánchez de Miguel et al., 2017, Kyba et al., 2018).
Other instruments and methodologies such as the TESS-W photometers
(which is growing to provide a global monitoring network, with freely
available data via http://tess.stars4all.eu/; Zamorano et al., 2019), the
Sky Quality Camera software, and the Loss of the Night app are further
discussed by Hänel et al. (2018) and by Jechow et al. (2019b). The Sky
Quality Camera software allows one to use a DSLR camera (which has
been properly calibrated) with a fish-eye lens, to measure hemi-
spherical night-time brightness (Jechow et al., 2018b, 2019a,b), to es-
timate cloud cover, and to create night sky brightness images with or
without bright stars and the Milky Way (Fig. 18).

2.4.2. Direct comparison of night sky brightness observations to light
observed from space

In many space-based night light images, it is possible to see a fuzzy
haze that surrounds cities, extending into areas which are unlikely to
contain lights (such as forests or offshore regions). This diffuse light in
DMSP/OLS and VIIRS/DNB images has often been referred to as
“blooming” (e.g. Amaral et al., 2005; Ou et al., 2015), likely due to its
visual similarity to the phenomena of CCD blooming in digital photo-
graphy. However, a recent study suggests that rather than being an
instrumental error, it is likely that the instruments are actually correctly
observing light scattered by the atmosphere, or in some cases light
scattered by the atmosphere and then reflected from the ground.

When Kyba et al. (2013a) found that citizen science observations of
skyglow were highly correlated with DMSP observations, they hy-
pothesized that this correlation arises because the point spread function
of the DMSP acts as a de facto approximate atmospheric radiative
transfer model. A similar correlation between DMSP/OLS and night sky
brightness was verified on a smaller spatial scale by Zamorano et al.
(2016). However, using an intensive night sky brightness survey around
the city of Madrid, Sánchez de Miguel (2015) demonstrated a strong
correlation between diffuse light in space-based images from instru-
ments with different intrinsic spatial resolutions. By comparing SQM
ground based measurements using SQMs, with VIIRS/DNB imagery and
ISS astronaut photos, Sánchez de Miguel et al. (2019a) have recently
demonstrated that the diffuse light observed around cities is not an
instrumental error, but is actually a direct observation of the compo-
nent of urban skyglow that scatters upward, i.e., artificial sky bright-
ness. Sánchez de Miguel et al. (2019a) also mentioned additional
components of diffuse light in night-time imagery which remain to be
quantified, such as albedo, natural airglow, sea fog, and real blooming.

2.4.3. Comparison of night sky brightness observations to radiative transfer
models

Observations of night sky brightness can in principle be used to
extract information about light emissions that are not available through
direct observations. For example, there is considerable debate about
what fraction of light from cities is emitted towards the horizon
(Luginbuhl et al., 2009), which is difficult or impossible to directly
observe from space (Kyba et al., 2013b), but may be inferred from night
sky brightness data (Kocifaj, 2017). Falchi et al. (2016) produced
models of night sky brightness under three different assumptions of the
upward angular distribution function: Lambertian, emissions peaking at
30°, and strong emissions towards the horizon. Because light is additive,
it is possible to fit for the linear combination of models that most closely

Fig. 17. All-sky luminance map based on a photograph taken 15 km outside of
Berlin's city limits (30 km from the city center). Photograph and image pro-
cessing by Andreas Jechow. The dashed line shows 40° from zenith (equiva-
lently 50° elevation). A natural starlit sky has a luminance near 0.2–0.3 mcd/m2

(Hänel et al., 2018).
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Fig. 18. Night-time hemispheric photo at Emily Bay, in the remote Norfolk Island, Australia (April 6th, 2018, 21:52 local time). The upper image shows the raw
image, while the bottom image presents sky brightness as calculated by the Sky Quality Camera software. The bright light at the east (azimuth 112, left side of the
image) is the moon rising over the horizon. Notice the difference between bright clouds (top-right side of the image) above artificial light sources, and the dark clouds
(top-left side of the image) above dark areas. Photo taken by Noam Levin.
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matches the data. In the case of Falchi et al. (2016), the data were SQM
observations at zenith from a number of academically affiliated and
citizen scientists, notably including Ribas (2016), Zamorano et al.
(2016), and Globe at Night. A similar procedure could in principle be
used with all-sky camera data.

The conditions under which skyglow models are accurate remains
an open question. The global model of Falchi et al. (2016) does not
consider shadowing by mountains, for example, so it is likely that errors
are larger in mountainous regions. Ges et al. (2018) compared the
predictions of Falchi et al. (2016) to SQM observations made along a
transect from Barcelona out to sea. They found extremely good agree-
ment with the model under atmospheric conditions similar to those
upon which the model is based, but disagreement of up to 50% on a
night with better optical conditions. In particular, they found that on a
night with low aerosol load, the sky was darker than predicted near
Barcelona, while far out to sea the sky was brighter than predicted.

There is a need for further comparison of models to observations,
and direct comparisons of models to each other (e.g. Aubé and Kocifaj,
2012). As skyglow models are used to make lighting policy re-
commendations (e.g. Aubé et al., 2018), it is important to verify that
their predictions are correct. Bará (2017) recently examined how dense
observations should be in order to provide reliable data on zenith night
sky brightness. He concluded that observations on a 1 km grid provide
sufficient resolution for interpolation between the points to accurately
represent night sky brightness. A major challenge for comparing models
to observations occurs in areas where natural light sources such as
airglow and stars are brighter than the artificial component of night sky
brightness (Bará et al., 2015). Finally, the shifting spectrum of skyglow
due to the change to LED technology poses a challenge for both ob-
servations and modeling, and is discussed in detail in section 4.5.

3. Applications of remote sensing of night lights

In this section, we aim to provide a brief overview of some of the
most common applications of night lights data made using the existing
and historical sensors. The aim is to demonstrate the breadth of existing
studies, and to refer the reader to historical, key, and review papers
about each topic. Readers should understand that for each topic, a
considerably larger base of scholarship exists, and that not all appli-
cations of night lights are reviewed here. For example, we do not review
studies on whether lighting benefits public safety (and/or the percep-
tion of safety), and on whether there is correspondence between higher
night-time brightness, and decreased crime rates and car accidents
(Painter, 1996; Marchant, 2004, 2017; Peña-García et al., 2015;
Steinbach et al., 2015). Where relevant, we highlight some of the main
challenges in the applications, and how these may be addressed with
future sensors. These challenges and opportunities are then addressed
in more detail in the following section.

3.1. Mapping urbanization processes

Our world has been rapidly urbanizing in recent decades. As of
2014, more than 54% of the global population live in urban areas, and
by 2100, 70%–90% of the world's population, which is projected to
increase by another three billion, will live in urban regions (United
Nations, 2014). Due to broad impacts of the concentrated human ac-
tivities and associated built environment, cities are now a major factor
shaping the Earth system and are considered agents of global change
(Mills, 2010). Cities worldwide now occupy only about 2% of the global
land surface (Akbari et al., 2009), but produce more than 90% of the
world gross domestic production (GDP) (Gutman, 2007), consuming
more than 70% of the available energy (Nakićenović, 2012), and gen-
erating more than 71% of anthropogenic greenhouse gas emissions
(Hoornweg et al., 2011). There is therefore an urgent need for timely
and reliable information on the extent of urban areas to support sus-
tainable urban development and management (Ban et al., 2015). Recent

studies have highlighted the utility of NTL time-series data, alongside
daytime land sensors and population censuses to help illuminate im-
portant aspects about the character of urbanization, and to identify
growing informal settlements with inadequate infrastructure (Stokes
and Seto 2019). Both capabilities are particularly useful for monitoring
progress towards two of the United Nations Sustainable Development
Goals under the Agenda 2030: Goal 7.1 (ensure universal access to
affordable, reliable and modern energy services) and Goal 11.1 (ensure
access for all to adequate, safe and affordable housing and basic ser-
vices and upgrade slums).

Due to the fact that cities are brightly lit during the night, urban
areas can be easily identified in nighttime light remote sensing data.
Indeed, one of the first uses of NTL data from DMSP/OLS was to de-
lineate urban extents, and DMSP/OLS data is one of the earliest datasets
available for mapping our urbanizing planet (Zhu et al., 2019), and
have been shown as useful for tracking electrification rates also in rural
areas (Min et al., 2013; Min and Gaba, 2014). The panchromatic nature
of DMSP/OLS NTL data first encouraged researchers to find an optimal
threshold to separate urban areas from their backgrounds (e.g. Imhoff
et al., 1997; Small et al., 2005). However, it turned out that it is not
straightforward to find a single optimal threshold that can accurately
delineate both large cities and small cities simultaneously (Zhou et al.,
2015). While a larger threshold might be good for delineating large
cities but tends to overlook small towns, a smaller threshold can bring
back small towns but often leads to overestimating the extents of large
cities. Such a situation becomes even more complicated due to the
overglow effect in DMSP/OLS, and due to the use of different types of
lighting together with different street lighting standards in different
countries (Small, 2005). Optimal thresholds vary across space and a
scheme of dynamic thresholds is required for large-scale and temporal
dynamic urban extent mapping (Zhou et al., 2014; Elvidge et al. 1997b,
2009b; Imhoff et al., 1997; Small et al., 2005; Cao et al., 2009).

Due to the saturation of DMSP/OLS within urban areas, these
images lack textural information, making it very hard to map urban
patterns within cities. However, with the improved radiometric per-
formance of VIIRS/DNB, new methods are being developed, demon-
strating for example the ability to map local urban centers (Chen et al.,
2017). The newer VIIRS/DNB nighttime light data is also better than
DMSP/OLS data in mapping urban extents (Shi et al., 2014), and at-
tention has been given to determine dynamic thresholds for mapping
using ancillary information (He et al., 2006; Cao et al., 2009; Zhou
et al., 2014; Liu et al., 2015). Recently, researchers have started to look
into the potential of integrating DMSP/OLS with the Moderate Re-
solution Imaging Spectroradiometer (MODIS) (Guo et al., 2015; Lu and
Weng, 2002; Zhang et al., 2013; Ouyang et al., 2019) or Landsat at a
finer spatial resolution (Zhang et al., 2015b; Goldblatt et al., 2018), to
improve the accuracy and performance of regional and global urban
extent mapping, developing spectral indices such as the vegetation
adjusted NTL urban index (VANUI) (Zhang et al., 2013).

The long historical archive of DMSP/OLS NTL data not only allows
static urban extent mapping but also has high potential in character-
izing urban extent dynamics at regional and global scales (Small and
Elvidge, 2013). For example, Yi et al. (2014) utilized multitemporal
DMSP/OLS NTL annual composites to study urbanization dynamics in
Northeast China, Liu et al. (2012) and Ma et al. (2012, 2015) explored
urbanization in all of China, Álvarez-Berríos et al. (2013) examined
South America, Pandey et al. (2013) examined India, Zhang and Seto
(2011) examined China, India, Japan and the conterminous United
States, Castrence et al. (2014) studied Hanoi, Vietnam, and Zhang et al.
(2016) did this for the entire globe. In a recent paper, Zhou et al. (2018)
developed a new method to generate temporally and spatially con-
sistent global urban mapping, finding that global urban area has in-
creased from 0.23% in 1992 to 0.53% in 2013.
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3.2. Estimating GDP and mapping poverty

The connection between artificial lighting and urban areas de-
scribed above has motivated many researchers to examine the possi-
bility of using night lights data as an indicator of economic activity.
Night-time light has been found to be positively correlated with Gross
Domestic Product (GDP) or Gross Regional Product (GRP) at different
spatial scales (Elvidge et al., 1997a,b; Forbes, 2013; Li et al., 2013a).
However, there are also considerable differences in per capita light
emissions observed for countries with similar GDP (e.g. Henderson
et al., 2012; Kyba et al., 2017; Levin and Zhang, 2017, Fig. 19). The
strength of incorporating night lights data into economic analyses is
therefore in: (1) estimating GDP at finer levels of spatial resolution than
are available through official statistics, (2) estimating GDP change (as

opposed to levels) at high temporal frequency (e.g., in Bennie et al.,
2014a,b, Fig. 20), and (3) estimating GDP in areas with poor or no
reporting (Henderson et al., 2012).

An example of the first point above is disaggregating National GDP
data to spatial grids. This was first carried out to produce 5 km re-
solution GDP map for 11 European Union countries and the United
States (Doll et al., 2006), and it was further used, supported by ancillary
data including a population density map (Landscan), to produce a
global GDP map at 1 km resolution, showing that Singapore had the
highest GDP density (Ghosh et al., 2010). Similarly, night-time lights
can be used as a proxy of GDP for estimating wealth, allowing regional
economic phenomenon such as inequality (Elvidge et al., 2012; Xu
et al., 2015) and poverty to be mapped (Elvidge et al., 2009b; Wang
et al., 2012; Yu et al., 2015; Jean et al., 2016). Henderson et al. (2016)

Fig. 19. Mean VIIRS radiance values in July 2014 at
the country level (averaging all cities within a
country), as a function of national GDP per capita.
Based on data from Levin and Zhang (2017). Note
that GDP on its own is not enough to explain night-
time brightness differences of urban areas between
countries. Additional variables include albedo, whe-
ther countries have natural gas and oil resources, and
lighting standards, among other factors.

Fig. 20. Temporal changes in monthly VIIRS night-
time brightness, demonstrating various patterns
(each of the sites was normalized between its own
minimum and maximum values). Aleppo, Syria:
dramatic decrease in night-time lights due to the war
in Syria. El Zaatari refugee camp, Jordan: influx of
refugees from Syria makes this refugee camp one of
the largest cities in Jordan. Dubai, UAE: A global city
and a business hub in the Middle East, with a
growing economy. San Juan, Puerto Rico: Hurricane
Maria (September 20th, 2017) led to power outages
throughout Puerto Rico. Caracas, Venezuela: In 2014
Venezuela entered an economic recession, with a
decrease in its GDP, evident in a decrease of night
lights in its capital city. Juliaca, Peru: A seasonal
pattern is evident in night-time lights, commonly
attributed to seasonal changes in albedo related to
vegetation and snow cover.
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showed that physical geography (such as climate, biomes, topography,
etc.) has a strong influence on the spatial distribution of economic ac-
tivity, however, that there are differences between developed and de-
veloping countries in the relative importance of agriculture and trade
variables, to explain spatial variability in night-time lights.

An example of an application of the third point above is in cor-
recting the statistical GDP or GDP growth rate data for developing
countries. This is based on econometric models which regard the real
GDP (or GDP growth rate) as a linear combination of statistical GDP (or
GDP growth rate) and estimated GDP (or GDP growth rate) derived
from night-time light images (Chen and Nordhaus, 2011; Henderson
et al. 2011, 2012). Based on this framework, economists have con-
cluded for example that China's real GDP growth rate is higher that the
values from official statistics (Clark et al., 2017).

3.3. Monitoring disasters

Disasters can affect night light emissions through damage to and
interruption of electric utility services, and related power outages can
be deteceted from space using night-time lights (Elvidge et al., 1998;
Aubrecht et al., 2009). For example, tropical storms and hurricanes,
heavy rains that cause flash or longer-term basin-wide flooding, da-
maging straight-line winds or tornadoes, widespread ice storms, fires,
and earthquakes, frequently interrupt utility services for varying
lengths of time. Outages can also occur from poorly maintained or
damaged infrastructure, industrial accidents, or regional conflicts (see
section 3.4). Disruptions can be on the order of hours for small, isolated
events, to days, weeks, or even months, for particularly strong or long-
lasting impacts such as those from major hurricanes (Román et al.,
2018, 2019, Fig. 20) or earthquakes (Kohiyama et al., 2004). For me-
teorological events, lingering cloud cover can impact the ability to re-
liably detect changes following natural disasters (Zhao et al., 2018).
Therefore, monitoring of nighttime lights is particularly well-suited to
assessment of impacts from major events over longer-time scales, or for
non-meteorological events (e.g. failed infrastructure, earthquakes)
where cloud cover may be less prevalent.

Gillespie et al. (2014) demonstrated the use of DMSP/OLS annual to
monitor the damage and recovery of areas affected by the December
2004 earthquake and the tsunami which followed it, in Sumatra, In-
donesia. Such applications have expanded with the advantages of
VIIRS/DNB night-time imagery. VIIRS/DNB has been used to capture
power outage and recovery from severe storms, for example. False color
composites of pre- and post-event lights were used by Department of
Defense and other partners in their response to Hurricane Sandy
(Molthan and Jedlovec, 2013). Cao et al. (2013) used comparisons of
pre- and post-event emissions to identify loss and recovery of nighttime
lights in Washington D.C. area from a derecho event (a wide-spread
straight-line wind event), as well as following Hurricane Sandy, when
Department of Energy utility reports were used as validation. Cole et al.
(2017) combined nighttime light information, population data, and
utility information to model likely future outages and affected popu-
lations, and documented outages and recovery following Hurricane
Sandy in the northeastern states. Miller et al. (2018) used a long-term
pre-event nighttime light composite and cloud-free scenes following
Hurricane Matthew as a false color composite, in order to estimate
outages. This work compared favorably to reported utility outages, and
nighttime lights imagery also captured unique physical phenomena
associated with the cyclone.

Zhao et al. (2018) investigated outages and recovery from earth-
quakes, major tropical cyclones, and floods with validation of outages
against SAR-derived damage proxy estimates and flood mapping. They
adopted the methodology of Cole et al. (2017) to derive a “percent of
normal” condition as the ratio of a post-event scene to pre-event
normal. For long-term outages in Puerto Rico following 2017's Hurri-
cane Maria, Zhao et al. found a strong correlation between percent of
normal light (low values) and reported outages (R2= 0.94), though

obtaining cloud-free pre-event and post-event scenes were difficult.
Finer-scale observations of nighttime lights and change have been de-
veloped from the NASA Black Marble Nighttime Light (NTL) composite
and ancillary data layers (Zhang et al., 2015c; Wang et al., 2018), using
spatial downscaling to estimate a 30m product for changes on neigh-
borhood scales (Roman et al., 2019, Fig. 21). These and other analyses
demonstrate the utility of night lights in specifically examining impacts
to electrical infrastructure, as opposed to other damage that may be
more readily assessed via daytime sensing (e.g. flooding, structural
damage).

3.4. Monitoring armed conflicts

In addition to the environmental disasters discussed above, human-
caused disasters also have strong impacts on night light emissions.
Remote sensing of night lights therefore provides an opportunity to
monitor conflicts, where data is often scarce and governmental reports
may be biased (Witmer, 2015). High spatial resolution daytime images
have been proved effective to achieve this purpose (American
Association for the Advancement of Science, 2013; Prins, 2007), but
building a link between conflicts and these remote sensing images
sometimes requires human skills of image interpretation. Since there is
a direct link between night-time lights and a number of socioeconomic
parameters, dramatic decreases in night-time brightness may serve as
an indicator for damage to infrastructure caused by armed conflicts. In
addition to reductions in population size and Gross Domestic Product
(GDP), decreases in light emissions also provide a warning that civilians
are likely lacking a stable electricity supply, which is essential for both
basic living and operation of hospitals.

A pioneering study in this topic examined the war effect in
Chechnya and Georgia by using monthly DMSP/OLS composites
(Witmer and O'Loughlin, 2011), which were used to examine move-
ment of refugees and burning oil fields caused by the wars. A more
comprehensive examination of global conflicts was undertaken by Li
et al. (2013b) using time series of annual DMSP/OLS composites. These
authors used 159 countries as research samples, and found that wars
lead to a sharp reduction of night-time lights, that peace agreements are
followed by restoration of night-time brightness levels, and that war-
torn countries have larger fluctuations of night-time lights than
peaceful countries.

Since that time, night-time light images have been employed to
evaluate the violent conflicts in Syria (Li and Li, 2014; Li et al., 2017,
Fig. 11a), Iraq (Li et al. 2015, 2018a) and Yemen (Jiang et al., 2017)
following the Arab Spring, showing that affected regions in these
countries experienced dramatic reductions in light emissions after the
conflict began (Fig. 20). Examining all Arab countries following the
onset of the Arab Spring, Levin et al. (2018) found that reductions in
night-time brightness correlated with decreases in the number of
tourists (using Flickr photos as indicator of visitation), with increases in
asylum seeker numbers, and with increases in the numbers of deaths
from conflicts. Levin et al. (2019) have also suggested that reductions of
night-time lights may serve as an indicator of risk to UNESCO World
Heritage Sites from armed conflicts. As is the case with environmental
disasters, the development of NASA's daily Black Marble product pro-
vides another step forward towards fine temporal monitoring of the
effects of wars on internally displaced populations (Román et al., 2018).

3.5. Holiday and ornamental lights, and political, historical, and cultural
differences in lighting

While disasters are evident from a temporal reduction in light
emissions, lighting associated with holidays can result in a temporary
increase. The uniformities and variations between nighttime light sig-
natures can provide new insights into how energy behaviors, motivated
by social incentives and economic activity, vary across national and
cultural boundaries (Fig. 22). Temporal fluctuations in electricity
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Fig. 21. After making landfall as a category 4 storm on October 10, 2018, Hurricane Michael knocked out power for at least 2.5 million customers in the southeastern
United States, according to the Edison Electric Institute. The images show where lights went out in Panama City, Florida, comparing the night lights before (top) and
after (bottom) the hurricane (October 6th and 12th, 2018, respectively).

N. Levin, et al. Remote Sensing of Environment 237 (2020) 111443

17



Fig. 22. Lighting differences between countries across borders, as seen from the ISS: China - North Korea - South Korea (ISS038-E−38280), US - Mexico (ISS030-
E−213358), East and West Berlin (ISS035-E−17202).

Fig. 23. City lights shine brighter during the holi-
days in the United States when compared with the
rest of the year, as shown using a new analysis of
daily nighttime data from the VIIRS instrument on-
board the NASA/NOAA Suomi NPP satellite (Roman
and Stokes, 2015). Dark green pixels are areas where
lights are 30 percent brighter, or more, during De-
cember. Because snow reflects so much light, only
snow-free cities were analyzed. Holiday activity is
shown to peak in the suburbs and peri-urban areas of
major Southern US cities, where Christmas lights are
prevalent. In contrast, most central urban districts,
with compact dwelling types affording less space for
light displays, experience a slight decrease or no
change in energy service demand. The calculation is
based on the relative change in lights between the
Christmas holiday vs. the rest of the year. It is a
simple ratio between the latter vs the former. (For
interpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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demand may represent changes in individual and macro-scale energy
behaviors, for example during major cultural events such as Christmas,
New Year, and the Holy month of Ramadan. During the Christmas and
New Year holidays in the USA, the patterns of total lighting electricity
usage (units of Watt · hr) derived from nighttime radiance were shown
to uniformly increase across US cities with diverse ethnicity and re-
ligious backgrounds (Román and Stokes, 2015). Román and Stokes
suggest that this shows that in addition of being a religious holiday,
Christmas and New Year are also celebrated as a civic holiday across the
US through holiday lighting (Fig. 23). Patterns of energy service de-
mand observed through nightlight images during the Holy month of
Ramadan can also indicate different religions as well as cultural ob-
servance practices. In the Middle East, cities with Muslim-majority
population exhibit lighting peaks during and slightly after the 30 days
of Ramadan compared to non-arab cities in Israel (Román and Stokes,
2015). Seasonal variations in nighttime lights have also been used to
track patterns in ambient population (mainly tourists) in Greece
(Stathakis and Baltas, 2018).

Lighting for cultural or celebratory purposes (such as light festivals;
Giordano and Ong, 2017) may result in particularly bright emission
signals compared to more functional lighting such as for streets and
parking lots. For example, floodlighting of churches or other cultural
objects often misses the facade, and can therefore be brightly visible on
Suomi-NPP VIIRS/DNB images (eg. Kyba et al., 2018). Architectural
lighting is often used to highlight significant buildings, and such
lighting may only be on when special events are held or at certain times
of the night (Meier, 2018). This may present a challenge for night lights
analyses, with the inconsistent temporal pattern contributing to the
variability of night lights datasets (Coesfeld et al., 2018).

Administrative borders offer the possibility to observe clear con-
trasts between different countries or regions, an area where the high
resolution color photographs from the ISS can be quite useful (Fig. 22).
The persistence of different lighting technologies in the former East and
West Berlin and the extraordinary drop of light at the border between
North and South Korea are well known examples. However, there are
also large national differences between per capita light emissions in
wealthy cities and countries (Kyba et al., 2015a, Sánchez de Miguel,
2015; Levin and Zhang, 2017). The root causes behind these differences
are in some cases not well understood (and may be related to different
lighting standards between countries), and night lights data may
therefore play a useful role in some investigations based on the social
sciences.

3.6. Astronomy

Astronomy is perhaps the oldest remote sensing discipline, with its
goal to obtain information about objects at vast distances through ob-
servation of emitted, absorbed, scattered, or reflected light. Nearly all
visible band astronomy is undertaken at night, because light scattered
by sunlight in Earth's atmosphere outshines most celestial objects. The
artificial light emitted by cities is similarly scattered by the atmosphere,
and as a result one third of humans (including nearly 80% of North
Americans) are no longer able to see the Milky Way from their homes
(Falchi et al., 2016). This is an immense cultural loss (Gallaway, 2010).
It also raises the cost of doing professional astronomy, as historically
important and easily accessible sites such as Mount Wilson Observatory
can no longer be used for research in the visible range (Teare, 2000),
and even remote sites are increasingly threatened by light pollution
(Krisciunas et al., 2010; Aubé et al., 2018). Studies of night sky
brightness and its changes are therefore important for amateur and
professional astronomy.

Remote observation of upward light emissions is crucial for the
study of artificial night sky brightness on large scales. These data can be
used with radiative transfer models to predict night sky brightness on
clear nights (Cinzano et al., 2001; Falchi et al., 2016). Both satellite
imagery and the derived night sky brightness maps are used by the

public to find locations for astronomical tourism (Collison and Poe,
2013; Hiscoks and Kyba, 2017), and photometric indicators of visual
night sky quality can be derived from ground based hemispherical
photos (Duriscoe, 2016). The global spectral shift due to adoption of
white LEDs is a major challenge for astronomy, both because the blue
component of white light produces more skyglow (section 2.4), and
because many current ground and space-based sensors are not sensitive
to blue light (section 4.5, Fig. 24). Ground based observations of night
sky brightness are therefore crucial for calibrating skyglow models, and
are necessary for long-term monitoring due to changes in lighting
practice (Kyba, 2018a; Hyde et al., 2019). A related topic is studies
using ground based instruments to measure the impacts of cloud cover
on night sky brightness (eg. Kyba et al., 2011, 2012; Jechow et al.,
2017b, 2019a), but in this case the aim is usually to better understand
the ecological impacts of this form of global environmental change (see
next section).

3.7. Using night lights to estimate threats to ecosystems

Plants, animals, microorganisms, and entire ecological systems are
affected by artificial light pollution, due to changes in behavior, phy-
siology (including circadian rhythms), timing of activities, and

Fig. 24. Spectral response of the most popular sensors and most popular
spectra, from top to bottom. (a) the spectral response of the Nikon D3s Cameras
used by the astronauts at the ISS; (b) a typical spectra of a Metal Halide lamp,
popular on architectural lights; (c) a High pressure sodium light, popular until
2014 on streelighting; (d) LEDs of 5000K (blue), 4000K (cyan), 2700K (grey)
and PC-Amber(amber), popular on street lighting; (e) representative spectral
response of DMSP/OLS(black) and SNPP/VIIRS/DNB(blue). Sources: Sánchez
de Miguel (2015), Tapia Ayuga et al., (2015), Sánchez de Miguel et al., (2017),
Elvidge. et al.,1999a,b,c and Liao et al., 2013. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)
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disorientation, among many other reasons (Rich and Longcore, 2006;
Navara and Nelson, 2007; Longcore et al., 2012; Gaston et al., 2013;
Russart and Nelson, 2018). As this is a very active area of research in
biology and ecology (Davies and Smyth, 2018), many researchers make
use of night lights data. For example, several studies have used the
mosaics of DMSP/OLS stable lights (as one of several variables), to
globally map the human footprint in terrestrial areas (Sanderson et al.,
2002; Venter et al., 2016) as well as to map the human impact in
marine areas (Halpern et al., 2008, 2015). In a similar fashion, night
lights were used to globally map impervious surface area (Elvidge et al.,
2007a) and to estimate human population at fine spatial resolutions
(Bhaduri et al., 2002), as both impervious surface and population
density are known to negatively impact biodiversity.

Using a calibrated set of DMSP/OLS images (1992–2010), Gaston
et al. (2015) demonstrated that protected areas were indeed darker
(DN < 5.5) than unprotected areas; however, they found that natural
darkness has been eroding in many protected areas, and especially so in
Europe, South and Central America, and in Asia, where there was a
significant increase in mean nighttime lighting in 32–42% of all pro-
tected areas. In a following study, Koen et al. (2018) have found that
areas with high species richness terrestrial and freshwater mammals,
birds, reptiles, and amphibians, are suffering from encroachment of
artificial lights. Marcantonio et al. (2015) used VIIRS/DNB data to show
that a 10% reduction in light emissions near nature parks in Italy could
lead to a 5–8% increase in the area suitable for high biodiversity. Social
media (such as geotagged Flickr photos) has also been used in con-
junction with night-time lights to estimate visitation of protected areas
and the impact of human activity on them (Levin et al., 2015).

While most artificial lighting originates from land areas, marine
ecosystems are not devoid of light pollution. As of 2010, based on
DMSP/OLS data (as of 2010), about 22% of the world's coastlines
(except Antarctica) were subjected to light pollution based on DMSP/
OLS data, with 54% of Europe's coastlines under light pollution, fol-
lowed by Asia (34%) and Africa (22%) (Davies et al., 2014). Field ex-
periments using an underwater spectrometer in the Gulf of Aqaba have
observed artificial light in the blue band down to a depth of 25m near
the coast, and up to 5 km from the coast at a depth of 5m depth at 5 km
from the coast (Tamir et al., 2017).

3.8. Using night lights to examine ecological light pollution

Studies which attempted to quantify the relationship between light
pollution and presence or behaviour of species have mostly focused on
specific organisms, such as sea turtles and birds (e.g. Van Doren et al.,
2017). Using VIIRS/DNB data, La Sorte et al. (2017) showed that
nocturnally migrating birds are attracted to urban lit areas, affecting
their migration behaviour. In a follow-up study, Cabrera-Cruz et al.
(2018) have shown that light pollution experienced by nocturnally
migrating birds, is especially high during the migration season for
species with smaller ranges. Recently, Horton et al. (2019) combined
VIIRS/DNB with weather surveillance radar data to examine the ex-
posure of migratory birds to light pollution, in order to provide data for
targeted conservation actions. They found, for example, that over half
of all migratory birds typically pass a single radar location within a
single week, which suggests that targeted and relatively short term
“lights out” campaigns for floodlit buildings could potentially greatly
reduce the impact of light pollution on migratory birds.

Sea turtles represent one of the most studied groups, for which the
negative impacts of artificial lights have been well known for decades
(e.g. Witherington and Martin, 2000). Kamrowski et al. (2012, 2014)
used DMSP/OLS imagery to identify which nesting sites of sea turtles
along the Australian coastline are exposed to light pollution, and in
which of these sites there was an increase in light pollution. Using finer
spatial resolution imagery (ISS photographs and SAC-C), Mazor et al.
(2013) have shown that nesting of sea turtles along the Mediterranean
coast of Israel was negatively correlated with night-time brightness, and

Weishampel et al. (2016) obtained similar results using DMSP data for
nesting sea turtles in Florida, which was also confirmed by VIIRS data
(Hu et al., 2018a). Given the differences between the light perceived by
animals and humans (mostly horizontal light) and the light measured
from space (mostly upwards reflected light; Katz and Levin, 2016), new
ground based methods are developed to measure night-time brightness
for ecological studies, e.g., using sky quality meters (Kelly et al., 2017)
or hemispheric cameras (Pendoley et al., 2012). Jechow et al. (2019b)
recently provided an overview of how a DSLR camera with a fisheye
lens can be used for characterizing night time brightness over a full
sphere, by taking two vertical plane photos. Such an approach is
especially useful for studies on ecological light pollution, because the
field of view of various species differs both in the horizontal as well as
in the vertical plane.

Remote observations of night lights have also been used to examine
the influence of light on bats, all of which are nocturnal, and many of
which are extremely sensitive to artificial light. In a nationwide study of
bats in France, Azam et al. (2016) combined VIIRS/DNB data with
landcover data to examine the relative effects of impervious surface,
intensive agriculture, and light emission. They found that agriculture
had the strongest negative influence on all four species tested, and that
light emission also had a negative influence on 3 of the 4 species tested,
and in all cases had a stronger negative influence than impervious
surface. Hale et al. (2015) used higher resolution (1m) data from
nighttime aerial photography and maps of tree cover together with
observations of bats to examine how light modulates the impact of gaps
in tree cover for bat flights. They found that the negative impact of light
increases as crossing distance between trees increases. In a recent study,
Straka et al. (2019) found that the lamp spectra also had important and
species-dependent effects, using land cover data and a 1m resolution
map of light emission from Berlin (Kuechly et al., 2012) together with
surveys of bat activity.

3.9. Epidemiology

In modern societies, exposure to artificial light is suspected as a
contributing factor to some diseases (e.g. some cancers, obesity, and
depression), through disruption of the circadian rhythm (Lunn et al.,
2017) or sleep disturbance, as well as suppression of the hormone
melatonin, which is related to ambient light intensities (Haim and
Portnov, 2013; Cho et al., 2015). Space-based night light data allows
studies of population exposures to artificial outdoor light, which can
then be compared to data from either cohort studies or a set of patients
and healthy controls. The “Light at Night hypothesis” for breast cancer
was first proposed by Stevens (1987), who noted that if dim light is a
risk factor, brightly lit communities could be expected to have higher
levels of breast cancer. The first empirical analysis linking DMSP/OLS
night lights data with breast cancer (BC) incidence was Kloog et al.
(2008), which examined 147 urban localities in Israel. The study re-
vealed a statistically significant association between ALAN and BC but
not with lung cancer, which was used in the study as a negative control.
Follow-up studies confirmed adverse effects of ALAN on BC and pros-
tate cancer in worldwide cohorts (Kloog et al., 2009, 2010). Other
studies investigated DSMP-derived ALAN data in conjunction with
different health phenomena, including hormone-dependent cancers
(Bauer et al., 2013; Hurley et al., 2014; Rybnikova et al., 2015, 2016b;
Portnov et al., 2016; James et al., 2017; Kim et al., 2017; Rybnikova
et al., 2018), obesity (Rybnikova et al., 2016a; Rybnikova and Portnov,
2016; Koo et al., 2016), and sleep quality (Koo et al., 2016). These
studies, carried out in different regions and population cohorts, provide
mutually complementing evidence about significant associations be-
tween ALAN and a wide of range of adverse health phenomena.

A major question for this research is the extent to which remote
observations of light match individual exposures. Kyba and Aronson
(2015) argued that if ALAN is a cause of disease (rather than a corre-
late), then estimated risk factors should increase with increasing spatial
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resolution of remotely sensed data. Rybnikova and Portnov (2017) then
compared results obtained from DMSP and VIIRS-DNB satellite images,
and detected a stronger ALAN-BC association when using the higher
spatial resolution VIIRS/DNB images. Recent studies have used even
higher resolution multi-spectral images taken from the ISS. Both Garcia-
Saenz et al. (2018) and Rybnikova and Portnov (2018) used ISS image
data to conclude that exposures to short wavelength (blue) ALAN ap-
pear to have stronger effects on hormone-dependent cancer incidence
than exposures to green and red light spectra. This conclusion is con-
sistent with results of laboratory and small cohort studies, which em-
phasize potential health risks associated with short wavelength illu-
mination (Lunn et al., 2017). Keshet-Sitton et al., (2017) also
demonstrated increased risk of breast cancer based on ground-level
measurements rather than remote observations. Further work in this
area will greatly benefit from improvements in resolution, coverage,
and multispectral information from space-based sensors, as well as
confirmation of the relevance of the data through ground-based mea-
surements of a representative sample of individual exposures (Kyba and
Spitschan, 2019).

3.10. Lighting technology

For some applications, identification of lighting technology as well
as their dynamics on short time scales is desirable. To discriminate lamp
types using airborne or spaceborn systems, high spatial and spectral
resolution is necessary (Fig. 24). The ideal system would be to use a
hyperspectral imaging spectrometer at low altitudes. Few studies with
limited spatial coverage exist, such as the first ever performed over
1998 in Las Vegas, USA (Elvidge and Green, 2005; Alamús et al., 2017,
see section 2.3 for more). Elvidge et al. (2010) showed that it was in
principle possible to discriminate light sources with multispectral sen-
sors, using detailed spectral field measurements and a modeling ap-
proach for the pre LED technologies. This was later demonstrated in
practice with an aerial survey over Birmingham, UK. In that study, Hale
et al. (2013) used a standard DSLR camera and supportive field mea-
surements, and achieved a high success rate of distinguishing between
different vapor lamps, although the technique used was fully phe-
nomenological. Sensor requirements for satellite based surveys were
proposed (Elvidge et al., 2007b,c) but few attempts have been per-
formed. Using the hyperspectral data of a flight over Las Vegas Metcalf
(2012) and Tardà et al. (2011) were able to determine different lighting
technologies, Sánchez de Miguel (2015) used ISS images, and Zheng
et al. (2018) were also able to distinguish high-pressure sodium (HPS)
lamps from white LEDs using the new Jilin-1 satellite. However, there
are fundamental limitations for multispectral sensors to distinguish
between similar color light sources, like fluorescents/compact fluor-
escents and LEDs of same color temperature or HPS lamps and PC-
Amber LEDs (Sánchez de Miguel et al., 2019b). It should also be noted
that most of the research undertaken thus far has been done without
radiometric calibrations of any kind or atmospheric corrections.

Ground-based measurements provide more freedom regarding
temporal and spectral resolution (section 2.4). Several studies have
used calibrated RGB cameras to track lighting remodelling from vapor
lamps to LEDs (Kolláth et al., 2016; Barentine et al., 2018), or short
term dynamics like the switching off of specific lights to assess their
contribution to skyglow (Cleaver, 1943; Jechow et al., 2018b). Ground-
based measurements can provide a wider temporal range than space
based sensors (section 4.3), and also fill in the blind spot of the lack of
sensitivity to blue light from LEDs (section 4.6, Kyba et al., 2017). High
frequency data, for example as measured using ground based SQM, can
be used to remotely sense the contributions of different lighting types
(streetlights, vehicles, residential light) due to their differing temporal
patterns (Bará et al., 2018). Systems used in urban science show pro-
mising results at the cross section to remote sensing as shown by the
“pulse of the city” studies with ground-based measurements, using a
hyperspectral camera by unraveling aggregate human behavior

patterns (Dobler et al., 2015), lighting types (Dobler et al., 2016) or
temporal profiles using RGB images (Meier, 2018). In addition, the
combination of several remote sensing techniques (AstMON, SQM, ISS
images and Hyperspectral spectrograph [SAND] plus energy statistics)
was used to trace the temporal evolution and population of the lighting
technologies used in Madrid for an average night (Sánchez de Miguel,
2015).

3.11. Mapping fires, gas flares, and greenhouse gas emissions

Wildfires are a major force shaping natural ecosystems, and their
ignition and propagation are influenced by both natural and anthro-
pogenic factors. Whereas during the industrial period the global fire
regime has shifted from one driven primarily by rainfall, to one driven
by human influence on fire (ignition and suppression), in the future
climate change may play a decisive role in global fire regime (Pechony
and Shindell, 2010). Fire management therefore requires mapping fire
in space and in time. It has long been known that visible light data from
DMSP had a capability to detect biomass burning and natural gas
flaring (Croft, 1973, 1978, Fig. 6b). In the mid-1990s a nightly biomass
burning algorithm was developed for DMSP low light imaging data and
regionally implemented (Elvidge et al., 1996). This involved a lit pixel
detection algorithm and masking of persistent lights from cities, towns
and gas flares. Later on, as the distribution of DMSP/OLS data was
lowered to 3 h, it was perceived that DMSP/OLS data can be used for
operational fire monitoring (Elvidge et al., 2001b), and that active fire
mapping using DMSP/OLS was able to detect more fires than MODIS
(Chand et al., 2007).

A high correlation was identified between the total lit area of a
country and total carbon dioxide (CO2) emissions (Doll et al., 2000),
and even better results were obtained using the VIIRS/DNB (Ou et al.,
2015). The first global satellite estimates of flared gas volumes came
from DMSP, with flaring sites identified manually based on circular
haloes of glow present in the DMSP annual cloud-free nighttime lights
(Elvidge et al., 2009a). With the advent of VIIRS, these capabilities have
been substantially enhanced based on the nighttime detection of fires
and flares in three spectral ranges: near infrared (NIR), shortwave in-
frared (SWIR) and midwave infrared (MWIR). The VIIRS Nightfire
(VNF) algorithm detects the presence of sub-pixel infrared emitters,
such as fires and flares in six spectral bands and uses Planck curve
fitting to derive temperature, source area, and radiant heat using
physical laws (Elvidge et al., 2013b), which is an improvement over
satellite fire products which use one or two spectral bands (Elvidge
et al., 2013c). Daily VNF datasets are available for download from
https://eogdata.mines.edu/download_viirs_fire.html. The VNF data has
been successfully used to map and classify industrial heat sources (Liu
et al., 2018), as well as to conduct annual surveys of natural gas flaring
locations and estimate flared gas volumes (Elvidge et al., 2015a). The
advantage of VNF over both DMSP and traditional MWIR fire products
is the ability to calculate variables such as temperature using physical
laws. However, Elvidge et al. (2019) recently showed that the VIIRS/
DNB retains a capability to detect combustion sources too small to
trigger detection in VNF. These results indicate that more complete
compilations of IR emitters could be achieved by adding a DNB fire
product to complement VNF and other satellite derived fire products, as
recently reviewed by Chuvieco et al. (2019).

3.12. Monitoring fisheries

The earliest reporting on nighttime satellite detection of fishing
boats using massive lighting to attract catch, traces back to DMSP data
(Croft, 1978, Fig. 6c). From 2000 to 2012, NOAA provided regional
near real time DMSP file transfer services to fishery agencies in Japan,
Korea, Thailand, and Peru, where the boat detections were analyzed
locally. However, an automatic algorithm for reporting boat locations
was never developed for DMSP. The situation changed with VIIRS due
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to the large sizes of the images, making it impractical for most users to
download the images for local analysis. In 2014, NOAA initiated the
development of a VIIRS boat detection (VBD) algorithm. The initial
algorithm was optimized for low moon conditions (Elvidge et al.,
2015b) and produced high numbers of false detections from moonlit
cloud and lunar glint features. This problem was resolved by adding a
module which screens moonlit areas for lights found in DNB that are
missing from the corresponding long wave infrared image based on a
cross-correlation analysis. VBD is now produced globally with a nom-
inal four-hour temporal latency, and is available online at https://
eogdata.mines.edu/vbd/. In addition, NOAA provides near real time
email and SMS alerts for VBD detections occurring in marine protected
areas (MPAs) and fishery closures in Indonesia, Philippines and Thai-
land. The alerts now cover 989 individual areas, spanning 648,865 km2,
with 82,101 detections in 2017. VBD data have been successfully used
to rate compliance levels in fishery closures in the Philippines and
Vietnam (Elvidge et al., 2018), and to map core fishing areas in the
Philippines (Geronimo et al., 2018).

4. Research challenges, limitations of current sensors, and
outlook for the future

4.1. Challenges of night light sensing and the differences between day vs.
night sensing in the visible band

There are many challenges associated with observations of visible
band light at night, and the remote sensing of socioeconomic para-
meters on the basis of such data. The most obvious of these are the
dramatically reduced radiance and extreme dynamic range of night
scenes in comparison to daytime remote sensing. Consider the scene in
Fig. 14. During daytime, the light source is the sun, shining from above
the atmosphere. In a cloud free scene, rooftops, treetops, and open
grassland or water areas are illuminated equally, and their radiance in
the scene depends on their albedo. The typical dynamic range of the
data is perhaps a factor of 50.

During the night, both celestial and artificial light sources are pre-
sent. Areas appearing black in the night image are lit by natural sources
like airglow and starlight, about 8 orders of magnitude fainter than
direct sunlight. Streets are lit by reflected light from lamps, about 4
orders of magnitude fainter than direct sunlight (Hänel et al., 2018).
Comparing the histograms of radiance over Berlin from a Landsat day-
time image and a VIIRS/DNB night-time image, it can be observed that
radiance at night was about 5 orders of magnitudes lower than at day
time, and that the distribution at radiance at night-time is different,
skewed towards dark areas, whereas during daytime it is distributed

more normally (Fig. 25). Whereas within Landsat 8 night-time images
of Berlin, Las Vegas and other cities, the brightest sources mostly
emitted light within the visible bands, bright sources of gas flares also
emitted significantly in bands 6 and 7 (in the short-wave infrared) of
Landsat 8 (Levin and Phinn, 2016).

Some lamps (e.g., no cut-off or semi cut-off) radiate a portion of
their light upwards without reflection (Cha et al., 2014), and can
therefore have radiances approaching an order of magnitude of sun-
light. Nighttime sensors that target to capture the radiance of all ele-
ments in an urban scene at high spatial resolution would therefore re-
quire an enormous instrumental dynamic range. In practice, this is
never the case. At high spatial resolution, unlit areas are usually un-
derexposed (as shown by Levin et al., 2014, using an EROS-B image),
and lamps shining directly upward saturate the sensor. The problem of
high dynamic range is reduced considerably at lower spatial resolution
(as in Fig. 14), because even in urban areas, most of the scene consists
of areas that are not artificially lit (e.g. rooftops and treetops).

In daytime scenes, radiances change throughout the day due to
changing solar illumination, atmospheric conditions and viewing geo-
metry between the sensor, the target and the sun: the Bidirectional
Reflectance Distribution Function (BRDF; Schaaf et al., 2002). In most
cases, surface radiances themselves are not of interest, but rather de-
rived quantities like reflectance within a spectral window, surface
emissivity or surface temperature. At night, in many cases it is the ra-
diance itself that we are interested in, but this value can be highly
variable. Coesfeld et al. (2018) discusses the sources of these radiance
changes, and their discussion is summarized and expanded upon here.

We begin with a hypothetical scenario to demonstrate the com-
plexity of the spatial distribution of night lights. Imagine a very long
wall that is 30m tall, with a single lamp mounted at 5m height, 5 m
away from the edge of the wall (Figure S1), which radiates in all di-
rections. It can be immediately seen that when imaged from the left, the
lamp is invisible, while when imaged from zenith or from the right, the
lamp can be seen directly, as can the light reflected from the ground
surface and the wall. If a space based instrument observes this scene on
multiple days from multiple directions, the total radiance will change in
an on-off fashion. Now consider the case where instead of radiating in
all directions, the lamp shines all of its light directly on the wall (e.g. a
well-directed floodlight). In this case, the radiance would go as 1-H(θ-
π/2)cosθ, where θ is the angle between the observing direction and the
normal of the wall, and H is the Heaviside step function. Viewed from
the left, from directly above, or any view direction parallel with the
wall's direction, the wall would appear to be black. When viewed from
the right, the observed radiance would increase with both increasing
nadir angle and increasing angular viewing distance from the wall's
direction.

The scenarios described above were hypothetical, but are re-
presentative of two extremely common situations: first, screening (i.e.
blocking) of artificial light by buildings, trees, or other objects, and
second, radiation from vertical surfaces such as floodlit facades, light
escaping windows, and illuminated signs. The imaging direction thus
has a major impact on the radiance observed at night. Since this effect is
determined by the local geometry, a general correction is not possible.
At high spatial resolutions (Fig. 26), the effect is quite obvious. At low
spatial resolutions, the effect may be minimized to some extent due to
averaging many local conditions, surface geometries such as hillsides or
long parallel streets which can make the effect visible even at a spatial
resolution of 750m (Li et al., 2019b).

Both DMSP/OLS and Suomi NPP/VIIRS DNB are wide-view sensors,
with swath widths greater than 3000 km, which means they can accu-
mulate angular observations varying in a large range. Angular ob-
servations sometimes are not preferred, because they often cause var-
iation across geography that makes mosaicking or comparison over
time a big challenge. However, angular information has been proved to
carry valuable structural information and ironically is critical to nor-
malize observations to the standard viewing-illuminating geometry, as

Fig. 25. Histograms of top of atmosphere radiance for the images of Berlin of
VIIRS/DNB and day-time Landsat OLI shown in Fig. 14.
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seen in MODIS (Schaaf et al., 2002) and MISR (Multi-angle Imaging
SpectroRadiometer) (Diner et al., 1989). Due to the variation in street
layout and building height, nighttime light is also expected to vary
accordingly (Kyba et al., 2015a). Angular observations from both
DMSP/OLS and VIIRS/DNB may thus provide structural and vertical
information about urban areas, especially in the east-west direction,
given the characteristic scanning geometry of sun-synchronous sensors.
Such information still remains under-utilized up to date, however
preliminary results indicate that measured radiance is lower at nadir
and increases towards the edge of the scan (Bai et al., 2015). In a recent
paper, Li et al. (2019b), have confirmed that the viewing angle of
VIIRS/DNB affects the amount of measured night-time brightness, and
that building height should be incorporated to understand the re-
lationship between the satellite viewing zenith angle and emitted night-
time lights. A different group (Li et al., 2019c) have approached the
problem from the other direction, using ground based all-sky imagery
from Google Street View to examine how much light can escape to
space, and how this is affected by changes in vegetation. Future re-
search is required to extract this invaluable information from both
DMSP/OLS and Suomi NPP/VIIRS DNB, and to remove angular effects
from night-time products.

4.2. Uncertainties due to moonlight, aerosol/cloud contamination, and
seasonal vegetation effects

Uncertainties originating from angular, diurnal, and seasonal var-
iations in atmospheric and surface optical properties are also a primary
source of measurement error in the nighttime lights (NTL). As de-
monstrated by Román et al. (2018), characterizing these uncertainties
is extremely crucial as a long-term record of NTL cannot be constrained
directly from at-sensor top-of-atmosphere (TOA) radiances. The un-
certainties can be separated into (1) environmental factors, such as
moon light, cloud/aerosols, and surface albedo (interferes with the
observed signal), and (2) errors stemming from seasonal variations in
vegetation or in snow cover and associated surface properties, which
can significantly affect estimates of seasonal and long-term trends
(Fig. 20).

Key to characterizing these factors is an accurate estimation of the
surface Bidirectional Reflectance Distribution Function (BRDF, or

reflectance anisotropy), a quantity that is governed by the angle and
intensity of illumination – whether that illumination be solar or lunar
(e.g., Miller and Turner, 2009) or from airglow emissions – and by the
structural complexity of the surface. Román et al. (2018) considered the
semi-empirical RossThickLiSparse Reciprocal (RTLSR, or Ross-Li) BRDF
model (Román et al., 2010; Roujean et al., 1992; Schaaf et al., 2002;
Wang et al., 2018) to correct the effects of contamination through an
external illumination in the NTL. This modeling approach is advanta-
geous as it has been shown to capture a wide range of conditions af-
fecting the VIIRS/DNB on a global basis. Similarly the RTLSR model
also allows analytical inversion with a pixel-specific estimate of un-
certainty in the model parameters and linear combinations thereof
(Lucht and Roujean, 2000). Finally, the scheme is also flexible enough
that other kernels can be easily adopted should any become available
and should they be shown to be superior for a particular scenario.

Similar to day light sensing in visible band, NTL radiances also
suffer from biases stemming from clouds and aerosols. A scene with
opaque clouds can block the NTL radiance completely, whereas thinner
and transparent or semi-transparent atmosphere blocks the radiance
partially and scatters the light creating a fuzzy appearance (Elvidge
et al., 2017). The vector radiative transfer modeling of the coupled
atmosphere-surface system (Vermote and Kotchenova, 2008) can be
used to compensate for aerosols, water vapor, and ozone impacts on the
NTL radiances (Román et al., 2018). This correction mitigates errors
stemming from poor-quality TOA retrievals, especially across regions
with heavy aerosol loadings and at Moon/sensor geometries yielding
stronger forward scatter contributions.

Seasonal variations such as those resulting from vegetation artifacts
can also introduce challenges in the retrieval of satellite-derived NTL
due to the canopy-level foliage along the ground-to-sensor geometry
path. This effect occurs predominantly in urban areas where vegetation
such as deciduous broadleaf canopies is present. The impact of this
obstruction of surface light by the cyclical canopy results in reduction in
the magnitude of NTL at city-wide scales (Levin, 2017; Levin and
Zhang, 2017, Fig. 20). This occlusion effect has been shown to be di-
rectly proportional in magnitude to the density and vertical distribution
pattern of the canopy. Román et al.(2018) proposed to use gap fraction
to correct the vegetation effect. These seasonal changes may be viewed
as a noise (when aiming to estimate socio-economic properties from
NTL) or as a signal (when aiming to estimate light pollution from NTL).

4.3. Challenges related to temporal sampling

In addition to the seasonal changes mentioned above, night lights
are dynamic throughout the course of individual nights (Figure S2).
Observations of night sky brightness show typical decreases of typically
around 5% per hour (Kyba et al., 2015b; Falchi et al., 2016), with larger
decreases earlier at night. The decrease in light emission can also be
seen through horizontal imaging (Dobler et al., 2015; Meier, 2018).
Many municipalities intentionally dim or turn off street lights at late
hours (Green et al., 2015), and these switch offs can produce very ob-
vious signals in night sky brightness data (Puschnig et al., 2014,
Sánchez de Miguel, 2015; Jechow et al., 2018b). The typical spectra of
artificial light emissions also appears to shift as the night progresses
(Kyba et al., 2012; Aubé et al., 2016). This is presumably due to
changes in the fraction of lights coming from different types of lamps.
Observations of low resolution ground spectra or sky spectra could
therefore potentially be used to differentiate the relative contributions
of light sources at different times (Bará et al., 2018).

Orbital platforms with a (relatively) fixed overpass time, such as
DMSP (early evening) or VIIRS DNB (∼1:30am) have limited ability to
view such temporal changes. Depending on the application, this may be
a disadvantage (they do not get the full picture of light use) or an ad-
vantage (the observed radiance values are more consistent). Platforms
with a non-fixed orbital time can fill in the gaps to some extent (Kyba
et al., 2015a), but such imagery is then taken on different dates. Only a

Fig. 26. Visibility of lit facades depends on perspective. The top image is a crop
of an photograph taken from the South, so North facing facades are visible. The
bottom image was taken from the North, so the South faces of buildings
therefore appear dark. Photos taken by Alejandro Sanchez de Miguel and the
Freie University"at Berlin during the EU COST Action ES1204 LoNNe. Figure
and caption reproduced from Coesfeld et al. (2018), available under a Creative
Commons Attribution license (CC-BY 4.0).
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geostationary platform could allow continuous, or at least repeated,
tracking of radiance changes throughout the full night (e.g. Zoogman
et al., 2017). With routine and growing numbers of observational passes
from Suomi-NPP, JPSS-1 (now NOAA-20) and subsequent JPSS series of
satellites, nighttime light observations will become even more frequent,
providing opportunities for multiple cloud-free observations per night
and greater temporal frequency to quantify the stability of light sources,
their magnitude, and time to restoration following a disaster event.

Outside of the tropics, there is an important interaction between
imaging time and the seasons in which an orbital platform can acquire
data about artificial lights. This is of particular importance for many
cities in Europe. In Berlin, for example, astronomical night does not
occur in the period between May 19 and July 27. If the satellite over-
pass time is displaced from midnight, this period is even longer. For a
satellite with a 21:00 overpass time, Berlin would be illuminated by
twilight from early April until the start of September. Restricting the
available night window to the period September–March means that
nights with snow cover will make up a much larger fraction of the
dataset, especially at higher latitudes or elevations. Annual products for
high latitude countries (e.g. Canada, Sweden, Norway, Finland,
Iceland) are therefore likely to be biased upwards due to snow cover if
the satellite overpass time is too far from midnight (Elvidge et al.,
2001a).

4.4. Long-term instability of some light sources

Many light sources in countries with stable electricity emit rela-
tively similar amounts of light from night to night. Coesfeld et al.
(2018) reported that the distribution of radiances in the DNB monthly
composite data for urban and suburban locations and airports was near
normal, with a standard deviation of about 13–19%, depending on
whether all months or only autumn months were considered. Other
light sources such as ship ports, stadiums, and power plants had larger
variations, while some other light sources are much more dynamic
(Coesfeld et al., 2018). Wildfires appear only during the time they are
active, and oil flares are not stable from year to year (Coesfeld et al.,
2018). Large construction sites may be brightly lit for relatively long
periods (Kuechly et al., 2012), and eventually replaced by less brightly
lit buildings. Greenhouses are among the brightest objects on Earth, but
may only be lit during a portion of the year (Coesfeld et al., 2018).
Special events such as large-scale outdoor concerts or light festivals
(Figure S3) can also produce considerable light only for short periods.
All these types of unstable lights pose a challenge for defining monthly
and annual trends in light emissions.

4.5. Global spectral shift due to transitions to LEDs

The world is in the midst of a “lighting revolution” due to the de-
velopment of light emitting diode (LED) technology (Pust et al., 2015).
This is the fourth such revolution in the history of outdoor lighting:
previous generations switched from oil to gas, gas to the first electric
lights (arc lamps and incandescents), incandescent to high intensity
discharge lamps (Riegel, 1973; Jakle, 2001; Isenstadt et al., 2014). Each
new technology has not only allowed for an increase in light emission,
but has also dramatically changed lighting spectra, and allowed new
forms of illumination. The global transition to LED lights therefore has
dramatic implications for remote sensing of night lights.

From a remote sensing perspective, there are two main con-
sequences of the change towards LEDs. First, the “white” LEDs used for
lighting outdoor areas have a broadband spectra, in dramatic contrast
to the “line” type spectra of vapor lamps (Elvidge et al., 2010; Aubé
et al., 2013, Fig. 24). Much of the world was lit by orange colored high
pressure sodium lamps at the start of the 21st century, and existing
broadband monitoring instruments designed for 20th century lights can
therefore easily mistake a change in spectrum for a decrease in emitted
light (Kyba et al., 2015a,b; Sánchez de Miguel et al., 2017). For similar

reasons, the spectral change affects the perception of artificial lights by
animals, and therefore the ecological impacts of such light (Longcore
et al., 2018). Future research should be thus directed on examining the
impacts of the transition of artificial lighting to LEDs on various topics,
including ecological light pollution, human health, crime and car ac-
cidents, preferably using a before-after-control-impact (BACI) design, as
in Plummer et al. (2016) and Manfrin et al. (2017).

The second major consequence of the introduction of LEDs is a
change in illumination practices. For example, LEDs are more easily
dimmed than vapor lamps, so lighting may become more temporally
dynamic. Streetlights based on LEDs are less likely to directly emit light
into the atmosphere, and may potentially result in less total emissions
through more careful direction of the light (Kinzey et al., 2017). The
most important change, however, may turn out to be a shift in the
“typical” source of light observed from space, away from street lighting
and towards lights emitted for advertising or artistic purposes (Kyba,
2018b). This spectral shift will likely affect the ability to existing sen-
sors such as VIIRS/DNB to quantify artificial lights from space, given
that it is not measuring incoming light in the blue band (Fig. 24).
Modelling work recently done by Bará et al. (2019) indicates that for
certain transition scenarios (from HPS to LED), the VIIRS may detect
reduction in artificial zenithal sky brightness, even if sky brightness in
reality increases, due to the loss of the HPS line in the near-infra red,
and the inability of the VIIRS to detect blue light. The emission of blue
light from LED sources therefore requires future night-time sensos to
include the blue channel (which is not covered by DMSP/OLS, VIIRS/
DNB or Luojia-1), however blue light is scattered more (Kocifaj et al.,
2019), and thus atmospheric haze removal techniques should be de-
veloped for night-time imagery, for future products.

4.6. Challenges in calibrating ground and space borne measurements

While night light remote sensing has benefited various applications,
there are certain research gaps that need to be overcome in order to
transform this data to be more quantitative. While in traditional optical
remote sensing satellite images are atmospherically corrected to derive
their reflectance values (Clark and Roush, 1984), it is not so clear which
units should be used in night light imagery. The DMSP/OLS imagery
products are distributed as stable lights or average lights x percent (DN
values between 0 and 63). Often these products are used to calculate
the total lit area or the total lights, however, these data are not in lu-
minance units. Photometry is the measurement of the intensity of
electromagnetic radiation in photometric units, like lumen/lux/etc, or
magnitudes. Radiometry is the measurement of optical radiation, with
some of the many typical units encountered are Watts/m2 and photons/
sec/steradian. The main difference between photometry and radio-
metry is that photometry is limited to the visible spectra as defined by
the response of the human eye (Teikari, 2007). Of relevance for such
measurements, are the photopic and scotopic bands. Human photopic
vision which allows color vision, takes place under daytime conditions
as well as under artificial illumination, and is based on the properties of
cone photoreceptors in the human retina. Human scotopic vision on the
other hand, takes place under dark conditions, using the retinal rods
alone, when humans perceive the world in “grey scale”; in comparison
to photopic vision, scotopic vision is shifted towards shorter wave-
lengths, mostly between 454 and 549 nm (Elvidge et al., 2007b).

In recent years there have been some attempts to calibrate fine
spatial resolution images to photometric units. Hale et al. (2013) used
ground measurements of incident lux along linear transects to calibrate
their aerial night light images into illuminance units. A different ap-
proach has been used by Cao and Bai (2014), who examined the tem-
poral variability in light as measured by the VIIRS/DNB from various
features which they expected to emit uniformly in different nights.
Another approach for field mapping of night lights that can be used for
calibrating aerial or space borne night light imagery is using ground
networks of instruments such as the Sky Quality Meter (SQM,
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manufactured by Unihedron, measuring the brightness of the night sky
in magnitudes per square arc second;http://www.unihedron.com/
projects/darksky/), however ground networks aimed at monitoring
light pollution are fairly recent (den Outer et al., 2011; Pun and So,
2012; Zamorano et al., 2019). In an interesting study using Extech
EasyView 30 light meters to map night brightness along a 10-m sam-
pling grid on the Virginia Tech campus, brightness was measured twice:
First with the light meter pointing upward to catch direct light from the
light fixtures at 30 cm from the ground, then with the light meter
pointing down to measure reflected light (Kim, 2012). Most ground
networks of SQM are directed to measure zenith night sky brightness. In
a study comparing the correspondence between an EROS-B night-time
image, and ground measurements done with SQMs in three directions
(downwards, horizontally and upwards), Katz and Levin (2016) have
shown that the lowest correspondence was with ground measurements
directed upwards (representing sky glow), whereas the strongest cor-
respondence was found with ground measurements directed down-
wards (representing street light reflected by the surface). Thus, in ad-
dition to the inconsistency in the photometric units used for calibrating
aerial night lights images, there is a gap with regards to how should one
measure light on the ground so that it best corresponds with what an
airborne or a space-borne captures.

4.7. Consistent nightlight time series across different platforms and sensors

Although the signal of change in the DMSP/OLS NTL time series is
larger than the error signal and also large enough to render the error
signal (noise) unimportant (Zhang and Seto, 2011), to facilitate accu-
rate change analysis with NTL time series it is necessary to calibrate
first to minimize differences caused mainly by satellite shift (Zhang
et al., 2016). The challenge to achieve successful radiometric calibra-
tion of remote sensing imagery obtained at different times is to find
invariant ground targets that can be used as references for reliable
comparison over time. As the first attempt, Sicily, Italy was chosen as
the reference site to calibrate the reference image F121999 and other
images individually (Elvidge et al., 2009a,b,c). These models were then
applied to calibrate the entire DMSP/OLS time series from 1992 to
2008. This method successfully reduced differences caused by satellite
shift to some order. However, models derived in Sicily might not be
generalized to cover the entire globe, since noises introduced by various
sources might not be geographically homogenous (Pandey et al., 2017).
To address this problem, researchers studying regional urbanization
dynamics have chosen local reference sites to derive their models so
that they better fit their specific regions (Liu et al., 2012; Nagendra
et al., 2012; Pandey et al., 2013). In an attempt to produce more gen-
eralized models for the entire globe, Wu et al. (2013) extended the
Elvidge et al. (2009a,b,c) method by selecting more reference sites,
including Mauritius, Puerto Rico, and Okinawa, Japan in addition to
Sicily, Italy. Despite that the Wu et al. (2013) method achieved im-
provement, the way they chose invariant regions was not essentially
different than that applied by Elvidge et al. (2009a,b,c) and also suffers
from the limitation of subjectively choosing areas.

Li et al. (2013a,b) designed an automatic method to find invariant
pixels in Beijing, China to avoid subjective errors. This automatic
method can minimize the bias introduced by subjective selection of
invariant regions and has the potential to be extended to the entire
globe. However, since the region of Beijing experienced dramatic
changes in the past decades, this method might lead to overcorrection
to the NTL time series. Furthermore, the iterative procedure to identify
stable pixels is very computation intensive and thus cannot be directly
implemented at the global scale, considering the gigantic amount of
pixels. Zhang et al. (2016) designed a ridge sampling and regression
method to calibrate the NTL time series over the entire globe. This
method is based on a novel sampling strategy to identify pseudo-in-
variant features. Data points along a ridgeline-the densest part of a
density plot generated between the reference image and the target

image-were first identified and those data points were then used to
derive calibration models to minimize inconsistencies in the NTL time
series. In this way, only 63 pairs of data points were used to run a
regression model for calibrating each target image, significantly redu-
cing computation load. Since only the F152000 image was used as the
reference image, target images close to the two ends of the time series
might be over corrected due to the increased time intervals. Li and Zhou
(2017) proposed a stepwise calibration approach to address that issue.
They first reduced temporal inconsistency within each satellite segment
and then systematically moved each satellite segment up or down to
generate a temporally consistent NTL time series from 1992 to 2013, by
making full use of the temporally neighbored image as a reference for
calibration.

Each of the methods mentioned above has its strengths and
shortages. A framework to assess and choose a right method for a
specific application was proposed by Pandey et al. (2017). Future ef-
forts are still needed to design better NTL calibrating methods. Fur-
thermore, there is a huge gap between DMSP/OLS and VIIRS/DNB. A
temporally consistent NTL time series extending from DMSP/OLS to
VIIRS/DNB is highly desirable, yet still a huge challenge, due to dif-
ferences in passing time, onboard calibration, spatial resolution, and
other considerations (see Li et al., 2017, as well as Zheng et al., 2019,
for examples of inter-calibration between DMSP/OLS and VIIRS/DNB).
Ground-based stable and radiometrically calibrated light sources may
offer a useful approach for inter-calibration between night-time lights
sensors, as well as for validating the performance of these sensors, as
attempted by Hu et al. (2018b) and Ryan et al. (2019).

4.8. Outlook for the future

4.8.1. The need for geostationary platforms
Despite the benefits of its unique information content, a significant

limitation of current VIIRS/DNB measurements is infrequent revisits,
and hence poor temporal resolution across the night. The low earth-
orbiting (LEO) satellite platform offers only 1–2 passes per night at low
to mid-latitudes, meaning that the VIIRS/DNB information must be
used in ‘snapshot mode.’ With the addition of NOAA-20 in November
2017 to the same orbital plane as Suomi, there is now a 50-min update
around 01:30 local time.

This second observation provides some information on the changing
environment, but still cannot resolve parameter evolution or the diurnal
cycle. For this, a geostationary-based (GEO) version of the DNB would
be needed in order to overcome this principal limitation. Having a
sensor that can provide low-light visible sensitivity from GEO would
represent a significant advance over current nighttime imaging cap-
abilities represented by the VIIRS/DNB. A pioneering study on the
temporal dynamics of urban lights was done by Dobler et al. (2015),
using horizontal images from a fixed camera, every 10s over 22 nights,
demonstrating the type of information which can be derived from
continuous monitoring of artificial lights throughout the night. Fre-
quent monitoring of the Earth at night from sunset to sunrise will allow
researchers to uncover circadian patterns of human activity, not only to
quantify temporal changes in light pollution, but also to better inform
us on changes in ambient population during night-time, e.g., people
working at night, or attending various night-time events.

Such a GEO platform would allow stare and thereby attain signal-to-
noise on par or better (by a factor of 10) than the VIIRS/DNB. Dual
proposing a nighttime GEO instrument as a star tracker, and conducting
multiple intermittent read-outs over the∼20s sampling interval, would
further allow the instrument to achieve the necessary navigation and
stability requirements for this measurement to attain 700m resolution.
It would be very useful, but not required, to coordinate nighttime GEO
operations with a contemporary geostationary sensor (e.g., the
Advanced Baseline Imager on GOES-R) to leverage additional spectral
information from those sensors. As noted in Miller et al. (2013), com-
bining the visible band with near infrared (conventional) and thermal
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bands would further expand the utility of the low-light observations.
For instance, a geostationary lowlight visible sensor, combined with
shortwave and thermal infrared bands from co-located ABI observa-
tions, would be able to retrieve both cloud optical depth and effective
particle size via moonlight, leading to improved estimates of cloud
water path.

So far, the only occasion that a sensor acquired a full night-time
image of the entire hemisphere (as a geostationary satellite would be
able to do) showing artificial lights was in the ESA - Rosetta mission. In
three occasions the probe ESA - Rosetta made flybys over the Earth to
get the gravitational assistance it needed to change direction to its main
scientific goal, the comet 67P/Churiumov-Guerasimenko. The team
took images of the Earth during these flybys, and currently these images
are still the only images of the Earth at night taken from a position
where it is possible to see the full earth at night (other images available
are renders or mosaics of individual images or scans). These images
were taken with the camera OSIRIS (Keller et al., 2007) on the filters
“Blue”, “Green”, “Orange”. Unfortunately, these images are only
available on the raw format and Level 3 calibration. The difficulty of
their reduction and georeferencing have therefore limited their use in
peer review publications, although they are freely available at the ESA
archive (https://archives.esac.esa.int/psa/) (Fig. 27).

4.8.2. Spectral information
Artificial lighting sources vary in their emission spectra from the

sun's emission and from each other (Aubé et al., 2013, Fig. 24). To

better estimate the negative effects of light pollution, various spectral
indices have been proposed, including the Melatonin Suppression Index
(MSI), the Induced Photosynthesis Index (IPI) and the Star Light Index
(SLI) (Aubé et al., 2013), which also allow to compare the impacts of
different lamp types on different species based on their spectral re-
sponse curves (Longcore et al., 2018). With hyperspectral data, the
major types of artificial lighting sources can be separated (Dobler et al.,
2016). However, the majority of available space borne sensors are
panchromatic, with only ISS photos and the new Jilin-1 satellite of-
fering RGB color images, allowing the calculation of such indices
(Sánchez de Miguel et al., 2019b; Table 1). As noted above, the pan-
chromatic channel on the DMSP/OLS and VIIRS/DNB does not cover
the blue light, thereby important spectral information is missing, which
will become even more crucial as more cities change their street
lighting technology to LED (Kyba et al., 2015a). Future night-time
sensors designed for monitoring artificial lights should therefore in-
clude the blue band, and offer several spectral bands in the VIS-NIR
range, so as to enable the identification of lighting types, and so as to fit
human scotopic and photopic vision (Elvidge et al., 2007b). In-
vestigating the optimal spectral band combination, Elvidge et al. (2010)
concluded that the best set of spectral bands (in terms of cost and ef-
ficiency) would include at least four bands: the blue, green, red and NIR
(as on Landsat). Such a combination of bands which will enable the
identification of major types of lighting, and will also allow the esti-
mation of the luminous efficacy of radiation, and the correlated color
temperature, but not will enable to estimate other properties, such as
the color rendering index (Elvidge et al., 2010). With the transition to
LEDs, we are facing the global challenge of how to reduce light pollu-
tion, in spite of this new technology which allows to light up more areas
at lower costs. One direction can be the application of light pollution
metrics (such as developed by Aubé et al., 2013 and by Longcore et al.,
2018) which will be placed on packages of bulbs, to better inform
consumers on possible light pollution impacts, similar to information
provided on food packages concerning their ingredients, allergens, and
dietary information (Tangari and Smith, 2012).

4.8.3. Spatial resolution
Numerous studies have made great use of available night-time

sensors (mostly DMSP/OLS and VIIRS/DNB) to study the spatial and
temporal patterns of artificial light at night, and the anthropogenic and
physical variables explaining it, at global, regional and national levels.
However, most studies of night lights were not able to examine spatial
patterns at the neighborhood or street level due to the lack of sensors
with fine spatial resolution (Table 1). The spatial resolution of the
majority of night-time space borne sensors is below 100m, and freely
available images of cities at spatial resolution which is better than
100m are only available from astronaut photographs taken from the
ISS. However, these images are not taken regularly, and are of varying
radiometric and spatial quality. Night-time images with high spatial
resolution (< 5m) have been shown to enable the mapping and clas-
sification of individual lighting sources (e.g., Metcalf, 2012; Hale et al.,
2013), and can enable us to better understand the nightscape as ex-
perience by animals within urban areas (Bennie et al., 2014b). How-
ever, high spatial resolution such as offered now by commercial sa-
tellites (such as EROS-B and Jilin-1) may not be needed for all
applications. Indeed, several papers have shown that high spatial re-
solution of night time images did not improve our ability to explain
spatial patterns of light pollution, and that better correlations were
obtained at spatial resolutions of 50–100m (Katz and Levin, 2016) or
even at coarser spatial resolutions (e.g., Anderson et al., 2010). This
result may relate to the combined artefact of night-time images be-
coming darker and with greater contrast between dark and bright areas
with increasing spatial resolution (Kyba et al., 2015a; Katz and Levin,
2016). At high spatial resolutions there may also be greater differences
between ground measurements of night-time brightness in the hor-
izontal direction, and space borne measurements of night-time

Fig. 27. OSIRIS view of Earth by night. This is a composite of four images
combined to show the illuminated crescent of Earth and the cities of the
northern hemisphere. The images were acquired with the OSIRIS Wide Angle
Camera (WAC) during Rosetta's second Earth swing-by on 13 November, 2007.
This image showing islands of light created by human habitation (from the Nile
River on the upper left side, to eastern China on the upper right side) was taken
with the OSIRIS WAC at 19:45 CET, about 2 h before the closest approach of the
spacecraft to Earth. At the time, Rosetta was about 80 000 km above the Indian
Ocean where the local time approached midnight. The image was taken with a
five-second exposure of the WAC with the red filter. This image showing Earth's
illuminated crescent was taken with the WAC at 20:05 CET as Rosetta was
about 75 000 km from Earth. The crescent seen is around Antarctica. The image
is a colour composite combining images obtained at various wavelengths.
Source: http://www.esa.int/spaceinimages/Images/2007/11/OSIRIS_view_of_
Earth_by_night. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the Web version of this article.)
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brightness, which only capture upward emissions of artificial lights
(Katz and Levin, 2016). Indeed, in their evaluation of the required
spatial resolution of a concept mission termed as NightSat, Elvidge et al.
(2007b) estimated that a sensor with a spatial resolution of 50–100m
would suffice to present the major night-time features which are
common to urban and rural areas. Such medium spatial resolution will
also enable global monitoring of the Earth at night at a frequent revisit
time, without requiring a constellation with too many satellites. The
rise in launch and use of cubesats (such as Planet Labs; Strauss, 2017),
and the recent launch of the Luojia-1 cubesat (Jiang et al., 2018), may
offer a relatively cheap approach for providing global coverage of the
Earth at night, at finer spatial resolutions than currently available. An
additional research challenge, which relates to the need to better
quantify the exposure to light pollution, requires us to develop methods
to quantify and understand the differences between human exposure to
night-time brightness both indoors (based on ground based sensors or
on smart wearable technology, mobile device platforms or embedded
platforms; Ko et al., 2015) vs. the exposure to night-time brightness
outdoors (as measured by satellites).

5. Conclusions

Images of artificial lights at night directly observe human activity
from space, and therefore enable a number of remote sensing applica-
tions either unique to night light sensing (e.g. monitoring illegal fishing,
remotely sensing lighting technologies) or strongly complementing
other types of remote sensing (e.g. evaluating the impacts of armed
conflicts and disasters and the recovery from them, quantifying tem-
porary and seasonal changes in population, studying urban change).
The field of remote sensing of night lights has greatly expanded since
the early 2000s, thanks to an increase in the number and quality of
space and ground based sensors able to measure low levels of light in
the visible band. This development has also had a major impact on the
study of light pollution, which has grown in parallel with remote sen-
sing of night lights. Nevertheless, despite the demonstrated value of
night lights data, the sensors, algorithms, and products for night lights
still lag far behind the state of the art in remote sensing based on re-
flected daylight, or in other spectral ranges. In particular, night lights
data are generally taken at lower resolutions, lack temporal coverage,
and most importantly lack multi- or hyperspectral data. This is of
particular concern at the moment, because of the global shift in the
night lights spectra due to the adoption of LED lights.

New and improved sensors and algorithms will not only allow a host
of new remote sensing applications based on night lights data; they will
also have a dramatic influence on our understanding of human influ-
ence on one of the most threatened environments on Earth's land sur-
face: the night. In stark contrast to many other environmental stressors
such as climate change due to greenhouse gasses or chemical pollution,
reductions in light emissions reduce the degree of light pollution and its
environmental impact immediately. Whereas reducing greenhouse gas
levels requires coordinated global action, light pollution depends
overwhelmingly on local actors. Many of the transitions needed to
achieve a sustainable society, such as emissions free transportation, are
difficult problems that still require considerable research and likely
changes in behavior. Methods to eliminate waste light, on the other
hand, are already well known (e.g. Falchi et al., 2011); lights must
simply be directed more carefully (which LEDs can help with), in many
cases overall light levels must be reduced, and in other cases, lights can
simply be turned off. Fortunately, it has been demonstrated that re-
ductions in overall light emission can be accomplished while actually
improving vision over current practice (e.g. Narendran et al., 2016).

The main challenge facing the transition to sustainable lighting is
one of awareness. Future night lights data will play a key role in this
regard. The data will be used to visualize changes in light emission and
light pollution, identify and quantify emissions from specific polluters,
and evaluate the effectiveness of light pollution mitigation strategies.
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