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A B S T R A C T   

Satellite observations of nighttime lights (NTL) from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data have 
been widely used to estimate human activities. Long-term changes such as urban development and abrupt short- 
term changes such as power outages have been monitored from temporal NTL acquired by satellites. While high 
temporal NTL variation has been found across NTL data of varying temporal scale (e.g., daily, monthly, and 
annual composites), the sources of measurement error and uncertainty are poorly understood. This paper 
quantifies the sources of VIIRS-derived NTL uncertainty due to view-illumination geometry, surface Bidirectional 
Reflectance Distribution Function (BRDF)/albedo, and the effects of snow cover, lunar irradiance, aerosol 
loading, cloud mask, vegetation, geometry, and ephemeral artifacts (e.g., the Aurora Borealis). Based on this 
current assessment of NASA Black Marble retrievals (VNP46, Collection V001), we found that angular and at
mospheric effects dominate retrieval uncertainty. Errors introduced by upstream data inputs (e.g., a coarser 
nighttime snow cover flag and misclassification errors in the existing VIIRS nighttime cloud mask) were also 
found to impact retrieval quality. Despite these challenges, a consistent daily NTL time series record can be 
routinely generated from top-of-atmosphere VNP46 radiances. Key recommendations include: (1) the use of 
lunar-BRDF adjusted and atmospherically corrected NTL (i.e., as identified as high-quality retrievals in the 
VNP46 QA fields), (2) development and improvement to the VIIRS snow cover and cloud masks algorithms to 
accurately reflect NTL retrieval conditions, (3) characterizing seasonal variations in NTL due to vegetation and 
snow, (4) reducing geometric effects due to the spatial mismatch of gridded pixel and observation footprint, (5) 
employing angularly-consistent NTL observations from multiple VIIRS instruments (i.e., Suomi-NPP and NOAA- 
20) to reduce pixel-based uncertainties and address persistent data gaps, and (6) being mindful of surface- 
reflected radiance from aurora events at mid-to-high latitudes.   

1. Introduction 

Nighttime light (NTL) observations acquired by satellites are a 
crucial indicator of human activities. Recent studies have employed 
statistical analyses and correlation discovery methods to establish the 
relationships between NTL and a wide range of human-linked patterns 
and processes. Such findings are of immediate relevance to the United 
Nations Program on Urban Sustainable Development Goals (SDGs) of 
the 2030 Agenda (https://sdgs.un.org/goals), which aims to reduce 

poverty, fight inequalities and injustice, and protect the environment. 
Parameters relevant to these objectives include a multitude of socio
economic variables (e.g. population, GDP, poverty, house vacancy rate) 
(Chen and Nordhaus, 2015; Chen et al., 2015; Jean et al., 2016; Levin 
and Zhang, 2017; Li et al., 2013b; Liu et al., 2019; Ma et al., 2020, 2014; 
Shi et al., 2014b; Yu et al., 2015), environmental variables (e.g. carbon 
emissions, PM2.5 concentration, light pollution) (Bennie et al., 2015; 
Gaston et al., 2013; Jiang et al., 2018, 2017b; Li et al., 2017b; Oda and 
Maksyutov, 2011; Ou et al., 2015; Wang et al., 2016), tracking urban 
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extent (Guo et al., 2015; Sharma et al., 2016; Shi et al., 2014a; Zhou 
et al., 2014), disaster impacts (Li et al., 2018b; Román et al., 2019; Wang 
et al., 2018a; Zhao et al., 2018), energy consumption (Amaral et al., 
2005; Coscieme et al., 2014; Román and Stokes, 2015), crime rates (Liu 
et al., 2020b; Zhou et al., 2019), conflict (Jiang et al., 2017a; Levin et al., 
2019; Li et al., 2018a, 2017a, 2013a; Li and Li, 2014; Witmer, 2015), 
health-related issues (Cho et al., 2015; Elvidge et al., 2020; Liu et al., 
2020a), and characterizing spatial features e.g., upper-atmospheric 
gravity waves (Miller et al., 2015; Hu et al., 2019), fishing vessels 
(Elvidge et al., 2015), gas flares (Elvidge et al., 2009), and nighttime 
fires (Wang et al., 2020a). 

A consistent temporal NTL record is required to quantitatively 
analyze human activities from regional to global scales. The Defense 
Meteorological Satellite Program’s Operational Line Scanner (DMSP/ 
OLS) has collected NTL imagery since the late 1960’s, and continues 
today in the final members of that pioneering constellation (Elvidge 
et al., 1997). However, the quality of original DMSP/OLS NTL data is 
known to be poor due to the lack of onboard calibration, coarse radio
metric resolution (6-bit), sensor degradation, blooming effect, and 
saturation over bright regions (Wu et al., 2013; Zhang et al., 2013, 2016; 
Zhao et al., 2020; Zheng et al., 2019, 2020). Radiance calibrated DMSP/ 
OLS NTL have been generated by combining low and high gain com
posites for seven discrete years (Elvidge et al., 1999). While several 
studies have sought to improve these techniques, long-standing data 
provenance and access issues have prevented researchers from con
ducting uncertainty assessments that combine such data sources. In 
particular, the lack of a daily radiance-calibrated DMSP/OLS data record 
(Level-1B equivalent) has prevented the reproducibility of published 
studies and retrieval techniques involving DMSP/OLS data (Levin et al., 
2020). 

A new generation of NTL observations is now available from the 
Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band 
(DNB) (Miller et al., 2012, 2013), a visible/near-infrared (500-900 nm) 
broadband radiometer onboard the Suomi-National Polar-orbiting 
Partnership (S-NPP). The DNB has observed NTL since late 2011 with 
vastly improved performance compared to the OLS in terms of calibra
tion and higher spatial resolution (750 m) (Miller et al., 2013; Lee et al., 
2015; Liao et al., 2013; Xiong et al., 2014). VIIRS, drawing heritage from 
the OLS, the Advanced High-Resolution Radiometer (AVHRR), and the 
Moderate-resolution Imaging Spectroradiometer (MODIS), is a com
bined mission of NASA and NOAA. NOAA-20, launched in 2017, carries 
the same VIIRS instrument as S-NPP. The stray light corrected VIIRS 
DNB is temporally stable and calibrated with high accuracy (Cao et al., 
2019; Cao and Bai, 2014; Lee et al., 2015; Shao et al., 2013; Wang and 
Cao, 2016). Several other satellites have recently launched, such as Jilin- 
1 and Luojia-1 (Guk and Levin, 2020; Levin et al., 2020; Li et al., 2018c), 
providing high spatial resolution NTL imagery. The local overpass times 
of DMSP/OLS, VIIRS/DNB, and Luojia-1 are approximately 7:30 pm, 
1:30 am, and 10:00 pm respectively, limiting direct inter-comparison 
among these platforms considering the high NTL diurnal variation (Li 
et al., 2020). 

High variation in satellite-derived NTL time series, including 
temporally-smoothed monthly NTL composites, can impact the use of 
these products for science and application development (Coesfeld et al., 
2018; Levin et al., 2020). Therefore, quantifying sources of measure
ment error and retrieval uncertainty is crucial to ensure the usability of 
the derived products (Solbrig et al., 2020; Coesfeld et al., 2018). For 
instance, NTL radiance’s non-linear relationship with view angle de
pends highly on land use (Li et al., 2019; Tong et al., 2020), which can 
have a major impact on studies addressing linkages between urban 
growth and socioeconomic indicators (Stokes and Seto, 2019). NTL 
radiance has been shown to increase toward higher View Zenith Angles 
(VZA), the angle between the line of sight to the satellite and local zenith 
(the line directly above the point on the ground), over residential areas, 
while the opposite trend is often found across dense urban centers (Li 
et al., 2019). Likewise, surface-reflected lunar radiance (herby termed 

the ‘Lunar BRDF’ effect) can increase the magnitude of NTL by several 
orders of magnitude (Román et al., 2018). Consequently, monthly and 
annual VIIRS NTL composites (e.g., those released by Payne Institute at 
Colorado School of Mines) have been composited from moon-free night 
observations only, ignoring the lunar BRDF effect (Elvidge et al., 2017). 
This exclusion reduces the number of available high-quality clear-sky 
observations (by ~50%) for near-real-time uses of NTL data. It also 
impacts the composited results’ overall quality, particularly across 
persistently cloudy regions (e.g., in the tropics), where moon-free re
trievals are more prone to retrieval uncertainties. 

NTL radiance is sensitive to aerosol and is negatively correlated with 
aerosol loadings (Zhang et al., 2019; Wang et al., 2020). Because of the 
broad spectral range of the VIIRS DNB, high aerosol loadings reduce 
urban NTL radiance, while enhancing the radiance over natural and low 
light areas adjacent to dense urban centers (Sanchez de Miguel et al., 
2020; Tong et al., 2020). Nighttime cloud masking using VIIRS is also a 
major challenge. The accuracy of the VIIRS nighttime cloud detections 
(global hit rate of 94%) is relatively lower than daytime estimates (Kopp 
et al., 2014). These upstream errors are amplified in the NTL retrieval 
process, as cloud-contaminated NTL pixels, both within and nearby 
cloudy areas can reduce and enhance the upwelling surface NTL during 
moon-free and moonlit nights, respectively. Airglow brightness is highly 
variable spatially and temporally (Miller et al., 2012; Coesfeld et al., 
2020). The airglow radiance ranges from 0.1 to 1.0 nWcm− 2 sr− 1 μm− 1 

viewed from the surface at local zenith (Hofmann et al., 1977). Coesfeld 
et al. (2020) corrected the airglow natural light for VIIRS DNB, which is 
mostly less than 0.5 nWcm− 2 sr− 1 and mainly influences natural areas 
while has little impact on urban areas. 

The presence of nighttime snow also enhances the scattering of re
flected NTL and lunar radiance (Román and Stokes, 2015; Levin, 2017). 
As with nighttime cloud-detection, snow detection at night using VIIRS 
is challenging because of the lack of multispectral measurements and the 
higher-order scattering effects that enhance the magnitude of nearby 
snow-free NTL pixels over hilly and mountainous regions. Moreover, the 
current VIIRS Collection V001 products use a nighttime snow flag (25 
km) measured by Special Sensor Microwave Imager/Sounder (SSMIS) 
onboard DMSP (Armstrong and Brodzik, 2001) from the National Snow 
& Ice Data Center’s (NSIDC), which is much coarser than the native 750 
m VIIRS DNB spatial footprint (Armstrong and Brodzik, 2001), and the 
existing standard VIIRS snow products (VNP10) available at 375 m 
(Riggs et al., 2017). 

Vegetation phenology-related NTL artifacts are another key source of 
measurement error (Levin, 2017; Xie et al., 2019; Zheng et al., 2019). 
The magnitude of surface light penetrates vegetation canopy depending 
on gap fraction (Román et al., 2018). This seasonal occlusion effect is 
thus stronger during leaf-on periods in late spring and summer months 
compared to leaf-off periods in the fall and winter months. 

The spatial coverage of gridded VIIRS pixel does not match well with 
the actual satellite observation footprint, which depends on gridded 
pixel size, observation spatial footprint, point spread function, and view 
angles (Tan et al., 2006; Campagnolo et al., 2016). The spatial mismatch 
can impact the temporal consistency of NTL radiance particularly over 
areas with abrupt boundaries. 

NTL radiance at mid-to-high latitude regions could be affected by 
ephemeral aurora (Seaman and Miller, 2013). NTL radiance within one 
aurora oval varies dramatically. The reflected aurora radiance from 
nearby Earth surface without aurora above the sky is difficult to be 
corrected since the downwelling aurora irradiance is unknown. These 
effects are compounded by sub-optimal retrievals conditions, including 
residual instrument straylight artifacts, and the presence of the twilight 
region, where the VIIRS DNB exhibits lower solar zenith angles regimes 
(SZA < 108◦) for extended periods of time, particularly in the 
midsummer months. 

Regardless of a product’s temporal frequency (daily vs. monthly or 
annual composited data) or index used (e.g., Radiance vs. Sum Of Lights, 
‘SoL’), users also need to be aware that calibration stability and 
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consistency are essential to ensure a science-quality NTL time series, and 
to make key conclusions based on their results. For instance, the early 
NOAA VIIRS Sensor Data Record’s (SDR) operational DNB calibration 
was inconsistent in calibration coefficients, Relative Spectral Response 
(RSR), stray light correction, atmospheric airglow contamination, and 
striping for higher aggregation zones (Cao et al., 2021). The radiometric 
accuracy was also reduced by more than 10% at a low radiance level 
(affecting rural NTL populations) due to the airglow contamination in 
dark offset (Cao et al., 2021; Uprety et al., 2019). Higher-order monthly 
and annual VIIRS NTL composite products derived from these data (e.g., 
those currently available via Google Earth Engine and AWS as of April 
2021) have yet to be reprocessed and updated. Conversely, NASA’s Land 
Science Investigator-led Processing System has conducted two compre
hensive data reprocessing campaigns (Collections V001-V002) for all 
Level 1–3 VIIRS sensor data and higher-order products (e.g., Black 
Marble – VNP46) spanning the entire mission period (Jan 19, 2012 – 
YTD.) 

It is also important to note that Day/Night Visible Imagery, e.g. the 
VIIRS Day/Night Band, Enhanced Near Constant Contrast (ENCC) layer 
available through https://worldview.earthdata.nasa.gov/, is mainly a 
qualitative product and should be strictly used for image display pur
poses. For this layer, each VIIRS Level 1B scan (6-min in total length) is 
individually processed and normalized based on a static set of values 
that predict the viewing and illumination geometries of each pixel. 
Because of the confounding factors that influence a VIIRS scan from one 
night to the next (e.g., more/less cloudy days, with more/less moon 
illumination conditions), individual ENCC pixel-based values are not 
comparable over time. For accurate time-series detection (e.g., moni
toring short-term increases or reductions in artificial lights at night), 
users are referred to NASA’s Black Marble standard product suite 
(VNP46A1/VNP46A2 for Suomi-NPP). These standard products correct 
for short-term variations in lunar and environmental conditions. They 
also provide the necessary quality assurance (QA) flags and additional 
layers to identify and isolate potential sources of noise and measurement 
error (e.g., clouds, moonlight, and snow contaminated pixels) and var
iations (e.g. lunar and view angles and view time) in a statistically robust 
fashion. 

Accordingly, this paper aims to characterize the magnitude and 
extent of NTL uncertainties that arise from natural and extraneous 
sources and sinks of NTL emissions. Section 2 describes the datasets and 
methodology. The uncertainty of each factor is analyzed in Section 3. 
Section 4 discusses the contribution and coupled effects of these factors 
and potential solutions to characterize and reduce higher-order NTL 
uncertainty. 

2. Datasets and methodology 

2.1. Datasets 

NTL data from the NASA’s daily Black Marble products suite 
(VNP46) are used for quantifying radiance as functions of observing 
conditions in this study. To assist the analysis, four other datasets 
including NASA VIIRS BRDF/albedo product (VNP43), AERONET 
(Aerosol Robotic NETwork), Luojia-1 satellite imagery, and Los Angeles 
Region Imagery Acquisition Consortium (LARIAC), are also used. 

NASA’s Black Marble products suite (VNP46; Román et al., 2018) 
consists of Top-of-Atmosphere (TOA) DNB radiance along with ancillary 
data on the solar, lunar and viewing geometry, scene brightness tem
perature, cloud, snow, moon illumination fraction, moon phase, view 
time, glint angle, and quality flags (VNP46A1), lunar BRDF-corrected 
radiance (VNP46A2), and monthly and annual composite radiance 
(VNP46A3/4). Gap-filled radiance and adjusted cloud and snow mask 
during surface NTL retrieval are also provided in VNP46A2. Black 
Marble products minimize the extraneous noise by performing a novel 
“Turning off the Moon” and atmospheric correction retrieval strategy. 
Reflected lunar radiance is estimated and removed by integrating 

surface BRDF/Albedo acquired from VIIRS BRDF/albedo product 
(VNP43) (Liu et al., 2017; Schaaf et al., 2002; Wang et al., 2018b) and a 
lunar irradiance model (Miller and Turner, 2009). Atmospheric correc
tion is performed by the vector radiative transfer modeling (Román 
et al., 2018). A daily change of 0.43 nWcm− 2 sr− 1 can be successfully 
detected by Black Marble product (Román et al., 2018). 

NASA VIIRS BRDF/albedo product (VNP43) was retrieved with the 
RossThick-LiSparse Reciprocal (RTLSR) model (Liu et al., 2017; Schaaf 
et al., 2002; Wang et al., 2018b). RTLSR model was fitted with 16 days of 
clear sky multi-angular surface reflectance weighted by retrieval quality 
and temporal proximity to the day of interest to retrieve surface BRDF/ 
albedo. 

The vegetation effect on NTL was evaluated using Normalized Dif
ference Vegetation Index (NDVI), derived from VIIRS Nadir BRDF- 
Adjusted Reflectance (NBAR) (VNP43A4). The NASA products (VNP46 
and VNP43) were downloaded from NASA DAAC (earthdata.nasa. 
gov/eosdis/daacs). 

Surface based observations were leveraged for evaluation of aerosol 
effects. The AERONET (Aerosol Robotic NETwork), established by NASA 
and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Nor
malisation Satellitaire), is a globally distributed and long-term ground- 
based networks providing high-precision measurements of aerosol 
properties (Giles et al., 2019a). Nighttime Aerosol Optical Depth (AOD) 
was retrieved from lunar photometer measurements and available dur
ing moonlit nights (Barreto et al., 2019; Berkoff et al., 2011; Giles et al., 
2019b). Level 1.5 (cloud-screened and quality-controlled) daytime and 
nighttime AOD were downloaded from the NASA AERONET site 
(https://aeronet.gsfc.nasa.gov/). 

The Luojia-1 satellite, launched in June 2018, acquires 130 m spatial 
resolution nighttime low-light imagery (including NTL) through a 
panchromatic band (460-980 nm) developed at Wuhan University (Li 
et al., 2018c). The revisit period is 15 days with a local overpass time 
approximate 10:00 pm. The radiometrically calibrated nighttime light 
imageries were downloaded from the Luojia-1 satellite webpage (http:// 
59.175.109.173:8888) to evaluate the geometric effect on DNB NTL 
uncertainty. The footprint of DNB observations is not the same as the 
grid pixel coverage. The footprint of DNB observations acquired at 
different times within the same grid pixel is also not the same. 

Building heights over Los Angeles acquired from Los Angeles Region 
Imagery Acquisition Consortium (LARIAC) (https://lariac-lacounty.hu 
b.arcgis.com/) were compared with annual nighttime radiance to eval
uate the angular-viewing effect on NTL. The building heights were 
estimated from stereo imagery with approximately nominal 10 cm and 
28 cm GSD (Ground Sample Distance). The height shapefile was re- 
projected to geographic linear latitude longitude to match with night
time radiance. 

2.2. Study area 

Twenty-four globally-distributed sites in seven metropolitan areas 
representing a gradient of commercial urban center – residential – rural 
areas with different vegetation conditions and building heights were 
selected to evaluate NTL radiance uncertainty (Fig. 1, Table 1). No 
obvious land cover/land use changes were observed from google earth 
historical images over these selected locations during the study period. 
Commercial centers with different building heights were chosen to 
evaluate the impact of urban 3D infrastructure structure. The building 
heights of Beijing and Rome’s old town sites are much lower than other 
commercial center locations. 

Thirty-seven globally-distributed AERONET sites offering both day
time and nighttime AOD measurements were chosen to evaluate the 
aerosol effect (Fig. 1, Table 2). The land use of these sites ranges from 
natural areas, villages, small towns, middle towns, city edge to big cities. 
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2.3. Metrics to quantify the uncertainty 

To quantify uncertainties in NTL radiances, a few metrics are used, 
including coefficient of variation (CV), relative change, radiance-view 
zenith quadratic model, normalized difference between Hotspot and 
Darkspot NTL radiance (NDHDNTL), and semivariogram.  

(1) Coefficient of Variation (CV): 

CV =
SD
X

(1) 

Where SD represents Standard Deviation, X is the mean value. CV is a 
standardized measure of dispersion of the dataset. It indicates the rela
tive variability and allows the comparison of two datasets with different 
scoring mechanisms. CV is calculated from daily lunar BRDF-corrected 
NTL radiance.  

(2) Relative change: 

RC =

(
NTLTOA − NTLsurface

NTLsurface

)

*100% (2) 

Where NTLTOA represents top-of-atmosphere NTL radiance, NTLsurface 
is surface bottom-of-atmosphere NTL value. 

RCa =

(
NTLma − NTLca

NTLca

)

*100% (3) 

Eq. (3) was used to estimate the relative change with different lunar 
irradiance in Section 3.7. NTLma is the retrieved surface NTL using an 
misused surface albedo (e.g., snow albedo for snow-free surface). NTLca 
represents the surface NTL using correct albedo.  

(3) Radiance-view zenith quadratic model: 

R = ax2 + bx+ c (4) 

Where R represents lunar BRDF-corrected radiance, x is VZA. The 
highest/lowest NTL is located at –b/(2a) VZA.  

(4) Normalized Difference between Hotspot and Darkspot NTL 
radiance (NDHDNTL): 

NDHDNTL is implemented in the study as an angular index to char
acterize the surface anisotropic features and has been used to estimate 
vegetation canopy structure in some past studies (Chen et al., 2005; Wei 
and Fang, 2016). 

NDHDNTL =

(
NTLhotspot − NTLdarkspot

)

(
NTLhotspot + NTLdarkspot

) (5) 

Here NDHDNTL was utilized to estimate the angular characteristics of 

lunar BRDF-corrected NTL along with view angles. VZA was grouped 
into seven bins (0–10, 10–20, 20–30, 30–40, 40–50, 50–60, and 60–70 
degree). NTLhotspot is the highest radiance of the VZA bins and 
NTLdarkspot represents the lowest radiance.  

(5) Semivariogram: 

Semivariogram has been used to describe surface heterogeneity 
(Román et al., 2009; Wang et al., 2012, 2014). 

γE(h) = 0.5
∑

i− 1(Zxi − Zxi+h)2

N(h)
(6)  

Where γE(h) is the semivariogram between lunar BRDF-corrected NTL 
radiance within a certain distance h. N(h) represents the number of 
paired pixels at a distance of h. Zxi is the NTL radiance at pixel x and 
Zxi+h is the radiance of the paired pixel index i. Semivariogram is then 
fitted to a spherical model to estimate spatial attributes (Román et al., 
2009; Wang et al., 2012). 

γsph(h) =

⎧
⎪⎪⎨

⎪⎪⎩

c0 + c⋅

(

1.5
h
a
− 0.5

(
h
a

)3
)

for0 ≤ h ≤ a

c0 + c for h > a

(7) 

Sill value (c) is the maximum semivariance fitting the spherical 
model and range (a) represents the distance h at which semivariogram 
reaches an asymptote. Range describes the distance with no further 
correlation of NTL radiance associated with a point. c0 (nugget) in
dicates the semivariogram value at h = 0. 

The results for surface BRDF/albedo and AOD related NTL uncer
tainty analysis such as atmospheric, surface BRDF/albedo, snow, and 
cloud effects were simulated by the radiative transfer atmospheric 
correction model (Román et al., 2018). 

3. Factors impacting NTL uncertainty 

This paper mainly focuses on the NTL uncertainty corresponding to 
external factors such as view-angle, snow, aerosol, cloud, geometric, 
lunar irradiance, surface BRDF/albedo, vegetation, and aurora. NTL 
radiance variation due to human activities (Román and Stokes, 2015) is 
not discussed in this study. We found that NTL radiance exhibited strong 
heterogeneity with large varying spatial range. To reduce the geometric 
effect, discussed in Section 3.8, the average NTL radiance from a 3 by 3 
pixels window was used to evaluate the uncertainty corresponding to 
angular, aerosol, lunar, and vegetation effects. 

3.1. Angular effect 

Upwelling light measured by the DNB at night is composed primarily 
of direct light from artificial (e.g. street lamps, vehicle headlight, indoor 
light through a window), reflected light from neighboring light sources, 
and reflected lunar radiance. Reflected lights depend on land surface 
BRDF/albedo, which is anisotropic (Schaaf et al., 2002). Direct lights are 
usually not isotropic due to light characteristics. For example, street 
light lamps might be top-covered. Therefore the lamps could not be 
viewed from a nadir look but may be observed from off-nadir mea
surements (and in all cases produce reflected light off the surface). 
Building lights consist of indoor lights through windows, direct lights 
installed on building façade, and building reflected lights common over 
commercial buildings (Li et al., 2020). Most building lights might only 
be observed from an off-nadir view. Studies have found that nighttime 
light radiance illustrates a strong non-linear relationship with VZA fitted 
by the quadratic model (Li et al., 2019; Tong et al., 2020). NTL radiance 
usually increases toward high VZA at suburban residential regions while 
revealing a decreasing trend across dense urban centers. View Azimuth 
Angle (VAA) effect was weak with minor improvement for the model 

Fig. 1. Spatial distribution of chosen AERONET sites (red) and nighttime 
artificial light locations (blue). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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fitting (Li et al., 2019). At an urban commercial center formed by tall 
buildings, nadir looks observe more light from surface reflected street 
light, vehicle-emitted light, and commercial shop stores located at the 
buildings’ ground floor. Tall buildings are more likely to shield lights 
along roadways. Therefore off-nadir observations sense more light from 

direct lights installed on building façade, building reflected lights, and 
indoor lights through windows. 

3.1.1. Zenith angle 
NTL radiance at commercial centers dominated by tall buildings such 

Table 1 
Locations of chosen artificial light sites. The metrics (Section 2.3) were calculated based on the mean value of 3 by 3 pixels in 
2018 from daily VNP46A2 product. Red colour of –b/2a indicated negative a value. 

Site
Loca�o
n La�tude Longitude

Land use 
type CV SD

NDHD
NTL -b/(2a)

Coefficient of 
determination
(R-squared) 
before/a�er

site1
Los 
Angeles 34.05 -118.26

commerc
ial area 0.26 54.21 0.42 46.82 0.00/0.00

site2
Los 
Angeles 34.01 -118.31

residen�
al area 0.15 6.21 0.29 13.19 0.04/0.00

site3
Riverdal
e 36.43 -119.86 rural 0.23 2.69 0.27 15.60 0.19/0.02

site4
New 
York 40.76 -73.98

commerc
ial area 0.31 83.60 0.75 44.51 0.00/0.01

site5
New 
York 40.70 -73.51

residen�
al area 0.36 9.81 0.18 10.31 0.04/0.03

site6
Greenwi
ch 41.07 -73.61

Residen�
al area 0.41 1.57 0.17 30.38 0.19/0.00

site7
West 
Milford 41.03 -74.39 rural 0.51 0.79 0.45 7.54 0.24/0.00

site8 Sydney -33.87 151.21
commerc
ial area 0.21 28.21 0.3 52.86 0.00/0.01

site9 Sydney -33.89 151.10
residen�
al area 0.15 2.20 0.19 -40.34 0.18/0.01

site10 Oberon -33.70 149.86 rural 0.42 2.92 0.1 39.82 0.20/0.02

site11 Beijing 39.93 116.40
commerc
ial area 0.15 5.90 0.06 26.14 0.04/0.00

site12 Beijing 39.91 116.45
commerc
ial area 0.25 21.74 0.15 47.26 0.01/0.00

site13 Beijing 39.85 116.41
residen�
al area 0.18 7.40 0.04 30.65 0.03/0.00

site14
Bianjiap
ucun 38.81 116.22 rural 0.36 0.31 0.22 -13.40 0.40/0.04

site15 Dubai 25.08 55.14
commerc
ial area 0.18 47.31 0.52 40.24 0.00/0.00

site16 Dubai 25.17 55.22
residen�
al area 0.12 9.25 0.05 31.51 0.03/0.01

site17 Sharjah 25.21 55.73 rural 0.3 2.15 0.06 57.70 0.32/0.01

site18
Jerusale
m 31.76 35.21

commerc
ial area 0.11 10.94 0.07 34.71 0.02/0.00

site19 Jericho 31.86 35.46
Residen�
al area 0.19 6.35 0.11 19.41 0.04/0.01

site20 Na'omi 31.91 35.47 rural 0.33 2.52 0.09 4.27 0.34/0.02

site21 Rome 41.90 12.48
commerc
ial area 0.18 39.32 0.47 44.18 0.00/0.00

site22 Rome 41.88 12.57
residen�
al area 0.13 6.11 0.07 30.14 0.02/0.00

site23 Rome 41.86 12.68
residen�
al area 0.14 5.08 0.06 -12.51 0.02/0.00

site24
Moricon
e 42.12 12.77 rural 0.32 2.89 0.25 14.29 0.12/0.01
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as Site-1 in Fig. 2, decreased toward high VZA,looking at an oblique 
angle toward the lights. Site-18 is located at an urban center with mixed 
land-use types and dominated by four to six-story buildings. The radi
ance first decreased and then slightly increased toward high VZA. The 
relationship is sophisticated over residential sites. Site-2, residential 
areas dominated by single-story houses, showed an increasing trend 
with VZA. The relationship at Site-13 was nearly neutral, and the radi
ance of Site-22 slightly decreased toward high VZA. Site-13 is comprised 
of tall apartments with most buildings higher than nine-story while Site- 
22 is formed by approximate five-story apartments. Site-3 is located in a 
rural area dominated by single-family houses and surrounded by farm
land. The radiance of this site continuously increased along with VZA. 

The variation of NTL radiance with VZA of the 24 sites in 2018 was 
quantified by CV, NDHDNTL, and darkspot/hotspot location indicated by 
-b/(2a) from quadratic model fitting (Table 1). Rural sites had the 
highest CV values with a large standard deviation than mean values (e. 
g., Fig. 16 Site- 6) though the SD values are the least. CV of most com
mercial center locations was slightly higher than the adjacent residential 
regions. The variation of commercial centers appears to be dominated by 
observations around nadir look observations (e.g. Fig. 19 Site-21). 
Commercial center sites had the largest NDHDNTL as a result of high 
NTL radiance at nadir look (hotspot) and dramatically dropped radiance 
toward high VZA (darkspot). The NTL radiance of rural Site-3, 7, 14, and 
24 illustrated an increasing trend toward high VZA with NDHDNTL 
values above 0.2. Near zero NDHDNTL indicated low or no relationship 
between NTL radiance and VZA such as several rural sites (Site-13, 17, 
and 20), residential sites (Site-16, 18, 22, and 23), and commercial 
center sites with low height buildings (Site-11 and 18). –b/(2a) was 
utilized to locate the cold effect of radiance (Li et al., 2019). The –b/(2a) 

value is usually high over commercial sites where NTL radiance goes 
down with VZA and low at sites that NTL radiance elevates with VZA. 
The effect of –b/(2a) depends on the coefficient a which indicates the 
curvature of the quadratic model. The coefficient a value is relatively 
low, closing to zero in particular at sites unrelated to VZA. Site-10 and 
22 had a negative coefficient a values. NTL radiance of these two sites 
was relatively stable over near nadir looks and slightly decreased toward 
high VZA, therefore here –b/(2a) indicated hotspot instead of darkspot 
VZA (e.g. Fig. 2, Site-22). Site-22 and 23 are both located at the 
metropolitan of Rome and dominated by four-six story apartments. The 
radiance of Site-22 decreased toward high VZA while Site-23 showed an 
opposite trend. 

The data acquisition time is the same for nadir looks while apart from 
approximate 2 h at VZA above 60 degrees at mid/low latitude areas 
(Fig. 2). This indicated that high radiance variation at commercial 
centers over nadir is not impacted by the diurnal changes (Li et al., 
2020). The high variation at nadir is also less influenced by VAA since 
nadir looks mainly observe lights from the surface and almost no lights 
from the side of the buildings. Since the vegetation effect over com
mercial centers is also small (Fig. 16), the high variation could be caused 
by i) human activities and changes that are common across dense 
commercial centers (e.g., holiday lighting), ii) incorrect AOD used for 
NTL radiance retrieval (Fig. 13), or iii) cloud/snow contamination. 

NTL radiance of most sites was normally distributed while several 
sites (e.g. Site-4, 6, 15, and 17) showed skewed distribution which is 
highly related to VZA (Fig. 3). NTL radiance of most observations was 
low at rural Site-6 and 17. The radiance of only a few observations was 
extremely high to nearly 1000 nWcm− 2 sr− 1 around nadir looks at 
commercial sites (e.g., Site-4 and 15). 

Table 2 
Location of the 37 AERONET sites and the metrics of AOD in 2019. ‘Nstd’ is the nighttime 500 nm AOD standard deviation. ‘Nmean’ corresponds to the mean nighttime 
AOD. ‘StdDif’ is the standard deviation of the difference between daytime and nighttime AOD. ‘MeanDif’ is the mean difference between daytime and nighttime AOD.  

Site name Latitude Longitude Land type Nstd Nmean StdDif MeanDif 

Bandung − 6.89 107.61 big city 0.32 0.63 0.32 0.29 
Beijing-CAMS 39.93 116.32 bit city 0.42 0.48 0.29 0.23 
Chiba_University 35.63 140.10 big city 0.22 0.2 0.13 0.1 
Dhaka_University 23.73 90.40 big city 0.38 0.85 0.25 0.3 
Fukuoka 33.52 130.48 big city 0.21 0.23 0.08 0.08 
CCNY 40.82 − 73.95 big city 0.1 0.14 0.06 0.06 
NASA_Ames 37.42 − 122.06 big city 0.02 0.08 0.02 0.02 
MD_Science_Center 39.28 − 76.61 city 0.02 0.11 0 0 
Mongu_Inn − 15.27 23.13 city 0.08 0.17 0.04 0.04 
Kanpur 26.51 80.23 city 0.39 0.59 0.33 0.25 
Burjassot 39.51 − 0.42 city 0.09 0.12 0.04 0.04 
Medellin 6.26 − 75.58 middle town 0.04 0.13 0.03 0.04 
Palangkaraya − 2.23 113.95 middle town 0.81 0.64 0.43 0.26 
Reykjavik 64.13 − 21.90 middle town 0.08 0.15 0.04 0.04 
Bac_Lieu 9.28 105.73 small town 0.16 0.36 0.14 0.15 
Dalanzadgad 43.58 104.42 small town 0.09 0.11 0.07 0.04 
Fresno_2 36.79 − 119.77 small town 0.04 0.11 0.02 0.03 
GSFC 38.99 − 76.84 small town 0.09 0.13 0.05 0.05 
Jambi − 1.63 103.64 small town 0.82 0.77 0.62 0.38 
Payerne 46.81 6.94 small town 0.07 0.15 0.05 0.06 
Raciborz 50.08 18.19 small town 0.14 0.21 0.07 0.08 
SDSU_IPLab 44.32 − 96.79 small town 0.08 0.15 0.06 0.06 
Thimphu 27.47 89.64 small town 0.15 0.27 0.1 0.13 
Gangneung_WNU 37.77 128.87 city edge 0.12 0.2 0.2 0.14 
Kashi 39.50 75.93 middle town edge natural 0.23 0.5 0.14 0.17 
Caillouel_COBIACC 49.62 3.13 rural/village 0.07 0.16 0.03 0.03 
Ilorin 8.48 4.68 village 0.47 0.72 0.22 0.18 
Migal 33.24 35.58 village 0.13 0.26 0.1 0.1 
Amazon_ATTO_Tower − 2.14 − 59.00 natural area 0.08 0.14 0.02 0.02 
Barrow 71.31 − 156.67 natural area 0.01 0.07 0.01 0.01 
DEWA_ResearchCentre 24.77 55.37 natural area 0.19 0.39 0.09 0.1 
Huancayo-IGP − 12.04 − 75.32 natural area 0.09 0.12 0.04 0.03 
Kangerlussuaq 67.00 − 50.62 natural area 0.11 0.14 0.11 0.06 
Lulin 23.47 120.87 natural area 0.08 0.07 0.04 0.04 
Railroad_Valley2 38.50 − 115.69 natural area 0.04 0.07 0.03 0.02 
SERC 38.89 − 76.56 natural area 0.11 0.15 0.06 0.06 
Upington − 28.38 21.16 natural/desert 0.08 0.1 0.04 0.03  
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Fig. 2. Boxplot of NTL radiance along with VZA in 2018. Acquisition time was plotted as red dots. The location of each site was listed in Table 1. VZA was grouped to 
seven bins (0–10, 10–20, 20–30, 30–40, 40–50, 50–60, and 60–70 degrees). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 3. Histogram of NTL radiance at Site-4, 5, 6, 15, 16, and 17.  
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3.1.2. View Azimuth Angle (VAA) 
Nighttime light pollution is originated from sky luminance from at

mospheric scattered artificial light (Falchi et al., 2016). Although the 
VAA, relative to north, effect is less significant than the VZA effect (Li 
et al., 2019), the impact of VAA on NTL radiance was found at urban 
edge region driven by diffuse atmospheric scattering along the satellite 
scan direction (Sanchez de Miguel et al., 2020; Tong et al., 2020) (Figs. 4 
and 5). Atmospheric scattered urban artificial light increased the NTL 
radiance over natural ‘no-NTL’ areas, particularly if the target was 
observed from the along-scan direction passing through the sky above 
the urban zone (Fig. 4). Elevated radiances over natural areas were 
consistent with VAA at Las Vegas during moon free night (Fig. 5). For 
example, NTL radiance of natural area was enhanced to 3.0 nWcm− 2 

sr− 1 at Las Vegas on Day of Year (DOY) 343, 2018. This effect is com
parable to NTL radiance from villages. This scenario also indicated that 
the radiance of darker areas within urban corridors could be increased 
by adjacent brighter urban centers by VAA effects. 

3.1.3. Building structure 
NTL radiances at commercial sites with tall buildings were mostly 

higher than 100 nWcm− 2 sr− 1 particularly for nadir looks (e.g. Fig. 2 
Site-1, Fig. 3 Site-4, 15), and brighter than the sites with low buildings. 
For instance, the median radiance of Beijing’s old town area (Site-11) 
with low buildings was 39 nWcm− 2 sr− 1 in 2018, much lower than the 
median radiance of nearby Site-12 (87 nWcm− 2 sr− 1) dominated by high 
rise buildings. NTL radiance was also positively associated with building 
heights with R2 of 0.388 in Los Angeles, but the relationship was weak 
over tall buildings (Fig. 6 (c)). The R2 between building heights and NTL 
radiance has no significant relationship with VZA and VAA in Los 
Angeles based on 181 days of mostly clear daily VNP46A2 data in 2012. 
The NTL radiance of commercial urban centers mainly comes from the 
traffic, billboard signs, and floodlights and generally higher than the 
radiance of other land uses. The NTL radiance emitted from the windows 
from off-nadir measurements of Los Angeles urban center is also much 
higher than other regions. The R2 is not high since the NTL radiance 
could be high at low building height area. For example, the NTL radi
ance at Port of Long Beach with nearly no buildings, southwest of Los 
Angeles, is close to Los Angeles commercial urban center. Tall buildings 
used for business activities have more lights emitted from street-level 
sources, building façades, and window lights around midnight. The 
radiance of high-rise residential apartments are also darker than com
mercial buildings though with similar height. Reflected street and 
building façade lights of residential apartments are much lower than 
commercial buildings. For instance, the radiance of commercial center 

Site-21 with low height buildings was much higher than the residential 
area with similar building heights. Therefore, considering land-use types 
and changes is a key prerequisite for characterizing the relationship 
between building heights and NTL radiance. 

Our results suggest that building height is one of the key factors 
driving the angular effect in NTL radiance (Li et al., 2019). NTL radiance 
from nadir look is mainly from street lights with less contribution from 
building façade and window lights. Off-nadir observations over tall 
building areas are dominated by reflected lights from building façade 
and direct lights from side windows while the street lights are shielded 
by tall buildings. The magnitude of lights from the building façade is 
related to building type (e.g., commercial or residential). The building 
side facing to commercial streets is usually brighter than other sides, 
which could induce VAA related NTL radiance variation. 

3.2. Surface BRDF/albedo 

High surface BRDF/albedo increases reflected lights from street 
lamps and lunar irradiance (Román et al., 2018). The atmospheric effect 
is also enhanced by a high surface BRDF/albedo area with elevated 
multi-scattering (Section 3.4). The albedo of the areas with NTL radi
ance larger than 2.0 nWcm− 2 sr− 1 was mainly less than 0.45, and the 
peak albedo was around 0.1–0.15 (Fig. 7). The albedo on DOY 180 was 
slightly higher than the values on DOY 360 in 2012. Most artificial lights 
are distributed in the northern hemisphere where vegetation is at 
growing peak condition in the late spring (DOY ~180). Vegetation 
reflectance at DNB (500–900 nm) is also higher than most urban infra
structure properties (Moreira and Galvão, 2010; Yan et al., 2015). 

The magnitude of surface NTL radiance increased by moonlit is 
comparable to artificial light radiance in rural and suburban regions 
(Fig. 8). As such, reflected moonlight radiance varying with the lunar 
cycle is another major source of noise for time series analysis, particu
larly for short-term events such as power outage recovery (Román et al., 
2019). The recovery could be false caused by the moon phase changing 
from new moon to full moon. 

Reflected lunar radiance also rises with higher albedo and downward 
lunar irradiance (Fig. 9). To illustrate, we calculated the reflected lunar 
radiance with AOD set to 0.05 by the radiative transfer atmospheric 
correction model (Román et al., 2018) to minimize the atmospheric 
effect. Note the reflected lunar radiance is positively linear associated 
with albedo. Lunar irradiance was approximately 140 nWcm− 2 during 
the Full Moon. Reflected lunar radiance was about 5 nWcm− 2 sr− 1 at 
surface albedo peak value of 0.15 over artificial light regions (Fig. 7) and 
reached to above 25 nWcm− 2 sr− 1 when albedo is 0.9 for snow or cloud 

Fig. 4. A schematic diagram describing the increased in NTL radiance over a natural area adjacent to urban corridors due to atmospheric scattering effect (path 
radiance) along the satellite scan direction. 
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on Full Moon nights. 

3.3. Lunar effect correction 

For NASA’s Black Marble product, reflected lunar radiation is 
routinely corrected based on surface BRDF/albedo and lunar irradiance 
(Fig. 10). A radiometry-based lunar irradiance model (MT2009) (Miller 
and Turner, 2009) calculates lunar irradiance. MT2009 provides 1 nm 
spectral resolution lunar irradiance and aims to generate TOA down
welling lunar irradiance at any location/time. Lunar phase angle, lunar 
spectral albedo, and Sun/Moon/Earth geometry are crucial parameters 
in the model while the opposition effect, libration effect, and waxing and 
waning lunar phases are currently ignored in the initial MT2009 model. 
The spectral lunar irradiance result is convolved with the VIIRS DNB’s 
post-launch spectral response function to yield downwelling TOA lunar 
irradiance for a given scene. The uncertainty of MT2009 due to ap
proximations mentioned above was estimated on the order of 7–12% 
(Miller and Turner, 2009), with the majority of uncertainty arising from 
the lunar phase and opposition being the largest contributors. Im
provements to this model to account for these effects are forthcoming, 
are anticipated to further reduce uncertainty to ~5%. Modeled lunar 
radiance matched DNB observations with R2 of 0.989 evaluated at Dome 
C Antarctic and Greenland (Shao et al., 2014, 2013). MT2009 under
estimated the lunar irradiance near the full moon by ~7% (Cao et al., 
2019; Zeng et al., 2018). Zeng et al. (2018) also improved the MT2009 
on waxing and waning lunar phases based on SeaWiFS lunar observa
tions. The uncertainty of lunar irradiance estimation by topography and 

Fig. 5. VNP46A1 NTL radiance at Las Vegas viewed from (a) nadir look on DOY 111, 2018, (b) large VZA with satellite located at the left side of Las Vegas on DOY 
13, 2018, and (c) large VZA with satellite located at the right side of Las Vegas on DOY 343, 2018. 

Fig. 6. Relationship (c) of annual composite VIIRS Nighttime Light (500 m) in 2012 (a) and building heights (LARIAC4) generated from imageries including 2012 
and 2013 (b) at Los Angeles. 

Fig. 7. Histogram of surface snow-free DNB albedo over global areas with NTL 
radiance larger than 2nWcm− 2 sr− 1 on DOY 180 and 360 in 2012. 
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libration effects is very small, and lunar surface heterogeneity influence 
is low at coarser resolution (Zeng and Li, 2019). 

We illustrate how lunar reflected radiance is successfully removed in 
Black Marble (VNP46) standard processing, both over natural (Román 
et al., 2018) and artificial light areas (Fig. 10). The R2 between lunar 
BRDF-corrected radiance and moon illumination fraction dropped to 
less than 0.044 at all of the four sites in Fig. 10. Lunar contribution in
creases when the moon illuminated fraction is larger than 40% and 
grows rapidly beyond moon illuminated fractions of 80%. The influence 
of lunar radiance highly depends on surface BRDF/albedo (Fig. 9) and is 
much larger over rural areas than urban centers (Fig. 10). As such, 
methods that do not consider these higher-order effects will likely suffer 
from additional retrieval uncertainties. 

NTL TOA radiance increased from ~1 nWcm− 2 sr− 1 during moon- 
free night to 10.0 nWcm− 2 sr− 1 during full moon night at rural Site-1. 
The R2 of linear regression was 0.401 between moon illumination 
fraction and TOA radiance at Site-1. TOA NTL radiance was doubled 
from moon free to full moon nights at Site-9 and Site-10 with R2 reduced 
to 0.178 and 0.203, respectively. Urban center regions were less 
impacted by lunar irradiance with nearly zero R2 between moon illu
mination fraction and TOA NTL radiance at Site-8. 

3.4. Atmospheric effect 

Atmosphere particles scatter light and thus reduce observed up
welling urban artificial light radiance (Fig. 13). The nighttime atmo
sphere can also enhance the radiance of natural areas in close proximity 
to urban corridors (Fig. 5) (Sanchez de Miguel et al., 2020; Tong et al., 
2020). Daytime AOD from the previous day is utilized for Black Marble 
product atmospheric correction as no nighttime AOD product is 
currently available. A nighttime radiative transfer model was developed 
to retrieve nighttime AOD using the blurring effect of aerosol layers on 
an artificial light source (Johnson et al., 2013; McHardy et al., 2015; 
Zhang et al., 2019, 2008) and indicated that the diffuse correction is 
important for heavy aerosol loadings (Zhang et al., 2019). Wang et al. 
(2020b)) developed a nighttime shortwave 1D UNified and Linearized 
Radiative Transfer Model (UNL-VRTM) to simulate the TOA radiance 
and address the questions associated with aerosol. The results illustrated 
that the VIIRS DNB’s Relative Spectral Response (RSR) Function and 
surface illumination source spectrum are crucial factors to reduce the 
uncertainty of AOD retrieval. 

The difference between daytime and nighttime 500 nm AOD of the 
chosen 37 AERONET sites was relatively small and less than 0.05, 0.1, 
and 0.25 for 58%, 73%, and 92% of the observations respectively in 
2019 (Fig. 11 (a)). 62% of nighttime AOD was less than 0.2 (Fig. 11 (b)). 
Several sites experienced strong seasonal variation (e.g., Huancayo, 
Dalanzadgad, Arm_SG, GSFC, Rexburg) with higher AOD during summer 
(Fig. 12). While the seasonal pattern of the difference of daytime and 
nighttime AOD is minor. Mostly the daytime and nighttime AOD dif
ference is less than 0.1 (Figs. 11 and 12). The effect of 0.1 different AOD 
on NTL radiance is less than 5% (Fig. 13) which usually has much lower 
effect than vegetation (e.g. Fig. 16 Site-6). Six sites of the difference 
between daytime and nighttime AOD showed seasonal patterns. Four of 
them (Burjassot, CCNY, Chiba_University, and GSFC) have artificial light 
and the remaining two sites (DEWA_ResearchCentre and SERC) are 
located in natural areas. The daytime and nighttime AOD difference of 
sites Burjassot, CCNY, and Chiba_University showed normal distribution 
centered at zero. Only GSFC site showed few more days with daytime 
AOD higher than nighttime AOD during summer. AOD was also rela
tively higher over urban areas than natural and suburban locations 
(Table 2). High AOD over urban areas could be caused by human ac
tivities and related fossil fuel emissions. Most of the big cities experi
enced high AOD mean (up to 0.85) and standard deviation (up to 0.42) 
(Fig. 12 and Table 2). The mean difference and standard deviation AOD 
between daytime and nighttime of big city sites were large which 
reached up to 0.30 and 0.32 respectively. The high difference between 
daytime and nighttime AOD significantly increases the uncertainty 

Fig. 8. VNP46A1 TOA radiance (left), VNP46A2 lunar BRDF-corrected radiance (middle), and DNB albedo (right) at tile h06v05 on a Full Moon night from DOY 116 
in 2013. 

Fig. 9. Reflected lunar radiance along with albedo and lunar irradiance.  
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during NTL atmospheric correction. 
We estimated the relative change of radiance (Eq. (2)) using the 

Black Marble atmospheric correction radiative transfer model during the 
moon-free night, excluding lunar effect (Fig. 13). The relative change of 
radiance has no relationship with the magnitude of surface NTL radiance 
during moon-free nights. TOA NTL radiance was reduced with higher 
AOD loadings. High surface albedo mitigated the AOD effect with more 
downward atmosphere scattered light reflected back to the sky. AOD 
effect was enhanced with the increase of VZA, which raised the length of 
light interacting with the atmosphere. NTL radiance decreased over 30% 
with 0.8 AOD, 0.05 surface albedo, and 60-degree VZA. The relative 
change was − 12% for typical retrieval conditions with a surface albedo 
of 0.1 and AOD of 0.2. 

California experienced severe wildfires in 2020. Fresno was covered 
by fire smoke in mid-Aug and Sep. Fig. 14 illustrated that TOA NTL 

radiances at cloud-free nights with heavy AOD loadings (AOD at 500 nm 
> 1.0) were dimmer than regular days in particular during the days with 
high VZA with longer path length through heavy AOD atmosphere. 
These results underscore the critical need for consideration of atmo
spheric conditions in the retrieval of NTL time series. The use of TOA 
NTL composites should thus be avoided, particularly for studies 
requiring a consistent NTL time series record to assess human activities 
and changes. 

3.5. Cloud mask 

NASA VNP35 nighttime cloud mask is currently derived from the 
VIIRS thermal infrared bands (Hutchison et al., 2005). VNP35 algorithm 
tuned the thresholds to balance the leakage and false alarms though 
shared the same core algorithm with MODIS cloud mask product 

Fig. 10. Relationship between moon illumination fraction and TOA NTL radiance (top) and lunar BRDF-corrected radiance (bottom) at Site-4, 10, 9, and 8 in 2018.  

Fig. 11. Histogram of the difference of daytime and nighttime AOD (left) and histogram of nighttime AOD (right) over the 37 AERONET sites listed in Table 2 
in 2019. 
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(MOD35) (Ackerman et al., 1998). The hit rate of nighttime VNP35 
cloud mask was 86.4%, 94.5%, and 94.0% for global, 60s-60N land, and 
desert, respectively, evaluated using Cloud-Aerosol Lidar with Orthog
onal Polarization (CALIOP) product (Kopp et al., 2014). The false alarm 
was 4.4%, 1.5%, and 0.9% while the missed cloud was 7.3%, 3.7%, and 
4.9% respectively. Poor accuracy was found over the polar region (Kopp 
et al., 2014). A random forest method was developed using DNB only to 

detect clouds with the accuracy of up to 85% for urban test sites (Joa
chim and Storch, 2020). Urban regions usually suffer from the heat 
islands effect making it difficult to tune the thresholds for cloud detec
tion. Note, for example, some cloud coverage over urban regions in tile 
h29v05 on DOY 004, 2016 (e.g. Fig. 15 (d) black rectangle region) was 
not detected. Nighttime thin cirrus cloud detection is challenging since 
the signal of shortwave-infrared 1.38 μm band, usually utilized to detect 

Fig. 12. Temporal daytime and nighttime AOD over AERONET sites in 2019. The dates with AOD were clustered since AOD was measured during moonlit nights. 
The vertical bar represents the difference AOD between daytime and nighttime. 
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cirrus cloud (Ackerman et al., 1998; Gao and Kaufman, 1995; Hutchison 
et al., 2012; Zhu et al., 2015), is weak at night. Cirrus cloud contami
nation is also important for nighttime aerosol retrieval (Johnson et al., 
2013). 

Cloud misclassification is one of the major sources of NTL radiance 
outliers which differ significantly from other observations. Cloud im
pacts on artificial light also depend on cloud types and moon conditions 
(Garstang, 2007; Jechow et al., 2019). Partial artificial lights could 

Fig. 13. Relative change of NTL radiance along with AOD and albedo over different view angles.  

Fig. 14. DNB TOA NTL radiance with VZA at AERONET Fresno site in 2020 (left). Red dots represent NTL radiance corresponding to nights with heavy aerosol 
loadings caused by California wildfires (nighttime AOD at 500 nm > 1.0). DNB TOA NTL radiance on DOY 233 (middle, during wildfire) and 239 (right, after 
wildfire) in 2020. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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penetrate thin clouds, while thick clouds can completely obscure up
welling lights. Thin clouds can reduce the artificial light radiance (e.g. 
Fig. 15 (c) east part of the tile), and can result in a drop in NTL radiance 
to near-zero when covered by thick cloud (Fig. 15 (c) south part of the 
tile) on moon-free nights. 

Cloud contamination is also complicated on moonlit nights. NTL 
radiance over natural areas increases from zero to cloud reflected lunar 
radiance. The observed radiance over rural areas increases if artificial 
light radiance is lower than cloud reflected lunar radiance, decreasing 
when upwelling artificial light radiance is higher than cloud reflected 
lunar radiance covered by thick clouds. The radiance changes in rural 
areas covered by thin clouds depend on the sum of reduced radiance and 
cloud-reflected lunar radiance. Both thin and thick clouds reduce the 
NTL radiance over the urban centers since the cloud reflected lunar 

radiance is much lower than artificial light. Cloud reflectance could 
reach 0.9 over the DNB spectrum (Schlundt et al., 2011). Cloud reflected 
lunar radiance can be larger than 25 nWcm− 2 sr− 1 for thick clouds 
during full moon night (Fig. 9), assuming no aerosol loading above the 
cloud. 

3.6. Vegetation effect 

Vegetation phenology is one of the drivers of NTL seasonal variation 
(Levin, 2017; Levin et al., 2020; Román et al., 2018). For regions 
characterized by deciduous trees, vegetation canopy leaves block arti
ficial lights during the leaf-on season while more light could penetrate 
the vertical layer because of the larger gap fraction during the leaf-off 
period. Various algorithms have been applied to eliminate the 

Fig. 15. Impact of cloud contamination for tile h29v05. (a) gap-filled surface NTL radiance on DOY 027 in 2016, (b) TOA radiance during the moonlit night on DOY 
027 in 2016, (c) TOA radiance during the moon-free night on DOY 004 in 2016, and (d) VNP35 cloud mask on DOY 004 in 2016. 
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seasonal effect (Xie et al., 2019; Zheng et al., 2019). 
Temporal NTL radiance at residential Site-6 was inversely correlated 

with vegetation index (Fig. 16). NDVI reached 0.8 during the vegetation 
growing season and dropped to 0.5 during the dormant period. The 
radiance was around 3 nWcm− 2 sr− 1 during the leaf-on period and 
doubled during the leaf-off period. Site-4 is located at the commercial 
center of New York City with high-rise buildings. The magnitude and 
seasonal vegetation variation of NDVI were low compared to Site-6. The 
temporal NTL radiance of this site was stable indicating nominal impacts 
by vegetation. The vegetation of Site-2 is evergreen without seasonal 
variation and NTL radiance was stable within one year. 

Evident seasonal NTL radiance was found at Site-22, where vegeta
tion NDVI was steady without seasonal changes. The seasonal NTL 
radiance variation was not caused by snow since only one snowfall 
happened in Rome on Feb 26 in 2018 and the snow melted within one 
week. Human activities could be the driver of seasonal NTL radiance 
changes at this location. Chen et al. (2019b) also noted that the NTL 
seasonality was impacted by human activities over different land-use 
types across Shanghai. Both Site-2 and Site-22 are located at a homog
enous residential area with similar NTL radiance (ranging from 30 to 60 
nWcm− 2 sr− 1). The NTL radiance of Site-2 is more scattered than Site-22 
with larger variation among adjacent days. 

3.7. Snow effect 

Currently, for Collection V001, the nighttime snow/ice flag in NASA 
VIIRS Collection1 comes from National Snow & Ice Data Center (NSIDC) 
and was derived from Brightness Temperature measured by Special 

Sensor Microwave Imager/Sounder (SSMIS) onboard DMSP (Armstrong 
and Brodzik, 2001). The coarse 25 km spatial resolution snow product 
results in large areas of leakage and false alarms (Fig. 17). Misclassifi
cation of snow significantly impacts surface NTL radiance retrieval 
considering high snow albedo. Daytime moderate spatial resolution (1 
km) snow/ice flag from the previous daytime will be used in NASA 
Collection V002 reprocessing (c. late fall, 2021). This strategy will 
dramatically reduce spatial snow extent uncertainty. Ephemeral snow 
might melt quickly; therefore, snow observed on daytime could melt 
before the following nighttime observation. Surface snow/snow-free 
status in Black Marble product (VNP46A2) is further refined based on 
the reflected lunar radiance during moonlit nights. The surface is flagged 
as snow in VNP46A2 if reflected lunar radiance could be better corrected 
by snow BRDF/albedo than snow-free BRDF/albedo. 

As was shown in Fig. 9, reflected lunar radiance is around 23 
nWcm− 2 sr− 1 during full moon night with an albedo of 0.8 (character
istic of a snow surface). The albedo value of partial snow surface is less 
than pure snow albedo varying with snow cover fraction. The relative 
change (Eq. 3) of retrieved lunar BRDF-corrected NTL radiance (i.e., 
using incorrect surface albedo because of snow flag misclassification) is 
listed in Table 3. The relative change by misused snow albedo is rela
tively low (< 6%) during moon-free nights. Conversely, the snow- 
contaminated surface reflected artificial light is enhanced by reflected 
lunar radiance during moonlit nights, with the most dramatic differ
ences produced on strong moonlit nights coupled with significantly 
incorrect surface albedo assumptions, as expected. The retrieved surface 
NTL radiance is 78.4% higher than the actual radiance for snow surface 
with 0.8 albedo, particularly if the surface is misclassified as snow-free 

Fig. 16. Temporal snow-free surface NTL radiance (green dots) and vegetation index (NDVI, represented by the orange lines) at Site-2, 4, 6, and 22 in 2018. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and the DNB albedo is set to a snow-free value of 0.1. 

3.8. Geometric effect 

The geolocation accuracy of NASA VIIRS swath products has a mean 
residual of 2 m with a root mean square error of less than 70 m along 
track and 60 m along scan direction (Wolfe et al., 2013). The NASA 
Black Marble products grid 750 m footprint DNB observations to 15 arc 
sec geographic latitude/longitude pixel. Gridding artifacts resulting 
from a mismatch between a grid cell and observation footprint increase 
the geolocation uncertainty (Tan et al., 2006; Campagnolo et al., 2016). 
The spatial coverage of 15 arc sec geographic Lat/Lon grid ranges from 
463 m at the equator to less than 100 m at 80-degree latitude. Therefore 
the signal of each pixel contains information from the area out of the 
grid coverage. As such, as a good practice, a 3 × 3-pixel averaging 
window is recommended for temporal analysis (Román et al., 2018). 
NTL radiance intensity varies dramatically over different urban regimes 
with high heterogeneity (Li et al., 2020). Here we evaluated the NTL 
heterogeneity with several spatial scales averaging windows such as 
single-pixel, 3 × 3, 5 × 5 and 7 × 7 window regions. 

The spatial ranges (a) of the four sites varied from 562 m (Site-13 
Beijing) to 726 m (Site-2 Los Angeles) for 2 km subset statistics, and 
were larger than the established 15 arc sec pixel spatial coverage of the 
VNP46 product. This indicates that higher temporal NTL radiance 
variation is expected based on a single pixel. Site-13 was the most ho
mogeneous among the four sites. The sill values of three spatial scales (2 
km by 2 km, 3.5 km by 3.5 km, and 5 km by 5 km) at Site-13 were close, 
and the range was the smallest compared to the other three sites. The 
range of Site-2 Los Angeles was the largest, and street lines were much 
brighter than residential houses (Fig. 18). The spatial heterogeneity of 
Site-22 Rome is close to Site-13 Beijing with slightly higher sill values 
(4000) compared to Beijing (3000) using a larger spatial statistics sub
set. Site-21 Rome urban center had the highest sill value indicating high 

radiance variation. The range of this site was larger than 1000 m at a 
large statistics subset. 

We have also evaluated the relationship of radiance and VZA with 
different spatial averaging window sizes as shown in Fig. 19. The dis
tribution of different spatial scales radiance of Site-13 is similar, with 
nearly no change of CV values (Fig. 19). The spatial scaling effect is most 
significant at Site-21. The CV of Site-21 dropped from 0.28 at a single 
pixel, to 0.18 at 3 by 3 pixels average, and kept stable from 5 by 5 to 7 by 
7 average (CV = 0.15). NTL radiance variation slightly decreased by 
averaging more pixels at Site-22. The variation of radiance at Site-2 was 
stable up to 5 by 5 pixels averaging while increased by averaging 7 by 7 
pixels, indicating that NTL radiance is homogeneous within 5 by 5 pixels 
range and becomes heterogeneous over a larger area with more low 
values below 30 nWcm− 2 sr− 1. 

3.9. Aurora 

Aurora is one of the major ephemeral extraneous light emissions at 
high latitude (Newell et al., 2014). Aurora oval spatial coverage is 
temporarily enlarged by a geomagnetic storm. The size, location, and 
shape of aurora oval and localized aurora could change in a short time 
(Frey, 2007). Aurora is most likely to be captured and classified as 
outliers in Black Marble product. Besides the radiance from the aurora 
itself, a broad area of the surface could be lighted up by reflecting 
downwelling aurora irradiance even with no aurora above the sky 
(Fig. 20). The correction of surface reflected aurora radiance is chal
lenging since downward aurora irradiance is unknown and it varies 
dramatically. Fig. 20 showed the land surface was lighted up by aurora 
during the moon-free night to exclude the lunar effect for tile h20v02 on 
DOY 74, 2018. The maximum radiance from aurora was 66.3 nWcm− 2 

sr− 1 of this tile from the year 2012 to 2019. Land surface reflected aurora 
radiance in proximity to aurora area was up to approximate 3.5 
nWcm− 2 sr− 1 on DOY 74, 2018, and DOY 319, 2012. 

Fig. 17. TOA, gap-filled lunar BRDF-corrected DNB radiance, and snow flag (VNP35 collection 1) on DOY 352 in 2013 in tile h19v04.  
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3.10. Addressing missing data gaps 

The gaps in daily Black Marble nighttime light products are mainly 
caused by cloud contaminated areas. Potential outliers due to cloud and 
snow misclassification and model retrieval failures also reduce the fre
quency of high-quality NTL retrievals. In particular, high latitude re
gions suffer from solar contamination during the summertime. 
Improvement of cloud accuracy could reduce cloud contamination and 
rescue clear-sky observations misclassified as a cloud. An accurate snow 
flag could also reduce outliers and increase high-quality retrievals. With 
the launch of NOAA-20 (JPSS-1) in 2017 and the coming JPSS-2/3/4 
series satellites, more clear sky observations would be available by 
combining multi-satellite measurements. To illustrate, in Fig. 21, no NTL 
data were available over the northern part of tile h10v04 on DOY 141, 
2019 due to the low solar zenith angle of S-NPP observations. However, 
the gaps in the S-NPP Black Marble product were filled with higher- 
quality observations from NOAA-20 in the same orbit, but 50 min 
apart in time. We also found that combining multi-satellite VIIRS DNB 
observations enables the generation of view-angle consistent temporal 
datasets, thus reducing the uncertainty resulted from the three- 

dimensional structure of urban corridors. As illustrated in Fig. 22, our 
global daily science test run in 2019 showed that combining nighttime 
observations from Suomi-NPP and NOAA-20 would lead to (1) a global 
net increase in ‘confidently-clear’ land pixels of ~6%, (2) regional daily 
increases in confidently-clear pixels reaching up to 18%, and (3) minor 
but persistent improvements (< 5%) at high latitudes during the Sum
mer months when midnight sun conditions develop. 

4. Discussion 

Using a stratified global sample of well-characterized sites, we dis
entangled the uncertainties to contain the “one-to-many” relationship 
inherent to daily NTL time series data. For example, the Los Angeles 
metropolitan sites (i.e., Site-1, Site-2, and Site-3, in Table 1) exhibited no 
vegetation/snow effects nor any seasonal pattern, since these sites have 
weakly varying seasonal vegetation and receive no snowfall. The 
average NTL radiance from an upscaled 3 × 3 pixel window was also 
used to evaluate the uncertainty corresponding to angular, aerosol, 
lunar, and vegetation effects. We found that the geostatistical range of 
various sampled sites (e.g., Site-2, 13, 21, and 22, in Table 1) was larger 

Table 3 
Relative change of radiance estimated at 50 nWcm− 2 sr− 1 TOA DNB, 45 degree Lunar 
Zenith Angle (LZA), 0 degree VZA, and lunar irradiance of 0 (moon-free), 50 (partial 
moon), and 140 (full moon) nWcm− 2.A climatological AOD value of 0.2 at 550 nm (Yu 
et al., 2006) was used. 

Actual 

albedo

Lunar 

irradiance

Relative change with misused albedo

(nW cm-2) 0.1 0.2 0.5 0.6 0.8

0.1 0 0.0% -0.8% -3.2% -4.0% -5.7%

0.2 0 0.8% 0.0% -2.4% -3.2% -4.9%

0.5 0 3.3% 2.5% 0.0% -0.8% -2.5%

0.6 0 4.2% 3.3% 0.8% 0.0% -1.7%

0.8 0 6.0% 5.1% 2.6% 1.8% 0.0%

0.1 50 0.0% -2.7% -10.8% -13.3% -18.8%

0.2 50 2.8% 0.0% -8.3% -10.9% -16.5%

0.5 50 12.1% 9.0% 0.0% -2.9% -9.0%

0.6 50 15.4% 12.2% 2.9% 0.0% -6.3%

0.8 50 23.1% 19.8% 9.8% 6.7% 0.0%

0.1 140 0.0% -6.3% -25.3% -31.2% -43.9%

0.2 140 6.7% 0.0% -20.2% -26.6% -40.2%

0.5 140 33.8% 25.4% 0.0% -8.0% -25.0%

0.6 140 45.4% 36.2% 8.6% 0.0% -18.5%

0.8 140 78.4% 67.1% 33.3% 22.7% 0.0%
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Fig. 18. Luojia-1 NTL and corresponding semivariogram functions, variogram estimator (points), spherical model (dotted curves), and sample variance (solid 
straight lines) using regions of 2.0 km (asterisks), 3.5 km (diamonds), and 5.0 km (squares), at Site-2 on August 20, 2018, Sit-13 on September 26, 2018, Site-21 on 
June 29, 2018, and Site-22 on June 20, 2018. 
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than 560 m; thus indicating that applying a spatial averaging window 
effectively reduces the geometric effect. Since the data acquisition time 
is always nearly the same for nadir looks from this sun-synchronous 
satellite observations, diurnal changes do not account for the observed 
nadir’s radiance variation. 

The three-dimensional structure of vegetation canopies can block or 
modulate the character of upwelling NTL lights, particularly at more 
oblique view geometries. As with lunar BRDF-artifacts, quantifying this 
three-dimensional ‘vegetation effect’ is inherently complicated, 
depending on additional factors, e.g., vegetation albedo and urban 
canopy structure, both of which vary over space and time. The vegeta
tion albedo from both trees and grass affects the reflected artificial 
lights. For instance, in the case of deciduous vegetation regions, we 
found that NTL radiance during the leaf-off period can be three times 
higher than the radiance during the leaf-on season (Fig. 16 Site-6). Re
searchers should therefore be aware of how NTL time series are affected 
by these higher-order seasonal effects, particularly over areas with de
ciduous vegetation, when attributing temporal differences in NTL to 
various parameters of interest. 

We also introduced a new uncertainty metric, the NDHDNTL, derived 

from the hotspot and darkspot NTL radiance to estimate the angular 
characteristics of NTL with respect to viewing geometry. Using this new 
metric we were able to confirm that the VZA effect is more significant 
over dense commercial areas than over residential/rural areas, with 
NDHDNTL values up to 0.75 over the commercial areas. NTL radiance 
decreased with increasing VZA over commercial areas while the oppo
site relationship was found over residential areas. Conversely, the VAA 
effect played a minor role in influencing the NTL radiance and was only 
noticeable across areas outside of the cities’ suburban area. (Li et al., 
2019; Tong et al., 2020). The VAA effect mainly results from atmo
spheric scattering by NTL emissions around the urban edge, and thus the 
magnitude of the VAA effect is strongly dependent on the intensity of the 
urban edge radiance and the aerosol turbidity near this interface. NTL 
radiance was positively correlated with building heights with R2 of 
0.388 in Los Angeles, but the relationship was weak over tall buildings 
(Fig. 6 (c)). Conversely, we found that the relationship (R2) between 
building heights and NTL radiance was not significant with VZA and 
VAA. The NTL radiance varied greatly at some sites for a given VZA 
(Fig. 19). This phenomenon also occurred at sites without vegetation 
and snow effect (e.g., Fig. 19 Site-2). The variation at a fixed VZA 

Fig. 19. Relationship of radiance and VZA at different spatial scales at Site-2, 13, 21, and 22 in 2018. Red dots are view time and green dots represent VNP46A2 NTL 
radiance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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decreased at coarser spatial resolution, particularly across commercial 
urban centers (e.g., Fig. 19, Site-21, Rome), therefore the geometric 
error partially explains the variation. Undetected clouds could signifi
cantly influence the NTL radiance and contribute to the one-to-many 
relationship. The contribution of airglow natural light to this relation
ship is minor since the airglow radiance is mostly less than 0.5 nWcm− 2 

sr− 1(Coesfeld et al., 2020). NASA’s Black Marble uses daytime AOD as 
input into the atmospheric correction process since a routine nighttime 
AOD product is currently not available. Assuming a climatological AOD 
value of 0.2 at 550 nm and a dominant urban surface albedo of 0.15 
(Fig. 7), atmospheric NTL correction adjusts the radiance by 5% to 12% 
for retrievals based on near-nadir and off-nadir view-geometries, 
respectively (Fig. 13). We found that the difference between daytime 
and nighttime AOD is less than 0.1 (Figs. 11 and 12). The effect of 0.1 
different AOD on radiance is less than 5% (Fig. 13) which is much less 

than the NTL radiance range of the same VZA (e.g., Figs. 2 and 19). Thus, 
while atmospheric correction is not a dominant factor in NTL uncer
tainty, it is still needed when conducting quantitative assessments 
directly from daily NTL time series, particularly those involving low-lit 
sources, e.g., rural areas and informal settlements. On the other hand, 
variations caused by human activities and different satellite overpass 
time contributed to most of the observed NTL variation, requiring 
further evaluation. 

NASA’s Black Marble uses an algorithm processing scheme that 
removes the contribution of reflected lunar radiance. The algorithm is 
based on surface BRDF/albedo retrieval since land surface reflectance is 
anisotropic. We have also quantified the magnitude of snow, cloud, and 
AOD effects based on radiative transfer model simulation (Fig. 9, Fig. 13, 
and Table 3). The reflected lunar radiance during full moon periods, for 
example, is about 5 nWcm− 2 sr− 1 for a 0.15 albedo surface, but can 
exceed 25nWcm− 2 sr− 1 for snow-covered surfaces. Retrieved surface 
NTL radiance over a fully snow-covered surface could be 78.4% higher 
than the actual value if misclassified as snow-free during full moon 
conditions, underscoring the importance of correct surface character
ization. We also characterized the influence of high aerosol loadings on 
NTL. For example, NTL radiance of 50 nWcm− 2 sr− 1 surfaces could 
attenuated over 30% by an atmosphere having a visible AOD of 0.8. 

Likewise, NTL retrievals are particularly sensitive to obscuration 
from clouds, especially across commercial and residential areas, both 
during moon-free and moonlit nights. Cloud misclassification is one of 
the major sources of NTL outliers. Cloud-contaminated pixels could 
completely block artificial light radiance during the moon-free night, 
while also raising NTL radiance to above 25 nWcm− 2 sr− 1 over natural 
regions. 

Though the effects of stray light contamination in DNB data have 
been well documented and largely corrected (Chen et al., 2019a; Lee and 
Cao, 2016), users should continue to use caution when assessing changes 
in NTL data with solar zenith angle close to the horizon (SZA < 108◦). 
Likewise, transition in recent years of city light sources types (e.g., light- 
emitting diode (LED) lights) is another element that should be studied 
(Bará et al., 2019; Falchi et al., 2016; Kyba et al., 2017; Sánchez de 
Miguel et al., 2019). Whereas the VIIRS DNB does not capture the light 
in the range of 400 to 500 nm, its broad spectral bandpass vis-à-vis the 
broad emissions spectra of LED lights does enable it to capture these 
changes. Indirect methods may also be possible, such as observable re
ductions of DNB radiance as High Pressure Sodium (HPS) transition to 
LED lights (Kyba et al., 2017). Therefore users should be cautious when 
pursuing applications based on DNB observations that depend strongly 

Fig. 20. Aurora (northern part of the tile) in tile h20v02 on DOY 74 in 2018.  

Fig. 21. S-NPP (left), NOAA-20 (middle), and S-NPP + NOAA-20 (right) TOA DNB radiance of tile h10v04 on DOY 147 in 2019.  
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on NTL coloration, such as the recently documented impacts of COVID- 
19 on urban activities (Bustamante-Calabria et al., 2021; Elvidge et al., 
2020; Ghosh et al., 2020; Jechow and Hölker, 2020; Liu et al., 2020a; 
Straka et al., 2021). Other sources of NTL observations like the Inter
national Space Station (ISS) or the Jilin-1 satellite can significantly 
improve the evaluation of the VIIRS DNB for COVID-19 impact assess
ments both in terms of spatial and spectral information. Likewise, hav
ing a geostationary nighttime measurement platform, e.g. the next 
generation of US measurements from Geostationary and Extended Or
bits, (GEO-XO) would significantly advance the science of Earth at 
Night, while reducing the uncertainties such as cloud errors, angular 
effect, and diurnal NTL variation. 

We found that NTL radiance of locations close to water bodies could 
also be enhanced by water reflected NTL, particularly at the glint ge
ometry when considering moonlight or waterways below illuminated 
bridges, etc. Researchers should also keep in mind that the Suomi-NPP 
and NOAA-20 local overpass time (despite being ~01:30 near the 
equator) is in fact variable, particularly at high latitude regions where 
multi-observations could be acquired per night. The artificial light 
variation through one night could be equally large (Kyba et al., 2020, 
2015; Li et al., 2020; Sánchez de Miguel, 2015). 

Previous studies found that Monthly NTL radiance derived from TOA 
DNB has a standard deviation of 20% relative to the median value 
(Coesfeld et al., 2018). We show that monthly or annual composite NTL 
could also be further biased when uncertainties are not well quantified, 
and outliers were not filtered out. Lunar BRDF and atmospheric cor
rected NTL reduce the uncertainty on monthly and annual composite 
caused by the moon and atmospheric parameters. The use of temporal 
composites, separating snow-covered and snow-free conditions, could 
also avoid snow-related effects on the final products. Likewise, the 
angular effect can be effectively addressed by selecting view angle 
consistent observations. 

Outliers can be reduced by using a more conservative nighttime 
cloud mask, though more available observations are required to capture 
abrupt short-term changes. Quantifying short-time changes is chal
lenging considering the uncertainties, especially during extended pe
riods of cloud coverage. For example, leakage of cloud detection, which 
blocks the artificial light, could result in false detection of a power 

outage (Román et al., 2019). False power outage recovery could also be 
observed if cloud and lunar illumination were not corrected during 
moonlit nights. We demonstrate that combining multi-sensor VIIRS DNB 
observations such as Suomi-NPP and NOAA-20, could further reduce 
persistent gaps and reduce uncertainties inherent in using NTL obser
vations across fixed view geometry ranges. 

5. Conclusions 

This study presented a methodology to identify and quantify the key 
factors contributing to retrieval uncertainties in NASA’s Black Marble 
daily nighttime lights (NTL) product suite. Specifically, we quantified 
the NTL radiance uncertainty arising from view geometry, surface 
BRDF/albedo, moonlight, aerosol, cloud, snow, vegetation, geometric, 
and aurora. We then summarized how these known factors contribute, 
both jointly and independently, to variations in NTL time series data, 
that are unrelated to human activities. 

Twenty-four globally-distributed sites in seven metropolitan areas 
representing a gradient of commercial urban center – residential – rural 
areas with different vegetation conditions and building heights were 
selected to evaluate the NTL uncertainty. Generally commercial urban 
centers showed high NTL variation particularly at near-nadir VZA and 
the highest angular effect. The NTL radiance decreased toward higher 
VZA at commercial urban center while residential and rural areas usu
ally showed the increased trend. Rural sites had the highest CV though 
the SD values are low due to low NTL radiance. The lunar effect is the 
highest at rural sites and decreases toward higher NTL radiance regions. 
The vegetation effect is the most over suburban residential sites with 
deciduous trees. The geometric effect can be effectively reduced by 
applying a spatial averaging window.Angular and atmospheric effects 
dominate NTL radiance uncertainty, while snow/cloud misclassification 
and severe aerosol pollution are the main drivers of outliers. Angular 
effect impacts the most over the urban center where NTL radiance at 
nadir look could be tripled higher than off-nadir observations. Aerosol 
loadings with AOD larger than 0.8 reduce the NTL radiance by more 
than 30% over low albedo surface (Fig. 13). The retrieved NTL radiance 
over predominantly snow-covered surfaces could be 78.4% higher than 
the actual value because of snow misclassification. Retrieved NTL 

Fig. 22. Global daily science test run for 2019 (290 Black Marble Level 3 tiles × 365 days = 105,850 samples) quantifies the mean seasonal increase (%) in 
‘confidently-clear’ pixels from combined S-NPP/NOAA-20 retrievals (upcoming VCD46 product suite). 
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radiance at snow-free surfaces, in turn, could be 43.9% lower than actual 
value by using snow albedo. 

Seasonal NTL radiance variation could be related to snow cover, 
albedo, and vegetation (Levin, 2017; Levin and Zhang, 2017). During 
winter months, high snow albedo enhances NTL radiance by increasing 
the reflected lunar radiance and reflected artificial light. Low gap frac
tion vegetation canopy during growing season blocks more light than 
the leaf-off period. The vegetation effect is more prominent in suburban/ 
rural areas than in urban centers (Fig. 16). The lunar irradiance impact 
follows the monthly moon phase cycle and is more significant during full 
moon periods. However, we found that the influence is subtle over high 
artificial light radiance areas. The S-NPP and NOAA-20 orbit repeat 
every 16 days. Therefore VIIRS DNB observations with the same view 
angle for each location could be acquired every 16 days, reducing the 
angular effect by choosing observations with the same view angles for 
temporal analysis. 

DNB pixels contaminated by the aurora borealis radiance can reach 
values higher than 60 nWcm-2 sr-1. Further statistics covering a larger 
area and temporal range are needed to evaluate the aurora effect and 
constrain its influence from the NTL time series. In particular, careful 
attention should be placed around transition zones near the aurora 
boundary, where the effect results in retro-reflectance (i.e., surface 
illumination by reflecting downward aurora irradiance (Miller et al., 
2013)). 

The impact of the abovementioned factors on uncertainty is coupled. 
Reflected lunar radiance is enhanced over snow-covered surfaces with 
high albedo. Also, the increased reflected light further raises the atmo
spheric scattered light. Cloud contamination is also dissimilar during 
moon-free and moonlit nights – artificial lights are reduced by cloud 
blocking during the moon-free night, but could also increase over rural/ 
suburban regions during moonlit periods. Misclassification of cloud and 
snow flags introduces large uncertainty to NTL radiance. Accordingly, 
the current NASA Collection V001 lunar BRDF-corrected NTL radiance 
(VNP46A2) is considered ‘Beta’ until ongoing issues with nighttime 
AOD, snow, and cloud flags can be addressed in the near future. 

In summary, to reduce the sources of measurement error and 
retrieval uncertainty and address persistent data gaps, we recommend 
(1) using lunar-BRDF adjusted and atmospherically corrected NTL (i.e., 
as identified as high-quality retrievals in the VNP46 QA fields), (2) 
improving snow cover and cloud masks accuracy, (3) characterizing 
seasonal variations due to vegetation and snow, (4) reducing geometric 
effects (e.g., using a spatial window), (5) combining angularly- 
consistent NTL observations from multiple VIIRS instruments espe
cially before making assessments of temporal NTL change, and (6) being 
mindful of surface-reflected radiance from aurora events at mid-to-high 
latitudes. These findings underpin the level of technical effort necessary 
to establish a stable NTL time series record of sufficient data quality for 
quantitative analyses. Users should be fully aware of these uncertainty 
factors, particularly when employing Black Marble NTL products in 
peer-reviewed research and embarking upon various application 
studies. A necessary step includes using QA flags (provisioned through 
VNP46A1 and key upstream data products) and additional data layers 
describing the state of nighttime snow, cloud, and aerosol conditions. 
Users also need to be aware that calibration stability and consistency are 
essential to ensure a science-quality NTL time series. 

We conclude by noting that further refinements to NASA’s Black 
Marble Product Suite, reflecting the various refinements presented in 
this study, are being implemented as part of the next VIIRS Land Science 
Collection V002 reprocessing cycle. We advise users of these data to pay 
close attention to the recent updates from NASA’s Land Science 
Investigator-led Processing System regarding archival, distribution, 
science data product releases (add data DOI ref.: https://ladsweb. 
modaps.eosdis.nasa.gov/missions-and-measurements/products 
/VNP46A2/). 
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