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Abstract17

Many problems in climate science require the identification of signals obscured by both18

the “noise” of internal climate variability and differences across models. Following pre-19

vious work, we train an artificial neural network (ANN) to predict the year of a given20

map of annual-mean temperature (or precipitation) from forced climate model simula-21

tions. This prediction task requires the ANN to learn forced patterns of change amidst22

a background of climate noise and model differences. We then apply a neural network23

visualization technique (layerwise relevance propagation) to visualize the spatial patterns24

that lead the ANN to successfully predict the year. These spatial patterns thus serve as25

“reliable indicators” of the forced change. The architecture of the ANN is chosen such26

that these indicators vary in time, thus capturing the evolving nature of regional signals27

of change. Results are compared to those of more standard approaches like signal-to-noise28

ratios and multi-linear regression in order to gain intuition about the reliable indicators29

identified by the ANN. We then apply an additional visualization tool (backward opti-30

mization) to highlight where disagreements in simulated and observed patterns of change31

are most important for the prediction of the year. This work demonstrates that ANNs32

and their visualization tools make a powerful pair for extracting climate patterns of forced33

change.34

1 Plain Language Summary35

We demonstrate that machine learning methods, specifically artificial neural net-36

works and their visualization tools, can be used to visualize indicators of change in sur-37

face temperature and precipitation within climate models and the observations. Further-38

more, we show how neural network visualization tools can assist scientists in compar-39

ing results across climate models, as well as between climate models and observations.40

This work demonstrates that ANNs and their visualization tools make a powerful pair41

for extracting climate patterns of forced change.42

2 Introduction43

Climate science has often required the identification of signals obscured by both44

climate “noise” and disagreements across models, and the field has a rich history of tools45

developed for this purpose. In addition to a large number of standard statistical tech-46

niques (Zwiers & von Storch, 2004), a common recent approach has been the utilization47

of large ensembles of climate model simulations (Deser et al. 2012; Hawkins et al., 2016;48

Kumar & Ganguly, 2018; Lehner et al., 2016). In particular, this approach allows researchers49

to estimate the climate “noise”, defined as the range of climate outcomes arising from50

unpredictable internal (or natural) climate variability under a particular radiative forc-51

ing scenario, and the structural component of uncertainty due to model differences when52

multi-model ensembles are used (Deser et al. 2020). Moreover, the forced climate sig-53

nal associated with a radiative forcing scenario can be obtained by averaging across a54

sufficient number of ensemble members, since time sequences of internal variability are55

randomly phased between individual ensemble members. While the resulting ensemble-56

mean spatial pattern captures the forced response, it is difficult to identify this pattern57

in a single year of observations because the climate of any given year is always a com-58

bination of the forced signal and internal variability.59

The challenge of identifying the forced response in a single realization of the cli-60

mate system has been recently approached with a variety of advanced statistical tech-61

niques. For example, Sippel et al. (2019) employs novel dynamical adjustment techniques62

to extract the full forced response from that of internal variability within a single ensem-63

ble member of a single climate model. Another approach to identify climate signals was64

recently demonstrated by Barnes et al. 2019 (hereafter B19). They showed that machine65

learning techniques, specifically artificial neural networks (ANNs), are powerful and use-66
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ful tools that can help identify patterns of forced climate change within climate model67

simulations as well as observations. This was achieved by successfully training an ANN68

to predict the year of a given annual-mean temperature (or precipitation) map from forced69

CMIP5 simulations. Since each model simulation differs in the internal variability of any70

given year, this design requires the ANN to learn reliable indicator patterns of each year71

amidst a background of internal variability and model disagreement. These indicator pat-72

terns are thus a combination of the common forcings (e.g. aerosol emissions, anthropogenic73

greenhouse gas) across all simulations. The climate response to external forcings is typ-74

ically computed as the average change (or trend) in time across many climate model sim-75

ulations. In contrast, the indicator patterns identified by the ANN offer the most reli-76

able regions for identifying change in any given year, taking into account the regional77

internal variability, signal, and disagreement across models. These patterns may thus be78

used to detect and attribute observed regional change to external forcings, or to iden-79

tify where climate model biases are most important for obscuring regional change.80

While B19 demonstrated that ANNs are capable of identifying forced patterns of81

change in a single annual-mean map of temperature or precipitation, they did not present82

the patterns themselves due to the complexity of visualizing the decision-making pro-83

cess of a nonlinear ANN. Instead, they showed oversimplified patterns that came from84

a much simpler ANN. Here, we apply a recently developed neural network visualization85

tool (layerwise relevance propagation) to explore the ANN’s indicator patterns in detail86

and quantify how they may vary nonlinearly in time. We compare the patterns from the87

ANN with those obtained from more classical approaches (e.g. signal-to-noise ratios and88

multi-linear regression) to gain further intuition about the ANN output. Finally, we ap-89

ply an additional neural network visualization tool (backward optimization) to map the90

regions where climate model biases may be most relevant when identifying forced change.91

3 Data92

3.1 CMIP5 climate model output93

We analyze the same data used in B19. Namely, annual-mean global two-meter air94

temperature and precipitation rate output from climate model simulations performed95

for the Coupled Model Intercomparison Project, phase 5 (CMIP5; Taylor et al., 2012).96

Due to data availability, single simulations from 29 models are analyzed for temperature,97

while 22 models are analyzed for precipitation (see Supp. Tables 1 and 2). The ANN re-98

quires all input maps to be the same size; thus, prior to analysis, all fields were inter-99

polated to a common 4 degree latitude by 4 degree longitude grid (45 latitude values by100

90 longitude values = 4050 total grid points). The small number of grid points in this101

relatively coarse grid helped substantially reduce the time required for ANN training.102

We analyze annual-mean temperature and precipitation under historical forcing (from103

1920 through 2005) and then the RCP8.5 scenario through the year 2099 (Meinshausen104

et al., 2011). Since all of the model simulations have similar external forcings, deviations105

across model projections mostly reflect differences due to climate model physics, reso-106

lution, and numerics (i.e., model uncertainty) as well as differences in the unforced, or107

internal, variability of the climate system (Hawkins & Sutton, 2009; Lehner et al., 2020).108

3.2 Observations109

We assess the applicability of the ANN trained on climate models to the real world110

by evaluating the ANN’s skill in predicting the year of observed maps of annual mean111

temperature and precipitation. For observations of surface temperature, we utilize the112

BEST (Berkeley Earth Surface Temperature) gridded fields from Berkeley Earth (Ro-113

hde et al., 2013). Specifically, we analyze the Monthly Land + Ocean, Average Temper-114

ature with Air Temperatures at Sea Ice (name on website given as Recommended; 1850115
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- Recent) interpolated to a common grid of 4 degree latitude by 4 degree longitude. The116

climatology field for each month is provided by BEST and was added to the BEST monthly117

anomalies to obtain the total temperature (K). Data coverage is incomplete in BEST prior118

to the mid 20th Century. We thus only analyze data from 1956-2018 when there is com-119

plete global coverage.120

Monthly observational precipitation fields were obtained from the NOAA Global121

Precipitation Climatology Project (GPCP), version 2.3, for 1979-2018 (Adler et al., 2018).122

Data from rain gauge stations, satellites, and sounding observations are merged in GPCP123

to estimate monthly rainfall (mm/day). Data were downloaded from the NOAA ESRL124

website (see Acknowledgements) and were interpolated to the common 4 degree grid prior125

to analysis.126

4 Neural network methods127

4.1 Neural network architecture128

In B19 the analysis was set up as a prediction problem. Annual-mean maps of tem-129

perature (or precipitation) were taken as input and an ANN was trained to predict the130

year of the map, as shown in Supp. Figure 1. Specifically, each grid point in the input131

map was represented by a unit in the input layer of the ANN (4050 input neurons in to-132

tal from the 45 latitude by 90 longitude grid points). The input layer was followed by133

a number of hidden layers, and the final output layer was a single neuron, representing134

the yearly prediction as a single scalar. This type of set-up is known as a regression task,135

since the output was a continuous number.136

In contrast, in this work we frame the prediction problem as a classification task;137

namely, rather than generating an estimate of the year as a continuous number, we in-138

stead estimate which one of a number of possible classes the year belongs to. Specifically,139

the output layer of the ANN in Figure 1 consists of 22 classes, each one representing one140

decade, and it is the ANN’s task to determine which class (i.e. decade) the input map141

belongs to. Formulating the problem as a classification task is a necessity because the142

specific ANN visualization tool we employ (layerwise relevance propagation (LRP); Sec.143

3.3) was developed for classification architectures, not regression architectures.144

ANNs used for classification typically use crisp encoding (i.e. one-hot encoding)145

for the output classes, mapping the year of an input sample to exactly one output class.146

For example, the year 1920 would be encoded as completely belonging to the class 1920-147

1929, and no other class. This results in large information loss since there is no infor-148

mation left on whether 1920 lies toward the beginning, middle, or end of that decade,149

or whether neighboring years share similar characteristics. To retain such information150

we instead use fuzzy encoding, which maps any year to one or more neighboring classes151

with varying degrees of membership (encoded as probabilities), with the sum of the prob-152

abilities summing to one (Zadeh, 1965). Using triangular membership functions (Zadeh,153

1965) with a width equal to one decade results in each year being mapped to one or two154

neighboring classes with non-zero probabilities. Specifically, if one denotes each output155

class by its central year, e.g. 1935 for 1930-1939, then the class probabilities are chosen156

such that the decade-weighted sum equals the exact year. This encoding and decoding157

is visualized in Figure 2, where the decade classes are specified on the y-axis, and the158

corresponding probabilities associated with each class are specified on the x-axis. For159

each colored year (1925, 1984, 2040, 2078), the dots in the same color indicate the cor-160

responding probabilities. For example, the year 1925 is encoded as a single probability161

of 1.0 for the class called “1925”, while the year 1984 has a probability of 0.9 for class162

“1985” and probability 0.1 for class “1975”. Indeed, the decade-weighted sum, 0.9·1985+163

0.1·1975 = 1984, gives the correct year of 1984. This approach implements “fuzzy decadal164

classification” at the ANN output layer and the ANN is then tasked with assigning the165
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Figure 1. Schematic of ANN architecture employed here to predict the year of a map of 2-

meter temperature. The output layer is divided into classes, each representing a single decade.

The ANN task is to predict the class probabilities associated with the input, which is called a

classification task. Here fuzzy classification is used to encode the specific year, and binary cross-

entropy is used during training.

correct (fuzzy) probabilities for an input sample to each of these classes/decades. This166

multi-label, fuzzy classification approach allows for encoding of the exact (true) year in167

the output classes, while still ensuring that the output is a set of class probabilities for168

use with our preferred visualization tool, LRP (Section 3.3).169

All ANNs in this analysis have 2 hidden layers with 20 hidden units in each. This170

is a relatively shallow network for a typical ANN; however, our goal is to understand what171

the network has learned. We therefore opted for the simplest network that did not de-172

grade accuracy. We find that increasing the number of units and/or layers does not sub-173

stantially improve predictions. Additional details about the architecture, including ac-174

tivation functions, are described in Appendix A.175

4.2 Neural network training176

Each ANN is trained over the entire 1920-2099 period on 80% of the climate model177

simulations and then tested on the remaining 20%. This leads to training on 23 simu-178

lations and testing on 6 for temperature, while training on 18 simulations and testing179

on 4 for precipitation. Except for Figure 5, all results for a given variable utilize the same180

set of training/testing simulations, as well as the same neural network configuration and181

weight/bias initialization. This is done to make discussions more straightforward as only182

one ANN is analyzed at a time. The robustness of our conclusions to these choices will183

be discussed in Section 5.184

We trained the ANNs using the binary cross-entropy loss between the predicted185

class probabilities and the correct class probabilities across the training samples (see Ap-186

pendix A for more details). Given the size of our input maps, and the small size of our187

output layer, the possibility of overfitting is quite large. Thus, we apply ridge regular-188
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Figure 2. Fuzzy classification encoding and decoding of example years. In the encoding step

each colored year, 1925, 1984, 2040 and 2078, is mapped to the class probabilities indicated by

the dots in the same color. For example, 1925 is encoded as probability 1.0 for class “1925”,

while 1984 is encoded as probabilities 0.1 and 0.9 for classes “1975” and “1985” respectively. The

decoding step each year can be reconstructed as the weighted sum of the decade centers, where

the weights are determined by each decade’s class probability. For example, 1984 results from the

weighted sum 0.1 · 1975 + 0.9 · 1985 = 1984.

ization (L2 regularization) to the weights of the first hidden layer to help reduce the chances189

of overfitting, and to aid in visualizing the patterns learned by the ANN (further discussed190

in Section 4). Ridge regularization acts to spread the importance across the inputs by191

adding an additional term to the cross-entropy loss that is proportional to the sum of192

the squared weights, which is consistent with our understanding that both temperature193

and precipitation exhibit substantial spatial autocorrelation. For both temperature and194

precipitation, the regularization parameter is 0.01. Additional details about the train-195

ing, including gradient descent optimizer, and learning rate, are described in Appendix196

A.197

To assist with training, we standardize the data prior to training by subtracting198

the mean across all training simulations and years and dividing by the standard devi-199

ation across all training simulations and years at each grid point. Since we standardize200

the data using means and standard deviations across all models, we do not remove dif-201

ferences in model means or variance. Alternative standardization approaches are being202

explored and left for future studies. In some of the figures, we choose to bring the fields203

back into physical units by multiplying by the standard deviation and adding back the204

mean (e.g. Figure 11).205

4.3 Visualization with layerwise relevance propagation (LRP)206

A major aim of this work is to determine the patterns of forced change learned by207

the ANN that act as reliable indicators of the year (i.e. the class probabilities). To do208

this, we utilize a neural network interpretation method called “layerwise relevance prop-209

agation” (LRP) to determine the most relevant regions of the input maps for the ANN’s210

prediction (e.g. Bach et al., 2015; Montavon et al., 2017). Toms et al. (2020) provide211

the first detailed discussion of how LRP can be used for interpretable neural networks212

in geoscience. We also provide the most relevant details of the method here.213
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LRP is a neural network interpretability method that projects the logic, or decision-214

making process, of a neural network back onto the original dimensions of the input. LRP215

traces the pathways through which information flows during the network’s decision-making216

process for each individual sample, and shows which locations in the input image the net-217

work focuses its attention on the most (i.e. the relevance of each input pixel). LRP is218

implemented in the following way. Once a neural network has been trained, a sample is219

passed through the network to obtain a prediction (i.e. output value). This single-valued220

prediction is then propagated backwards to infer the relevance of each input pixel for that221

sample’s prediction. With LRP, the output value is conserved as it is propagated back-222

wards, which ensures that all of the information used to arrive at the network’s decision223

is projected back onto the original input. Toms et al. (2020) provide a detailed schematic224

and description of this process (their Figure 3).225

Since LRP propagates only a single output value at a time, we propagate relevance226

only for the decade with the largest output value (i.e. probability or likelihood) predicted227

by the neural network, even though our fuzzy encoding requires multiple probabilities228

to encode a single year. Thus, the resulting relevance heatmap represents the regions of229

the globe that were most relevant to the neural network’s confidence that the input sam-230

ple belongs to that decade. Even though we propagate only the information from the231

decade with the highest output probability, samples from different years, e.g. 1992 and232

1998 will still result in different heatmaps since the pathways through which the infor-233

mation flowed to generate the distributions of probabilities were different. Furthermore,234

we have verified that propagating all output probabilities separately (rather than just235

the largest) and summing their resulting relevance heatmaps leads to similar conclusions.236

4.4 Backward optimization237

Backward optimization can be used to gain a composite interpretation of the pat-238

terns contained within a trained neural network (Olah et al., 2017; Simonyan et al., 2013;239

Yosinski et al., 2015). Toms et al. (2020) discuss the nuances of using backward opti-240

mization for geoscience applications, and we extend its use to interpret differences be-241

tween climate models and the observations. Briefly, given a trained neural network, an242

input sample is incrementally adjusted towards the pattern most closely associated with243

a user-defined prediction. This adjustment procedure utilizes a similar method that we244

used to update the neural network weights and biases during training (i.e. backpropa-245

gation). Rather than updating the weights and biases, however, the input is incremen-246

tally updated to minimize the difference between the user-defined desired prediction and247

the prediction associated with the optimized input. Toms et al. (2020) provide a detailed248

schematic and description of this process (their Figure 2).249

We use backward optimization to understand differences between the patterns of250

forced change within climate models and those within observations. As discussed within251

Section 3, we train neural networks to identify patterns of forced change within an en-252

semble of CMIP5 simulations, from which the neural network can identify the year of253

input maps of observed surface temperature and precipitation with reasonable accuracy.254

We then use backward optimization to optimize the observational maps to the networks’255

understanding of the climate simulations to infer biases within the climate models, the256

details of which are discussed within Section 6.2. During the optimization procedure, we257

use a learning rate of 0.001 and stop optimizing the inputs once the predicted year is cor-258

rect from that point on (189 iterations for temperature, 122 iterations for precipitation).259

The resultant changes from optimization therefore represent the minimum change nec-260

essary to the input map in order for the neural network to correctly identify the year.261
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5 Predictions based on multiple linear regression262

While this work is focused on results from a nonlinear ANN, it is informative to263

first discuss results using a standard linear approach. A linear approach, in particular,264

is useful for establishing a baseline for assessing the importance of nonlinearities when265

predicting with a multi-layer ANN. We begin by using all of the grid points from a sim-266

ulated annual-mean surface temperature map to predict the year of the map via multi-267

linear regression. That is,268

predicted year = c + a1x1 + a2x2 + a3x3 + · · · + a4050x4050 (1)269

where c denotes a constant, xj denotes the jth grid point on the globe (4050 in total)270

and aj denotes the regression coefficient associated with that gridpoint, or the contri-271

bution of xj to the year prediction. Furthermore, while LRP is not yet commonly used272

in climate science for interpreting neural networks, the general idea can be described us-273

ing techniques from linear regression, providing intuition for climate scientists more fa-274

miliar with this method. To make the comparison between the linear and non-linear ANN275

as simple as possible, we train the linear model similarly to the non-linear ANN (i.e., us-276

ing backpropagation and gradient descent over 1000 iterations with a learning rate of277

0.001).278

Figure 3a shows the resulting predictions by this multi-linear regression model based279

on temperature maps, with the predicted year on the y-axis and the actual year on the280

x-axis. The gray dots depict the climate model simulations used for training, while the281

colored dots depict the simulations used for testing. This linear model appears to do an282

adequate job predicting the year, with most of the dots falling somewhere along the one-283

to-one line (which denotes a perfect prediction). To visualize these predictions, Figure284

3b shows a map of the regression coefficients (aj in Eq. 1), and depicts the importance285

of each input grid point for the ultimate prediction of the year. This is similar to what286

LRP provides for nonlinear neural networks - a picture of the importance of each input287

unit for the final prediction.288

Although the predictions in Figure 3a generally lie along the one-to-one line, the289

map of regression coefficients in Figure 3b is nearly impossible to physically interpret be-290

cause neighboring points often have large, opposite-signed weights. This occurs because291

the regression problem is under-constrained (i.e. there is a high degree of collinearity among292

neighboring grid points), and thus, the regression task is permitted to overfit to the noisy293

patterns within the temperature maps rather than the physically meaningful larger-scale294

patterns which are a known characteristic of atmospheric climate variability. Introduc-295

ing regularization, which penalizes weights with unnecessarily large values, spreads the296

weights across multiple grid points, and leads to more coherent behavior between neigh-297

boring points, as seen in Fig. 3d. In other words, regularization imposes spatial auto-298

correlation, a known property of geophysical data, and allows us to physically interpret299

the learned regression weights. Warmer temperatures in western North America and north-300

ern Africa, for instance, lead the model to predict a later year, while warmer temper-301

atures over eastern China and the eastern North Pacific drive the model to predict an302

earlier year. In fact, Sippel et al. (2020) apply regularized linear regression to identify303

a single fingerprint of external forcing in daily surface temperature maps.304

This multi-linear regression example illustrates a few key points which are useful305

when thinking about nonlinear ANN predictions. First, one can interpret the regression306

model’s prediction by visualizing the importance of each input unit (i.e. each predictor307

grid point) for the final output. Second, L2 regularization is necessary for interpreting308

the learned patterns, although this can come at the price of reduced accuracy in the pre-309

dictions (compare Figure 3a and 3c). Since the aim of our study is to understand the310

patterns learned by the ANN, a small reduction in accuracy is acceptable. Furthermore,311

we find that L2 regularization actually improves the nonlinear ANN accuracy for unseen312

testing data since it reduces the chances of overfitting. Third, the interpretation of the313
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Figure 3. Predictions and regression weights from using multi-linear regression of tempera-

ture at each grid point to predict the year of the map. The upper row (a,b) uses no regulariza-

tion (λ = 0.0) and the lower row (c,d) utilizes L2 regularization (λ = 0.1). Training data is shown

in gray, while colors denote the different CMIP5 model simulations used for testing, where each

color denotes a different simulation.
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Figure 4. (a) Year predicted by the neural network (y axis) versus the actual year (x axis)

for (a) global maps of 2-meter temperature, (b) as in (a) but the global mean temperature has

been removed from each map, (c) precipitation and (d) as in (c) but the global mean precipita-

tion has been removed from each map. The one-to-one line is plotted in black. Training data is

shown in gray, while colors denote the different CMIP5 model simulations used for testing, where

each color denotes a different simulation. The white circles denote predictions based on observed

maps.

multi-linear regression prediction can be summarized in a single map that is static through314

time (Figure 3b,d); however, in Section 6 we show that LRP allows us to visualize the315

importance of a region for the ANN’s prediction as a function of time.316

6 Predictions based on ANNs317

Figure 4a shows the prediction of the year by a nonlinear ANN based on input maps318

of surface temperature from climate model simulations. B19 showed similar panels, but319

here, predictions are based on the fuzzy classification scheme described in Section 3.1.320

As in Figure 3a,c, the gray and colored dots denote the training and testing simulations,321

respectively. Comparing Figure 4a with Figure 3a and 3c, it is clear that the ANN does322

a better job predicting the year - both for the training and testing simulations - com-323

pared to multi-linear regression. This strongly suggests that nonlinearities are impor-324

tant for accurate predictions. However, as discussed extensively in B19, the ANN per-325

forms poorly prior to ∼1960 and becomes very accurate as one moves later into the 21st326

Century. This is due to the increasing amplitude of forced change with time, making it327

easier for the ANN to identify the year amidst a background of internal variability and328

model disagreement over the later period.329
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White circles in Figure 4a depict predictions where maps of observed annual-mean330

surface temperature from the BEST data set are fed into the ANN trained on the cli-331

mate models. Although the ANN was not trained on observed maps, it still succeeds at332

predicting the year when fed observed maps. This implies that the ANN is learning pat-333

terns of forced change from the climate models that are relevant for the observed climate334

system. As in B19, we additionally train the ANN using maps where the global mean335

temperature for that year has been removed. This allows us to assess the accuracy of336

the ANN when it must focus on regional patterns alone. The result is shown in Figure337

4b, and while the predictions spread further from the one-to-one line compared to Fig-338

ure 4a, the predictions still fall within 5 years of the true year post-2000. The biggest339

difference when the global mean is removed is that the predictions based on observed340

maps of temperature shift upward (∼ 30 years later). This suggests that the regional pat-341

terns learned from the climate models may be delayed compared to what has been ob-342

served. We will explore these specific regional patterns further in Section 7.2.343

While temperature exhibits one of the most robust responses to anthropogenic emis-344

sions over the 21st Century, the spatial pattern of precipitation changes is primarily driven345

by changes in atmospheric dynamics. As a result, the precipitation response is much less346

certain - with larger internal variability and less year-to-year agreement across models347

(Santer et al., 1994). ANN predictions of the year trained and tested on maps of annual-348

mean precipitation are shown in Figure 4c,d. Perhaps surprisingly, the ANN predictions349

for the climate model simulations largely fall along the one-to-one line, even when the350

global mean has been removed. This suggests that the ANN can identify reliable indi-351

cators of forced change in annual-mean maps of precipitation within both the 20th and352

21st centuries. The predictions based on precipitation from GPCP, however, are not as353

successful. While the ANN largely gets the ordering of the years correct when the global354

mean is removed (Figure 4d), the slope of the predictions is far shallower than the one-355

to-one line, suggesting that the timing of reliable patterns of change differ between the356

observations and climate models. We revisit this discussion in Section 7.2.357

While each panel of Figure 4 depicts only a single trained ANN, different ANN ini-358

tializations and training/testing sets can often lead to different results. Of particular in-359

terest here is the ability of the ANN to correctly predict the year of observed maps. In360

Figure 5a we plot the correlation of the actual years with the predicted years based on361

observed maps of temperature for 21 iterations of training the ANN (vertical orange lines).362

All correlations exceed 0.9, suggesting that all of the ANNs are able to discern the cor-363

rect ordering of the years. When this process is repeated for input maps with the global364

mean removed (vertical purple lines), the correlations are reduced, as one might expect,365

since the ANN must rely solely on local spatial patterns of change. However, whether366

the global mean is retained or removed, the correlations far exceed the distribution of367

correlations one might expect from chance (gray histogram). An alternative metric for368

assessing the observational predictions is the slope of the observed year predictions, with369

a perfect slope being 1.0. These slopes are shown in Supp. Figure 2a, and also demon-370

strate that the ANN is doing much better than one would expect from chance.371

Observation-based correlations are smaller for precipitation compared to temper-372

ature (Figure 5b), consistent with the smaller signal-to-noise ratio and larger disagree-373

ment in the forced response across climate models. Unlike for temperature, the precipitation-374

based correlations are much larger when the global mean is removed (vertical purple lines)375

compared to when it is retained (vertical orange lines). In fact, most of the trained ANNs376

exhibit negative correlations when the mean is retained, implying a complete inability377

to predict the progression of years from observed maps of precipitation. The distribu-378

tion of observed slopes (Supp. Figure 2b) is also better when the global mean is removed,379

although the slopes still fall short of 1.0. The improvement in predictions when the global380

mean is removed is indicative of a systematic difference between the global mean pre-381

cipitation of the GPCP observations and that of each of the CMIP5 simulations (Supp.382
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Figure 5. Correlation of the actual years with the ANN-predicted years based on observed

maps of (a) temperature and (b) precipitation. Different lines denote different iterations of train-

ing the ANN. (gray shading) Histogram of possible correlations between two time series with

shuffled years (i.e. the range of correlations obtained when no relationship is present). Bold

letters denote the iterations that are associated with the four panels of Figure 4.
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Figure 3). When the global mean is removed, the local patterns learned by the ANN trained383

on the climate models are more relevant for predictions of observations.384

7 Indicator patterns385

7.1 Time varying indicators of change386

While the results in Figures 4 and 5 demonstrate the ability of an ANN to predict387

the year of a temperature (or precipitation) map, scientifically it is far more interesting388

to determine which patterns the ANN uses to identify the year. That is, which regions389

serve as indicators of change amidst a background of climate variability and model un-390

certainty? To answer this question, we apply LRP to the trained ANNs to identify the391

relevant regions for the ANN’s predictions. As discussed previously, this is akin to mak-392

ing regression coefficient maps (e.g. Figure 3b,d), but instead, these relevance maps can393

be made for each input/prediction separately to highlight the regions of the globe that394

act as the most reliable indicators of the year according to the ANN.395

We apply LRP to predictions from all of the training and testing simulations. Supp.396

Fig. 9 shows LRP maps for a different random combination of training and testing sim-397

ulations to demonstrate robustness of the main indicators to this choice. Since LRP out-398

puts a single relevance heatmap for every input/prediction, we have a total of 29 rele-399

vance heatmaps based on temperature (one per simulation) for every year from 1920-400

2099. Figure 6 shows the average over all heatmaps within +/- 2 years of the indicated401

year when the predictions are deemed “accurate”. We define an accurate prediction as402

one within +/- 2 years of the true year. For example, the average relevance map for the403

year 2015 includes an average over all “accurate” predictions for maps from 2013-2017404

(a total of N = 60). Since prediction accuracy largely improves as the forced signal grows405

in time, the number of accurate heatmaps averaged together also generally increases from406

the 20th to 21st Century (denoted by N in each panel).407

The average LRP heatmaps in Figure 6 illustrate the most relevant regions used408

by the ANN (Figure 4a) to accurately predict the year of each temperature map (results409

for when the global mean is removed are shown in Supp. Figure 4). While akin to the410

regression coefficient maps in Figure 3b,d, these relevance heatmaps vary in time due to411

the architecture of the ANN and thus reflect the most reliable indicators of change for412

a particular year. The high-latitude North Atlantic exhibits large relevance over the 20th413

and early 21st century, while the Southern Ocean appears to increase in relevance through-414

out the 21st century. Eastern China lights-up as a relevant region for 1970-2020, and in415

fact, the multi-linear regression method (Figure 3d) also identifies eastern China as a key416

region for predicting the year. The difference is that the ANN allows regions to play larger417

roles during some decades compared to others. This is shown more clearly in Figure 7,418

where we plot the average relevance (as a percentile of the relevance across each input419

map) for eastern China and the north Arabian Sea as a function of year. While the north420

Arabian Sea becomes more and more relevant over time for the ANN’s prediction, east-421

ern China appears most relevant at the turn of the century. This likely reflects the strong422

forcing signal due to aerosols during these decades, which acts to cool the local temper-423

atures (Fiore et al., 2015; see their Figure 4). Thus, the ANN has learned that strong424

cooling in eastern China relative to other regions is an indicator that the map is likely425

from the turn of the century. The north Arabian Sea appears to become more relevant426

with time because of its relatively small internal variability and so the forced signal emerges427

in the early 21st Century and remains strong (as shown later in Figure 9c and Supp. Fig-428

ure 5c).429

Given the formulation of the LRP method, it is important to remember that the430

temporal evolution of a region’s relevance should not be solely interpreted as its tem-431

poral forced climate response. Instead, these maps indicate the most relevant regions for432
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Figure 7. Average relevance percentile as a function of year for eastern China and the North

Arabian sea using the temperature-based ANN. Relevance is only averaged over accurate predic-

tions (see text for details), and averages with fewer than 10 samples are denoted with an ‘o’.

a particular prediction, and so, a region may lose relevance if other regions become more433

relevant in later years.434

Relevance heatmaps for the precipitation when the global mean is removed (i.e. Fig-435

ure 4d) are shown in Figure 8. Supp. Fig. 10 shows similar heatmaps for a different ran-436

dom combination of training and testing simulations to demonstrate robustness of the437

main indicators to this choice. Even with L2 regularization, the precipitation heatmaps438

in Figure 8 appear noisier than those for temperature due to the more local nature of439

precipitation. Even so, relevant indicator patterns can still be seen. For example, LRP440

highlights Antarctica and eastern China as relevant when making accurate predictions441

during the 20th century. By the end of the 21st century, however, the western coasts of442

South America and southern Africa, as well as the Mediterranean, dominate the rele-443

vance maps. The regions highlighted by LRP signify the nonlinear, time evolution of where444

the signal-to-noise is large, and/or where the models agree on the response, and/or where445

relationships between grid points can be leveraged.446

Given this, many of the indicator regions identified by the ANN have direct ties447

to more standard signal-to-noise patterns used frequently in climate science. Figure 9448

shows these standard signal and signal-to-noise maps for temperature (Figure 9a,c,e) and449

precipitation (Figure 9b,d,f) for the turn of the century (1990-2009). Similar maps for450

the end of the 21st Century (2070-2099), when the forced climate change signal is much451

larger, are provided in Supp. Figure 5.452

Figure 9a shows the change in mean surface temperature between 1990-2009 and453

1920-1949, averaged over all of the climate model simulations. This is the classic tem-454

perature change “signal”. The well known pattern of Arctic amplification is evident, whereby455

the Arctic warms at an accelerated rate compared to the rest of the globe (Fyfe et al.,456
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Figure 9. (a) Multi-model average change in temperature between 1990-2009 and 1920-1949.

(c) The average across models of each model’s signal-to-noise ratio, where the signal is defined by

the change in temperature and the noise is defined by the internal noise of the model (see text

for details). (e) The multi-model signal-to-noise ratio, where the signal is defined by the change

in temperature and the noise is defined by total spread/range of change across models. (b,d,f)

as in (a,c,e) except for precipitation. Yellow boxes denote example regions which show enhanced

importance using LRP in Figures 6 and 8.

2013; Holland & Bitz, 2003). Figure 9c shows the model-averaged signal-to-noise ratio,457

which quantifies the ratio of the signal (Figure 9a) to the year-to-year internal noise of458

the system. Specifically, we define this as the temperature signal for each model divided459

by that model’s standard deviation of annual-mean temperature over the 1920-1949 pe-460

riod, then averaged across all models. Finally, Figure 9e provides a measure of signal-461

to-model disagreement, whereby the signal is defined as the model-averaged signal (Fig-462

ure 9a) divided by the total spread of the signal (maximum - minimum) across the cli-463

mate models. Focusing once again on the Arctic, although the signal is large (Figure 9a),464

the internal variability and model disagreement are too, and thus, the signal-to-noise ra-465

tios in Figure 9c,e are small. This low Arctic signal-to-noise ratio is also learned by the466

ANN, as seen in the LRP relevance maps in Figure 6. This is why the ANN chooses not467

to focus on the Arctic when making its predictions. Figure b,d,f are defined similarly but468

for precipitation.469

Yellow boxes in Figure 9 highlight example regions during the 1990’s and 2000’s470

that show enhanced relevance using LRP (Figures 6 and 8). For example, northern Africa471

is identified as important for accurate ANN predictions over the 1990s, and this region472

is also seen to have generally large model agreement in its response (Figure 9e). East-473

ern China is also identified as relevant for the ANN for both temperature and precip-474
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itation (Figures 6 and 8). For precipitation (Figure 9b,d,f), the signal, signal-to-noise475

and model agreement are all large there, but for temperature, the signal and signal-to-476

noise appears near zero. The weak temperature response (or in some cases, cooling) over477

eastern China, however, compared to the warming elsewhere acts as a reliable indica-478

tor of the year. Other similar regions identified by LRP and standard signal-to-noise maps479

include the North Atlantic for temperature, and Antarctica/Southern Ocean for precip-480

itation. With that said, we do not expect all of the patterns identified by LRP to ap-481

pear in the signal-to-noise maps as LRP allows relationships between regional signals to482

be leveraged non-linearly in time, something that is not captured by a single signal-to-483

noise map.484

7.2 Indicator patterns in observations485

Given that LRP allows us to identify the “reasoning” of the ANN for each input486

(prediction) separately, we can use it to identify the regions that are relevant for predic-487

tions based on observations (white dots in Figure 4). Figure 10 shows the LRP relevance488

heatmaps when the observed temperature maps for 1997 (Figure 10b,d) and 2015 (Fig-489

ure 10c,e) are fed into the ANN (see Supp. Figure 6 for examples using precipitation).490

Figure 10a displays the predicted probabilities for each decade output by the ANN. Al-491

though the temperature anomaly patterns are quite different between 1997 and 2015,492

the ANN uses similar regions for its prediction (Figure 10d,e). Namely, the largest rel-493

evance appears to be over the Southern Ocean and western coast of southern Africa, al-494

though many other regions also have non-zero relevance. Furthermore, while 1997 ex-495

hibited a large El Nino signal (warming in the eastern tropical Pacific), and 2015 had496

anomalously warm temperatures throughout the northern mid-to-high latitudes, neither497

of these regions are identified as relevant for the ANN predictions. This once again high-498

lights that the ANN identifies the most reliable signals/regions, rather than just the largest499

anomalies.500

While the ANN predictions based on observed temperature maps are generally very501

good (white circles in Figure 4a), the predictions based on observed maps when the global502

mean is removed are shifted approximately 30 years too late (white circles in Figure 4b).503

Figure 11a shows the observed temperature anomalies in 1985 with the global mean re-504

moved, and the ANN incorrectly predicts the year is 2016 based on this map (31 years505

too far into the future). Using backward optimization (Section 3.4), we optimize the ob-506

served map (Figure 11a) to allow the ANN to make a more accurate prediction. Figure507

11c shows an optimized map that leads the ANN to accurately predict 1985. While Fig-508

ure 11a and 11c look very similar, their difference (Figure 11e) shows that subtle changes509

in the temperature patterns can improve the ANN prediction by 31 years. Figure 11g510

shows the same changes, but scaled by the local standard deviation of temperature (de-511

fined from linearly detrended values over the 1961-1990 baseline period). The optimized512

input changes reflect the changes necessary for an accurate ANN prediction, and the mag-513

nitude of these changes (either in physical units or standard deviations) correspond to514

the threshold at which the optimized signal becomes identifiable above the noise.515

In a general sense, Figure 11g shows that cooling the continents and North Pacific516

ocean and warming the rest of the oceans in 1985 would lead the ANN to a much more517

accurate prediction. The concept of cooling or warming the observed globe seems rather518

odd since the observed map is what actually occurred. However, the ANN was trained519

on climate model simulations, and so, from the point-of-view of the ANN, it is the ob-520

servations that need to be adjusted. If we change our framing, we can instead view Fig-521

ure 11g as highlighting the fact that the climate models upon which the ANN was trained522

are too cold over land compared to the oceans. That is, this method has extracted a crit-523

ical model bias in regional patterns of warming in the 1980s. To support the robustness524

of this result, Supp. Figure 7 shows that optimizing the observed 2015 map (rather than525
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Figure 10. (a) Fuzzy classification output based on observed maps of 1997 and 2015. Tick

marks on the y-axis list every 2nd class for space reasons. (b,c) Observed temperature input

maps plotted as anomalies from the baseline period of 1961-1990. (d,e) Layerwise relevance

propagation heatmap for the ANN’s year prediction.
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Figure 11. (a) Observed temperature anomaly maps with the global mean removed, plotted

as anomalies from the baseline period of 1961-1990. (c) Optimized input map determined using

backward optimization. (e) Difference between (c) and (a). (g) As in (e) but standardized by the

local standard deviation, defined from the detrended values over the baseline period. (b,d,f,h)

Similar panels but for observed precipitation anomaly maps with the global mean removed,

plotted as anomalies from the baseline period of 1979-1999.
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1985) extracts a similar climate model bias - namely that the land does not warm fast526

enough relative to the oceans in climate model simulations (Supp. Figure 7f,h).527

The right column of Figure 11 shows a similar analysis but for the observed 1985528

precipitation map, where the global mean has been removed (Figure 11b). As for tem-529

perature, the ANN predicts too late of a year for this input map, predicting the year 2000530

for the 1985 observed map. Backward optimization leads to the optimized map shown531

in Figure 11d, and when fed this optimized map, the ANN is able to predict the correct532

year of 1985. Figure 11h shows the optimized changes (in local standard deviation), and533

we see that the optimized map has increased precipitation anomalies off of the coast of534

South America, southern Africa, and eastern Antarctica, and decreased precipitation anoma-535

lies over northern Africa and central Asia. Once again, these changes can be interpreted536

as regions where climate model simulations are too wet (blue/green shading) or too dry537

(brown/orange shading) relative to the GPCP observations. Supp. Figure 8f,h shows that538

the same regional biases are extracted when one optimizes the observed 2005 precipita-539

tion map, suggesting these biases are present for multiple decades.540

8 Conclusions541

We identify reliable indicator patterns of forced change within annual-mean sur-542

face temperature and precipitation maps from climate model simulations using artificial543

neural networks (ANNs) and two powerful visualization methods, layerwise relevance prop-544

agation and backward optimization. The indicator patterns vary through time, and the545

ANN captures the nonlinear, time evolution of the signal-to-noise ratio and model agree-546

ment by leveraging relationships between grid points. Since layerwise relevance propa-547

gation identifies the regions that are most relevant for a given prediction, we apply it to548

input maps of observational data that were not used during training of the ANN. We549

find, for example, that the ANN identifies the Southern Ocean as a reliable indicator of550

forced change within the observational record. Finally, we use backward optimization551

to identify the relevant regions where climate models are most different from observa-552

tions for any given year. For example, temperature results show that models are too cold553

over the land and too warm over the oceans, while results for precipitation suggest that554

models are too wet off the western coasts of South America and Africa.555

While previous work by Barnes et al. (2019) demonstrated that ANNs are capa-556

ble of identifying patterns of forced change in climate model simulations, they did not557

present the patterns themselves due to the complexity of visualizing the nonlinear de-558

cision making process of an ANN. Since then, neural network visualization tools devel-559

oped by the computer science community have been introduced to the geosciences (e.g.560

McGovern et al., 2019; Toms et al., 2019), and allow for visualization and interpretation561

of the fully nonlinear ANN. Thus, while this work highlights their use for visualizing forced562

patterns of change, we suggest that it is likely the first of many to demonstrate the pro-563

found ability of neural networks and their visualization methods to extract climate pat-564

terns from the noise.565

Appendix A Details on the ANN architecture and training566

Activation Function567

All units use the activation function ReLu, except for the output layer. ReLu, also568

known as the rectified linear unit, is a commonly used activation function within neu-569

ral network architectures and is defined as f(x) = max(0,x). This function is linear in570

its output when the input, x, is positive.571

Soft-max Layer572
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For the output, a soft-max layer is applied before the final class probabilities are573

predicted. The soft-max function is commonly used in classification problems. The soft-574

max function is defined for a vector of values x of length N as575

576

f(x)i =
expxi∑N
j=1 expxj

(A1)577

where i indicates the specific elements of the vector x. The soft-max function acts to rescale578

the final values such that they add to one, which in our case, is advantageous since this579

allows us to view the output as weightings associated with each year.580

Loss Function581

We train the neural network using the binary cross-entropy loss between the pre-582

dicted class probabilities and the correct class values. The binary cross-entropy loss for583

each sample is defined as584

Loss = −
N∑

k=1

[yk log (p(yk)) + (1 − yk) log (1 − p(yk))] , (A2)585

where k denotes the kth class, yk denotes the true value for class k in that sample, and586

p(yk) denotes the predicted probability of class k. This function acts to penalize the model587

more when the model is confident in its prediction (i.e. predicts a higher probability)588

but it is wrong.589

Training590

The ANN was trained using the Keras stochastic gradient descent optimizer (“SGD”)591

with Nesterov momentum turned on, learning rate = 0.01, momentum = 0.9, and a batch592

size = 32. These parameters were chosen by comparing results across a range of param-593

eter values for each and choosing those that exhibited both high accuracies and inter-594

pretable patterns. Our results and conclusions are robust to variations in these choices.595

ANNs based on maps of temperature were trained for 500 iterations, while ANNs based596

on precipitation were only trained for 250 iterations as more iterations substantially de-597

graded performance.598
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