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ABSTRACT

Clustering is used to enhance mesoscale meteorological detail in retrievals produced from satellite sounding
measurements. By placing sounding fields-of-view (FOVs) into groups of similar measurements, mesoscale
details are reinforced, compared to arbitrary grouping of FOVs into a fixed block size. Clustering takes advantgg%
of similarity among the measurements to avoid smearing gradient information. A case study is presented showing
the advantage of clustering as applied to the satellite sounding problem.

1. Introduction

Satellite sounding measurements are known to con-
tain high horizontal-resolution detail on atmospheric
variability (Zehr and Green 1984). At the same time
these high horizontal-resolution measurements need
to be spatially averaged in order to increase their signal-
to-noise. The normal procedure for spatial averaging
is to arbitrarily group adjacent sounding fields-of-view
(FOVs) into a fixed block size. This averaging, how-
ever, can smear gradient information in the sounding
measurements, especially if the averaging is arbitrary
and extends across gradients in the measurements.
When the sounding FOVs are placed into groups of
similar measurements, smearing of mesoscale gradient
information is avoided. To accomplish this, a clustering
technique is used to selectively group satellite sounding
measurements. Patterns in the clusters of measure-
ments reveal the extent and variability of air mass
(temperature and water vapor) characteristics.

The noise levels in the various sounding channels
are the size criteria for grouping the FOVs. Clusters of
FOV:s are, therefore, similar to within the noise levels
of the measurements, and differences between the
clusters represent significant changes above noise. Due
to correlation between adjacent measurements, the
clustered FOVs also have limited spatial continuity.
This spatial continuity delineates and reinforces me-
soscale features. The same process reduces noise by
treating similar measurements in groups. Retrievals are
then performed on the clustered FOVs, with only one
retrieval necessary for each cluster of similar values.
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2. Clustering of satellite sounding data

There are many variations on the theme of clustering
as applied to satellite sounding data (Lipton et al. 1986;
McMillin 1986). Clustering has been used mainly to
classify synoptic-scale sounding measurements into
preselected groups before doing retrievals, leading to
an improvement in retrieved results (Ferraro 1986).
Thompson et al. (1985) used pattern recognition and
principal component analysis to predefine groups for
satellite sounding data. Individual FOVs were then
classified into the preset groups. Results showed a
strong positive impact on physical-iterative retrievals
of atmospheric variables. Uddstrom and Wark (1985)
chose to classify satellite sounding data based on prin-
cipal components, but using fixed class boundaries.
Wark (1985) suggested that noise levels may be used
to delineate the classes, as was tested in this study.

Clustering is the process of separating data points
into groups of similar values. The terms classification
and discrimination are used to describe the processes
of putting data points into fixed or predefined groups.
The authors above used classification, for example, to
discriminate the type of retrieval based on predefined
groups. The major difference with this work is that the
clusters are not predefined. Rather, only the cluster
size is predefined. The clustering process, as used here,
does not anticipate the outcome of the retrievals. This
is especially applicable to mesoscale changes that may
be subtle. Therefore, the two characteristics that make
this clustering technique unique are:

1) Itisbased on the noise levels of the measurements
in each of the VAS channels that are clustered. This
means that the profiles retrieved within a cluster vary
only within the noise in the measurements, and dif-
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ferences between clusters represent the minimum vari-
ation above noise.

2) It is applied to mesoscale VISSR Atmospheric
Sounder (VAS) data in order to detect high-resolution
airmass variations, by clustering single FOV (maxi-
mum resolution ) measurements into groups of similar
values. These two conditions make this technique use-
ful for the mesoscale analysis of VAS data, in terms of
the ability to detect high resolution variations above
noise level.

3. Real data example

The case to which the clustering technique was ap-
plied is shown in Fig. 1. The satellite data cover south-
ern Minnesota and much of Wisconsin and Iowa in a
postfrontal situation on 7 September 1983. All FOVs
are cloud free with some possible minor exceptions. A
cloud-free situation was purposely chosen to avoid
clusters based on cloud differences. Clustering was used
to distinguish variations in clear VAS measurements
and, therefore, in the temperature and water vapor
structure in the area of concern. The extension to in-
clude cloudy FOVs is an obvious next step, which is
being pursued.

The VAS FOVs are at a resolution of about 15 km
in the east-west direction and about 23 km in the
north—south direction. There are 19 lines of 45 cle-
ments each, or 855 FOVs (minus missing values),
covering an area about 450 km by 650 km. The VAS
FOVs are at much higher spatial resolution than the
surrounding synoptic RAOB locations. This leaves
large gaps for the satellite to measure subsynoptic ther-
mal and moisture variations below the resolution of
the RAOB network. The VAS data contain twelve
spectral channels that are sensitive to temperature and
water vapor variations throughout the troposphere. For
this study, data from VAS channel 11 were missing,
leaving eleven other VAS channels for analysis.
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FIG. 1. Selected VAS FOVs at 15-km (east-west) resolution for 7
September 1983 at approximately 1400 UTC. Area is approximately
450 km by 650 km. Small gaps denote missing values in the grid of
19 lines by 45 elements.
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4. The clustering process

Since VAS dwell-sounding data contain up to twelve
spectral channels, there is a wide choice of variables
(channels) that can be used to cluster the VAS FOVs.
The clustering of VAS data is a computer-intensive
process. It involves computing the “deviance” (Kendall
1975) between cluster members in measurement (ef-
fective blackbody temperature) space. The deviance is
a multivariate measure similar to distance in Euclidean
(x, ¥, z) space. But in this case the dimensions in cluster
space are the various VAS channels.

The multivariate normalized deviance between the
measurements in two FOVs in two or more channels
(dimensions in cluster space) is

dev = (Ax/a)* + (Ay/b)* + - - - (1)
where Ax and Ay are the differences in the measure-
ments in the two channels, and a and b are the noise
levels in the x and y channels, respectively. A constant
deviance (e.g., dev = 1.0) can be visualized as an ellipse
in two dimensions. A dev < 1.0 denotes that the mea-
surements in two FOVs do not differ by more than the
noise level in both the x and y channels, and a dev
> 1.0 would occur if the measurements in the two
FOVs differ by more than the noise level in one or
more of the channels.

Two or more of the VAS channels are normally used
for clustering. The difference in each channel is nor-
malized by the noise level in that channel since the
noise levels of the channels can vary widely. By nor-
malizing the effective blackbody temperature differ-
ences by their noise levels, a deviance of 1.0 represents
a signal equal to noise, and a value of 2.0 represents a
signal twice that of noise, etc. The noise levels directly
determine cluster size, with less noise resulting in
smaller clusters. Noise levels were determined by
structure function analysis of the VAS channels (Hill-
ger and Vonder Haar 1988; Hillger et al. 1988).

The clustering process has the following steps (Hill-
ger and Purdom 1988):

1) Pick a cluster “seed” by locating the most dense
packing of FOVs in effective blackbody temperature
space. This is done by computing the normalized de-
viance between all possible pairs of FOVs and deter-
mining the FOV coupling the largest number of other
FOVs with dev < 1.0.

2) Flag the other FOVs within the maximum al-
lowable deviance (=1.0) as belonging to the cluster.
FOVs with dev > 1.0 from the cluster seed remain
unclustered.

3) Repeat steps 1 and 2 until no new cluster seeds
can be found. New clusters seeds however have to be
at dev = 2.0 in order to make new clusters unique and
nonoverlapping.

4) Force remaining FOVs into existing clusters
(optional).
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5. Principal component analysis

The process of clustering VAS measurements can
be based on either all or a subset of the VAS channels.
Results of clustering on VAS channels directly are not
shown. Rather, to reduce the number of independent
variables, a principal component analysis was applied
to the VAS channels. The well-known technique of
eigenvalue/eigenvector analysis was used to transform
the VAS channels into VAS principal components
(PCs), thereby packing the information content of the
VAS channels into fewer components. The transfor-
mation from effective blackbody temperatures to prin-
cipal components follows the formula

P = EB (2)

where B is an effective blackbody temperature vector
being transformed by the eigenvector matrix E into
principal component vector P. This represents a one-
to-one transformation between B and P vectors. The
eigenvectors of the covariance matrix of VAS channels
were determined using standard math /statistics soft-
ware.

The clustering technique is equally applicable to
VAS effective blackbody temperatures or to VAS PCs.
However, if PCs are used instead of VAS channels, the
PC noise levels must be substituted for the VAS channel
noise levels in order to determine the deviances in Eq.
(1). The PC noise levels are available by structure
function analysis on the VAS PCs, in a manner similar
to cdetermining the noise level of VAS effective black-
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FIG. 2. A comparison of VAS principal component (PC) signal
(solid) and noise (dashed). Signal is the standard deviation of the
analyzed data. Noise is the structure-estimated noise from adjacent
data pairs. Signal-to-noise (numbers) are the ratios of the two lines.
Note the low signal-to-noise (high noise level) for PC 2, especially
cornpared to higher-ordered PCs 3 and 4.
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FIG. 3. Same as Fig. 2, but with VAS channel 1 removed from the
principal component analysis, resulting in only ten PCs. Note the
nearly steady decrease in signal-to-noise with increasing PC number.

body temperatures ( Hillger and Vonder Haar 1988),
or by use of Eq. (2). :

The PCs are, by definition, ordered in terms of de-
scending amount of explained variance, with each PC
explaining more variance than following components.
However, the same descending order was not found in
the case of PC noise levels. The structure-estimated PC
noise did decrease in general with increasing PC num-
ber, except for the second PC, as shown in Fig. 2. For
the second PC the noise variance is nearly as large as
the variance in that PC, indicating that the second PC
is mainly composed of noise. The third and fourth PCs
actually have larger signal-to-noise ratios than the sec-
ond PC, indicating that they contain more information.
Numbers to support this for VAS have not been seen
in the published literature, but analyses of multispectral
LANDSAT-type data have indicated that higher-order
components may be more useful than lower-ordered
components, especially when the noise levels of the
original measurements (channels) vary widely (Green
et al. 1988).

The noisy second PC, as indicated in Fig. 2, results
from a large noise level and low signal-to-noise in VAS
channel 1. This was determined by removing channel
1 from the principal component analysis, resulting in
the PCs being ordered more appropriately according
to decreasing signal-to-noise, as shown in Fig. 3. PCs
beyond the sixth are almost completely noise domi-
nated according to this analysis, indicating that the ten
VAS channels (without channels 1 and 11) contain
only six pieces of information. This redundancy in in-
formation content is a well known fact for remote
sounding measurements. Figure 4, in a manner similar
to Figs. 2 and 3, shows a signal-to-noise analysis of the
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FiG. 4. Same as Figure 2, but for VAS channels, showing that the
stratospheric and upper-tropospheric channels (1-3) contain little
signal above noise.

VAS channels. Channel 1 has a large noise level, equal
to the signal and therefore contains virtually no infor-
mation in this case.

Because the PCs are now ordered in terms of infor-
mation content, information can be added by clustering
on increasing numbers of PCs. Clustering on one PC
alone results in clusters (A-I) as shown in line-element
(real) space in Fig. 5. Adding a second PC will result
in more and smaller clusters. Since the first two PCs
contain over 80% of the signal in the VAS channels,
clustering on two PCs is similar to clustering based on
nearly all of the information in the VAS channels. With
two PCs, the clustering technique produced the clusters
in Fig. 6 (a and b) as shown in PC space. In Fig. 6a
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the individual cluster members are designated by the
letters A—P (16 clusters). The ellipses in Fig. 6b show
the cluster extent, based on PC noise levels. The same
clusters are shown in line-element (real) space in Fig.
7. A very slight amount of smoothing of adjacent FOV
measurements was used to give the clusters additional
spatial continuity. The cluster pattern shown in Fig. 7
indicates the predominance of east-west features in
the field, with stronger (nonisotropic) gradients ori-
ented in the north-south direction. Results for three
PCs (not shown) are similar to those for two PCs with
only a limited number of additional clusters.

6. Clustering versus blocking

To increase the signal-to-noise ratio of the VAS
measurements, multiple FOVs need to be averaged to-
gether. The amount of spatial averaging varies, de-
pending on a tradeoff between increased signal-to-noise
and the desire for high resolution. The single FOV res-
olution of VAS large detectors is approximately 15 km.
In mesoscale applications, a resolution of 20-75 km is
typically needed (Jedlovec 1984, 1985). Operational
VAS retrievals on the VAS Data Utilization Center
(VDUC) averaged together 11 X 11 small (8 km) de-
tector FOVs to achieve a resolution of about 75 km
(Hayden 1988). That is about equivalent to 5 X 5
large (15 km) detector FOVs. Therefore, in this study
retrievals using clustered FOVs are compared to re-
trievals using spatial blocking of 5 X 5 large FOVs.

By clustering on two PCs there were fewer ( 16) clus-
ters than the same 855 FOVs blocked into 36 groups
of 5 X 5 or 25 FOVs. Most clusters contain more FOVs
than the arbitrary blocks. Thus clustering achieves
economy in the retrieval, as well as improved signal-
to-noise through averaging of similar measurements.
Note further that all of the equal-sized blocks in Fig.

[o )0 8]

> 2 X Ko Ne ¥ > A RN

2
3

[ (SN )
=N



1348

B.83
w
—

smooth 3x3 9

VAS PC-2

. i 1 1 1 Pl s 1 1 I L n I i 1.
-18. -8. -6. -4, -2. Q. 2. 4. 6. 8. 10. 12.
A VAS PC-1 smooth 3x3 9 .84

(%3
@
=
2. L
: @
™
X
™ 1. k-
£
P
[*4
o
Sg.p@
-1.
o
o
Q.
w -2,
<<
>
-3 S V| F I S | ra—

. P RS A i i P
-18. -8§. -6. -4, -2, 0. 2, 4. 6. 8. 19. 12.

B VAS PC-1 smooth 3x3 9  0.84

F1G. 6. Clusters of VAS FOVs in PC space based on variations in
PCs 1 and 2. (a) Letters represent the clusters, with stars for unclus-
tered FOVS. A slight spatial smoothing was applied to the data prior
to clustering. (b) The ellipses show cluster limits determined by PC
noise levels. The length of the semimajor and semiminor axes are
given by the numerical values on each axis.

8, which are drawn over the cluster designations for
two PCs, contain FOVs from more than one cluster.
Thus, soundings retrieved from measurements in a
given block should vary more than those retrieved from
measurements in a given cluster. The variability in the

clusters is limited to the noise level in the radiances,

while the variability within blocks is not limited.

7. VAS retrievals

Retrievals are performed using the Smith et al.
(1985) simultaneous temperature—moisture retrieval
algorithm so that comparisons can be made between
soundings retrieved on clustered and spatially blocked
FOVs. In all cases the same first-guess sounding was
used for the entire area, with the exception of the sur-
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face temperature being modified to better match the
window channel measurements. Before soundings are
retrieved, the PCs representing the clusters are changed
back into effective blackbody temperatures using the
inverse of Eq. 2.

- B=E"'P. (3)

Five retrievals have been produced for each cluster,
one representing the cluster center, and one for the
minimum and one for the maximum in each of the
first two PCs. These four retrievals, which represent
the four points at the ends of the semimajor and semi-
minor axes of the cluster ellipses, represent the vari-
ability within a given cluster. Examples of retrievals
for cluster L as shown on the skew T-log P plot in Fig.
9 indicate the spread in retrievals allowed by variations
within noise. In contrast, a much larger spread is evi-
dent in Fig. 10 for the retrievals from block 7 (counting
from the upper left in Fig. 8), which has only about-
half of its area covered by FOVs from cluster L. Again
five retrievals are shown, equivalent to those in Fig. 9.
The larger spread in retrievals is due to the arbitrary
spatial blocking allowing values from two clusters (B
and L). As anticipated, arbitrary averaging results in
more variability in the blocks than in the “more nat-
ural” clusters. Since some spatial averaging is required
to increase the signal-to-noise ratio of VAS measure-
ments, it makes sense to average the measurements in
a manner that minimizes the variance of the combined
values by clustering and maximizes the variances be-
tween clusters. How this affects horizontal fields from
the retrievals is shown in section 8.

8. Horizontal cross sections

Horizontal cross sections were produced from re-
trievals on both the clustered and blocked VAS data.
Objective analysis schemes were used to interpolate
values at all FOVs. The weighting applied to each re-
trieved cluster value is based on the normalized-devi-
ance (in cluster space) of the FOV from the retrieved
values at the three (3) nearest cluster centers. Retrieved
values at cluster centers with less deviance from the
FOV are given more weight, retrieved values with
greater deviance are given less weight. The weighting
used to determine the temperature at any point in the
field is

3
T=22wTi/2 w. (4)

Here T is the retrieved temperature for cluster i uéing
the weight

(5)

3
w; = 3, dev; — dev;
J

where the deviances are subtracted from their sum in
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F1G. 7. The same clusters as in Fig. 6 based on PCs | and 2 in line-element (real) space. The addition of
PC 2 results in more clusters than in Fig. 5.

order to more heavily weight closer values in cluster
space. The number of cluster centers in the summation
can be variable, depending on the range of influence
wanted. In this case, three centers were used to influ-
ence each FOV. Note that the objective analysis for
clustered retrievals does not consider their spatial sep-
aration, rather the deviance in cluster space ( similarity
in value), thus avoiding the smearing of gradients. The
atmosphere is seldom homogeneous or isotropic
enough to assume that adjacent measurements are the
same within their noise level. Clustering tells us when
or when not to consider adjacent measurements.

An example of a horizontal field based on clustered
retrievals is shown in Fig. 11. The 700-hPa temperature
field shows mesoscale features that might not be ex-
pected on such a small scale. The cooler temperatures

in the northwest corner of the field are most likely due
to subresolution clouds in the VAS data. Fractional-
FOV clouds could lower the retrieved temperatures,
since this area was treated as cloud-free-based window-
channel measurements in VAS channel 8 (11 um).
Clustering, therefore, may be very useful for detecting
and eliminating areas of subresolution cloudiness.
The same field produced from blocked retrievals is
shown in Fig. 12. Unlike the clustered retrievals, the
objective analysis between the retrieved values for the
blocks considers only spatial separation rather than
similarity in value. Two-dimensional (three-point)
linear interpolation is used to generate the value at any
FOV from the three nearest block centers in real space.
Note the smoother horizontal features, lacking meso-
scale detail, with gradients not as strong or localized
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FiG. 9. Examples of soundings retrieved for cluster L. Shown are
five retrievals; one for the cluster mean, and one for the minimum
and one for the maximum in each of PCs 1 and 2.

as those in the clustered retrivals. Some of the contour
lines at small scales are at right angles between the two
methods.

Are the small-scale features in Fig. 11 real? Since
high-resolution conventional RAOB data are not
available for verification of this case, this is a difficuit
question to answer. Mostek et al. (1980) similarly cited
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FiG. 10. Examples of soundings retrieved for block 7. Shown are
five retrievals equivalent to those shown in Fig. 9. Note the larger
variability in soundings, due to FOVs from two clusters (B and L).
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F1G. 11. Horizontal field of 700-hPa temperatures derived
from soundings retrieved on clustered FOVs.

the lack of high-resolution RAOBs as a major limitation
in verifying VAS soundings in mesoscale studies.
However, previous work in which VAS retrievals for
this case were compared with synoptic-scale RAOBs
(Hillger and Purdom 1988) showed that the large-scale
features were faithfully reproduced. Thus, it seems rea-
sonable that smaller-scale features are similarly repro-
duced. This question is currently being investigated
using VAS datasets coincident with some mesoscale
conventional observations.

9. Summary and conclusions

A clustering technique is described and applied to
satellite sounding measurements prior to retrieval of
atmospheric profiles. Cluster size is based on the noise
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FiG. 12. Horizontal field of 700-hPa temperatures derived from
soundings retrieved on blocked FOVs. Note the smoother features
due to smearing of gradient information.
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levels of the measurements, with variations between
clusters then due to signal-above-noise. To see the effect
of clustering, soundings within clusters show less vari-
ability than soundings within arbitrary spatial blocks
with resolution similar to that used for operational VAS
retrievals. On the other hand, horizontal fields pro-
duced from clustered retrievals show more mesoscale
detail due to the natural grouping of the sounding
FOVs. Mesoscale features are reinforced by grouping
together similar FOVs, and gradient information is
maintained. Although applied to clear FOVs, this

technique also holds potential for cloud-clearing by

detecting FOVs with subresolution clouds as clusters
separate from other clusters of FOVs,
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