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ABSTRACT

A simplified dynamical system for tropical cyclone intensity prediction based on a logistic growth equa-
tion (LGE) is developed. The time tendency of the maximum sustained surface winds is proportional to the
sum of two terms: a growth term and a term that limits the maximum wind to an upper bound. The
maximum wind evolution over land is determined by an empirical inland wind decay formula. The LGE
contains four free parameters, which are the time-dependent growth rate and maximum potential intensity
(MPI), and two constants that determine how quickly the intensity relaxes toward the MPI. The MPI is
estimated from an empirical formula as a function of sea surface temperature and storm translational speed.
The adjoint of the LGE provides a method for finding the other three free parameters to make the
predictions as close as possible to the National Hurricane Center best-track intensities. The growth rate is
assumed to be a linear function of the vertical shear (S), a convective instability parameter (C) determined
from an entraining plume, and their product, where both S and C use global model fields as input. This
assumption reduces the parameter estimation problem to the selection of six constants. Results show that
the LGE optimized for the full life cycle of individual storms can very accurately simulate the intensity
variations out to as long as 15 days. For intensity prediction, single values of the six constants are found by
fitting the model to more than 2400 Atlantic forecasts from 2001 to 2006. Results show that the observed
intensity variations can be fit more accurately with the LGE than with the linear Statistical Hurricane
Intensity Prediction Scheme (SHIPS) formulation, and with a much smaller number of constants. Results
also show that LGE model solution (and some properties of real storms) can be explained by the evolution
in the two-dimensional S–C phase space. Forecast and other applications of the LGE model are discussed.

1. Introduction

Tropical cyclone (TC) track forecast errors have de-
creased considerably over the past several decades.
However, there have been only modest intensity fore-
cast improvements (DeMaria et al. 2007). Because of
the complex physical processes affecting intensity
changes, statistical forecast models have remained com-
petitive with much more general prediction systems.
For this reason, the National Hurricane Center (NHC)
continues to run a hierarchy of operational intensity
models that range from the simple Statistical Hurricane
Intensity Prediction Scheme (SHIPS; DeMaria et al.
2005) to the fully coupled atmosphere–ocean Hurricane
Weather Research and Forecast (HWRF) system
(Surgi et al. 2008). The HWRF model became opera-

tional in 2007, and is the follow on to the National
Centers for Environmental Prediction (NCEP) version
of the Geophysical Fluid Dynamics Laboratory (GFDL)
coupled hurricane model (Bender et al. 2007).

Several experimental intensity prediction systems of
intermediate complexity have also been proposed.
Emanuel et al. (2004) showed that a three-layer axi-
symmetric model coupled with a simplified ocean
model can simulate many aspects of TC intensity
changes when a parameterization for entrainment as a
function of environmental vertical shear is included.
Shen (2005) developed an intensity prediction system
based on an energetics principal. In Shen’s model, the
prediction system is reduced to an ordinary differential
equation for the integrated TC kinetic energy.

As opposed to the physically based models described
above, the SHIPS model is purely empirical. Multiple
linear regression is used to relate factors from climatol-
ogy, persistence, the atmosphere and the ocean to in-
tensity changes. The atmospheric variables are ob-
tained from the NCEP global model and the oceanic
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variables are from sea surface temperature (SST)
analyses and satellite altimetry retrievals of ocean heat
content (OHC). Predictors from Geostationary Opera-
tional Environmental Satellite (GOES) imagery are
also included as measures of convective activity. An
even simpler statistical model [the Statistical Hurricane
Intensity Forecast Model (SHIFOR)] is also run opera-
tionally at NHC. SHIFOR only includes predictors
from climatology and persistence (Knaff et al. 2003)
and is primarily used as a baseline for the evaluation of
forecast skill. The experimental Florida State Univer-
sity Super Ensemble (FSSE) is another example of an
empirically based TC model. The superensemble meth-
odology optimally combines forecasts from a set of
models (Krishnamurti et al. 1999).

Over the past decade, SHIPS has generally been the
most skillful of NHC’s operational intensity forecast
models (DeMaria et al. 2007). Although gradual im-
provements have been made to SHIPS by including
predictors from new data sources such as GOES imag-
ery and satellite altimetry, further improvements may
be limited by the underlying linear nature of the model.
In the multiple regression formulation, the intensity
change over each forecast interval is a linear function of
a set of input parameters. However, the intensity
change at, say 36–48 h, may depend on the actual in-
tensity at 36 h, but this effect could not be included in
the current formulation of SHIPS. Also, a relatively
large number of coefficients are needed to represent
the intensity evolution. For example, the 2007 version
of SHIPS included 21 predictors and separate regres-
sion equations for each 6-h forecast interval out to 120
h for a total of 420 coefficients. In this study, a simple
dynamical prediction system is introduced that can rep-
resent the basic evolution of TCs with a much smaller
number of free parameters than SHIPS. Although the
prediction system, which is based on a logistic growth
equation (LGE), is still empirically based there is a
closer relationship to physical processes through a di-
rect inclusion of a maximum potential intensity (MPI)
estimate. The LGE formulation bounds the solution
between 0 and a fraction of the MPI and allows for a
straightforward way to include the effects of land. The
complexity of this system lies between the energetics
model of Shen (2005) and SHIPS.

The LGE is described in section 2. The MPI estima-
tion method and preliminary real-time forecast results
from a version that uses a linear regression approach
for the calculation of the model growth rate are pre-
sented in section 3. Sections 4 and 5 introduce a new
method estimating the parameters of the LGE using
the adjoint of the prediction model and a version with

a greatly reduced set of predictors. Section 6 tests the
adjoint fitting method with the reduced predictor set on
individual storms. Section 7 describes how the param-
eters fitted to a large number of storms can be used to
define a two-dimensional phase space (shear and insta-
bility) that helps to illustrate the roles of dynamic and
thermodynamic factors on intensity changes, and pre-
sents results with independent cases. Potential applica-
tions of the LGE model are described in section 8.

2. The logistic growth equation

The basic equation for the intensity prediction is
based on an analogy with a differential equation com-
monly used to model population growth. For that ap-
plication, the LGE can be written as

dP

dt
� �P � �P2, �1�

where P is the species population, t is time, and � and �
are constants. The first term on the right-hand side rep-
resents reproduction, where the growth rate is propor-
tional to the size of the existing population. The second
is a mortality term that takes into account available
resources and limits growth. This population model was
first proposed by the Belgian mathematician P. F. Ver-
hulst in 1838 (Murray 1979). Defining K � �/�, then (1)
becomes

dP

dt
�

�P�K � P�

K
. �2�

For P K K, the population growth is exponential. How-
ever, as P becomes large the growth rate slows down
because of a competition for resources. In the limit as
t → � a steady state is reached where P � K. The
quantity K is called the carrying capacity and represents
the maximum population that the environment can sup-
port.

For TC intensity prediction, the dependent variable
in (1) is replaced by the maximum sustained surface
wind V as a function of time. Viewing TC intensifica-
tion from the point of view of a wind-induced surface
heat exchange (WISHE) instability (Emanuel 1986),
the surface energy flux depends on the current surface
wind speed. Thus, the WISHE process is represented
by the reproductive term in (1). The intensification pro-
cess cannot continue indefinitely and is limited to an
upper bound (i.e., the MPI). This process is represented
by the second term on the right in (1). The MPI concept
was first proposed by Miller (1958), and theoretical for-
mulas have been derived by Holland (1997) and Eman-
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uel (1988). Empirical MPI formulas have also been de-
veloped from observations (e.g., Whitney and Hobgood
1997). All of these MPI formulas depend on thermo-
dynamic properties of the storm environment.

For intensity prediction a generalized version of (1) is
utilized where � and � are time dependent and the
power of 2 in the second term on the right is replaced
with an arbitrary parameter greater than zero. With
these assumptions, the intensity evolution is deter-
mined from

dV

dt
� �V � �V� V

Vmpi
�n

, �3�

where Vmpi is the MPI in terms of a maximum surface
wind, � is the time-dependent growth rate, and � and n
are positive constants that determine how rapidly and
how close the solution for V can come to Vmpi. As will
be described below, � in (1) was replaced by �/(Vmpi)

n

to make the steady-state solution to (3) easier to inter-
pret physically.

Similar to the SHIPS model it is assumed that the
storm track is known. Then Vmpi can be calculated from
the SST and atmospheric soundings from model analy-
ses or forecasts of the storm environment. Similarly, � is
assumed to be a function of environmental parameters
such as vertical wind shear that can be calculated from
analyses or model forecasts. Details of how the four
parameters Vmpi, �, �, and n are estimated will be de-
scribed in sections 3–4.

To better understand the behavior of (3), consider
the case where the four parameters are all constants.
The analytic solution of (3) with constant coefficients is
described by Thieme (2003) in the context of popula-
tion modeling. For this case, the solution has two fami-
lies of solutions. When � 	 0, both terms on the right-
hand side are always negative, so V decays to zero. The
solution also decays to zero when � � 0. When � 
 0
the first term on the right-hand side dominates when V
is small, so V increases exponentially. As V increases,
the second term becomes important, and in the limit as
t → �, a steady-state solution is reached where dV/dt is
zero. Defining the steady-state value of V as Vs, setting
dV/dt � 0 in (3) and solving for V � Vs gives

Vs � Vmpi� |�|
� �1�n

. �4�

The absolute value is included in (4) because Vs can be
used as a scale for V, whether � is positive or negative.
Equation (4) shows that in the limit as n → �, the
steady-state solution approaches Vmpi.

Assuming � � 0, Eq. (3) can be simplified by defining
nondimensional wind speed U and time � as

U �
V

Vs
, �5�

� � |�|t. �6�

Using (4)–(6), (3) can be written as

dU

d�
� U�s � Un�, �7�

where s is the sign of � (s � 1 if � 
 0 or s � �1 if � 	
0). The solution to (7) is given by

U��� � Uoest
1 � sUo
n�esnt � 1����1�n�, �8�

where Uo is the initial value of U.
Figures 1 and 2 show U(�) for several values of Uo for

� 
 0 and � 	 0. The solutions in Figs. 1 and 2 are for
n � 3. Here U decays to zero with time for negative �
and approaches 1 (V � Vs) for positive �. The effect of
the parameter n can be seen in Fig. 3, which shows U(�)
for positive � with n � 1, 2 . . . 5. This parameter pri-
marily affects the steepness of the U curve. For the
dimensional speed V, n also affects the value of the
steady-state solution that is being approached as t in-
creases, as can be seen from (4).

The nondimensional scaling in (5)–(6) is not valid
for � � 0. For this case, the analytic solution of (3) is
given by

V�t� � Vo�1 � �nt� Vo

Vmpi
�n���1�n�

, �9�

where Vo is the initial value of V. Equation (9) shows
that the V decays slowly to zero when � � 0.

FIG. 1. The analytic solution to the nondimensional form of the
logistic growth equation with positive � and n � 3 for several
values of the initial condition Uo.
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The LGE model formulation is closely related to a
nonlinear statistical method called logistic regression
(Wilks 2006). Logistic regression is usually employed in
problems where the predicted variable is bounded be-
tween 0 and 1. In fact, the most common functional
form used in logistic regression is mathematically
equivalent to (8) for the case with n � s � 1. However,
when applied to the forecast problem, Vmpi and � are
time dependent so it more straightforward to use the
differential form in (3) and integrate it numerically,
rather than fit a series of the analytic solutions over
short time segments. From this point of view the LGE
model can be thought of as a differential or local form
of logistic regression.

Equation (3) is valid for the case where the storm
center is over water. When the storm center is over
land, the empirical inland wind decay model described
by Kaplan and DeMaria (1995) is utilized. The maxi-
mum wind is reduced by a factor of R when the storm
first moves over land to account for differences in sur-
face roughness. If the storm moves back over the water,
V is divided by R. For the remaining time over land, the
storm decays toward a background wind Vb with an
e-folding time given by ��1. Thus, the inland wind
model is determined from the three specified param-
eters R, Vb, and �. Kaplan and DeMaria (2001) devel-
oped a second set of parameters for higher-latitude
storms. The low-latitude values are used when the
storm center is south of 36°N, the high-latitude values
are used when it is north of 40°N, and linear interpo-
lation is used in between. At all latitudes R � 0.9, so
only � and Vb are linearly interpolated.

DeMaria et al. (2006) showed that the inland wind
model has a low bias for storms that move over islands
and narrow landmasses, which can be corrected by mul-

tiplying � by the fraction of the storm area over land
(F), where the storm area is defined as a circle with a
radius of 111 km. With these assumptions, the evolution
of V when the storm is over land is determined from

dV

dt
� ���V � Vb�, �10�

where � includes the fractional area correction F. Be-
cause of the factor F and the linear interpolation as a
function of latitude, both � and Vb are specified func-
tions of time. Equations (3) and (10) will be referred to
as the logistic growth equation model (LGEM).

3. Preliminary forecast results

A preliminary version of LGEM was developing us-
ing a multiple regression technique (hereafter LGEM-
MR) for estimating the model parameters from the
SHIPS model input. This input included maximum
winds and storm positions at 6-h intervals from the
NHC best track (Jarvinen et al. 1984) and predictors
from Reynolds SST (Reynolds et al. 2002) and the
NCEP Global Forecasting System (GFS) model analy-
ses (Yang et al. 2006). LGEM-MR was run in real time
at NHC during the Atlantic and eastern North Pacific
2006 and 2007 hurricane seasons. The developmental
sample included 1982–2005 for the 2006 version and
1982–2006 for the 2007 version. The results from these
preliminary tests are presented here since a direct com-
parison with the operational SHIPS model is possible
and to provide motivation for the more general param-
eter estimation method described in sections 4 and 5.

FIG. 3. The analytic solution to the nondimensional form of the
logistic growth equation with Uo � 0.25 for several values of n.

FIG. 2. As in Fig. 1, but for negative �.
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For storms over land, all the LGEM parameters (R,
�, and Vb) are known from the inland wind model. For
storms over water, � and Vmpi as a function of time and
the constants n and � in (3) need to be determined. The
Vmpi was calculated as a function of the SST along the
storm track using the empirical formulas developed by
DeMaria and Kaplan (1994) for the Atlantic and Whit-
ney and Hobgood (1997) for the eastern North Pacific.
These formulas were developed in a storm-relative co-
ordination system, so a fraction of the storm transla-
tional speed is added to the Vmpi estimate using the
equation developed by Schwerdt et al. (1979).

To calculate �, n, and �, (3) was solved for � to give

� � � 1
V� dV

dt
� �� V

Vmpi
�n

, �11�

where dV/dt was determined from the best-track inten-
sities using a 24-h centered time difference. Only those
cases where the storm was over water for each 24-h
period are included. Initial guesses were made for the
constants � and n, and the best tracks were divided into
a sequence of 5-day forecasts in the same way as for the
SHIPS model. With the above assumptions, (11) was
used to calculate “observed” values of � for each of the
5-day forecasts. Then, regression equations were devel-
oped for the estimation of � using the SHIPS predic-
tors, but without those from satellite data or the qua-
dratic terms (see DeMaria et al. 2005). The satellite
data were excluded because they are not available for
the entire SHIPS developmental sample. The quadratic
terms were not needed because they generally help to
constrain the intensity changes in SHIPS for the stron-
ger storms, but the LGE automatically bounds the so-
lution. The regression procedure was repeated with
several values of � and n and those that maximized the
variance explained in the linear prediction of � were
determined. The final values of � and n were 1/24 h�1

and 2.5, respectively. Persistence was included in the
regression by calculating � at the beginning of each
forecast from the intensity values from the previous 12
h, which was used as a predictor for � at each forecast
time. A separate set of regression equations was used to
predict � every 6 h from 0 to 120 h.

Whether over land or water, LGEM contains expo-
nentially growing or decaying solutions so that a for-
ward-time-differencing scheme can be used for the nu-
merical solution of (3) or (10) provided that the time
step is smaller than 2/�max, where �max is the largest
value of the decay or growth coefficient. In LGEM, the
largest coefficient is in the inland decay model, where
�max � 10 h�1, which requires a time step less than

�20 h. Since LGEM is computationally trivial a time
step of 1 h was used, which was found to be more than
adequate for stability and accuracy of the solution and
includes all of the 6-hourly best-track data points. The
6-hourly values of � and Vmpi were linearly interpolated
to provide hourly values for the time integration.

The real-time LGEM-MR runs used the same input
as the operational SHIPS model, including the NHC
operational forecast track and predictors estimated
from GFS forecast fields, rather than the GFS analyses
used to develop the regression equations. Figure 4
shows the percent improvement of the LGEM-MR
forecasts relative to the SHIPS forecasts for the 2006–
07 sample. The LGEM-MR errors were larger than
those of SHIPS at the early forecast periods, but were
up to 17% smaller at the longer times in the east Pacific.
In the Atlantic, the LGEM-MR errors were up to 10%
smaller than those of SHIPS. Using a method that ac-
counts for serial correlation of the forecasts (Franklin
and DeMaria 1992), the SHIPS – LGEM-MR error dif-
ferences in Fig. 4 were statistically significant at the
95% level at 60–72 h in the Atlantic and at 72–96 h in
the east Pacific. These results indicate that the LGE
formulation provides improvement relative to the lin-
ear regression used in the SHIPS. Based on this success,
LGEM-MR will continue to be run in real time.

Although LGEM-MR shows promise, it has some
shortcomings. First, the short-term intensity forecasts
errors were larger than those from SHIPS. This may be
due to the fact that the � error is being minimized by
the multiple regression, rather than the predicted maxi-
mum wind. Also, the number of coefficients is almost as
large as for SHIPS. In the next two sections a more
general method for estimating the LGE parameters and

FIG. 4. The improvement of the real-time Atlantic and east
Pacific LGEM intensity forecasts relative to the operational
SHIPS forecasts for the combined 2006–07 season samples.
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a strategy for reducing the numbers of predictors are
described.

4. Generalized parameter estimation

As described above for LGEM-MR, Vmpi is specified
along the storm track, so the remaining parameters in
(3) that need to be specified are � as a function of time
and the constants � and n. It will again be assumed that
� is a linear function of large-scale variables such as
vertical shear, which are known functions of time. Let-
ting these large-scale variables be represented by xi for
i � 1, 2, . . .I then � is given by

��t� � a1x1�t� � a2x2�t� � . . . aIxI�t� � b, �12�

and the parameter estimation problem is reduced to the
determination of the I � 3 constants �, n, ai, and b.

An elegant method for estimating model parameters
for dynamical systems has been developed as part of
data assimilation systems (Errico 1997). For example,
Zhu and Navon (1999) showed that the adjoint of a
global forecast model can be used to optimize diffusion
and boundary layer flux parameters. As described
above, in the general case with time-dependent param-
eters, (3) or (10) must be solved numerically. The nu-
merical solution is described first, followed by the ad-
joint of the discretized system and its application to
parameter estimation.

Letting t be discretized using

tm � m�t, m � 0, 1, 2, . . . , M �13�

and any variable with a subscript m be evaluated at tm,
then the forward-difference form of the combined Eqs.
(3) and (10) can be written as

Vm�1 � RmVm � ��m��mRmVm � ��RmVm

Vmpi,m
�n

RmVm�� 	m
�m�RmVm � Vb,m����t. �14�

Although more accurate time-difference methods are
available, forward differencing simplifies the derivation
of the adjoint equation and accuracy can be ensured by
making the time step as small as needed, as described in
section 3. In (14), �m �1 if the storm center is over
water at time tm and �m � 0 if the storm is over land,
and vice versa for �m. The Rm factor takes into account
the reduction in wind speed when the storm first moves
from water to land and the increase when it moves back
over the water, which is part of the inland wind model.
Mathematically, Rm � R for the first time step over
land, Rm� 1/R for the first time step over water and
Rm� 1 for all other time steps. Given the initial condi-
tion V � Vo, (14) can be used to find Vm for m � 1, 2,
. . . M and will be referred to as the forward model.

The model coefficients will be chosen so that the
solution of the forward model is as close to the ob-
served intensity values as possible. The observations
are the maximum sustained surface winds from the
NHC best track, which are available at 6-h intervals.
The best-track intensity estimates were linearly inter-
polated to the 1-h time step of the forward model and
are denoted by Om. Because the best-track intensities

are reported in knots rounded to the nearest 5, units of
knots are used for Vm and Om. For a model integration
of length tM, the model error E is defined as

E �
1
2 �

m�1

m�M

�Vm � Om�2. �15�

If the gradient of E with respect to the constants �, n,
ai, and b could be determined, the optimal values could
be found using a gradient descent algorithm. This is
accomplished using the method of Lagrange multipliers
where the forward model equations are appended to
E as constraints. Letting (14) be represented symboli-
cally by

Vm � Rm�1Vm�1 � Gm�1�t, �16�

then the Lagrange function J can be written as

J � E � �
m�1

m�M


m
Vm � �Rm�1Vm�1 � Gm�1�t��, �17�

where �m are Lagrange multipliers. Setting the deriva-
tive of J with respect to Vm to zero gives the following
adjoint model:


M � ��VM � OM�, �18�


m � 
m�1�Rm � �m�tRm��m � ��n � 1��RmVm

Vmpi,m
�n�� 	m�mRm�t� � �Vm � Om�. �19�
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Note that the adjoint equation in (19) is integrated
backward in time to give �m for m � M � 1, M � 2, . . . ,
1 after being initialized with (18).

Using the discretized version of (12), the gradients of
J with respect to �, n, ai, and b are given by

�J

��
� �

m�1

m�M


m�m�1�t�Rm�1Vm�1

Vmpi,m�1
�n

Rm�1Vm�1, �20�

�J

�n
� �

m�1

m�M


m�m�1�t��Rm�1Vm�1

Vmpi,m�1
�n

ln�Rm�1Vm�1

Vmpi,m�1
�Rm�1Vm�1, �21�

�J

�ai
� � �

m�1

m�M


m�m�1�tRm�1�xi,m�1Vm�1�, �22�

�J

�b
� � �

m�1

m�M


m�m�1�tRm�1�Vm�1�, �23�

and are used to find the I � 3 constants that minimize
the error in the forward model as part of a steepest
descent algorithm. Although more general minimiza-
tion algorithms are available, the steepest descent al-
gorithm performed quite well (as will be demonstrated
in section 6) provided that the components of the gra-
dient were scaled by typical values of the I � 3 con-
stants to account for their differing units.

5. Reduced predictor set

As described in section 3, LGEM-MR used most of
the predictors in the SHIPS model and a separate set of
regression equations for � was developed at each time
interval. The separate regressions were needed because
of the inclusion of persistence, which is the value of �
based on the intensity change from t � �12 to t � 0 h.
The influence of that predictor decreases at the longer
forecast times. As will be described in section 8, the
adjoint formulation provides an alternate method for
including the known storm evolution up to the forecast
time, so separate versions of (12) at each forecast pe-
riod are not needed.

Besides persistence, most of the SHIPS predictors
are related to either the dynamic or thermodynamic
properties of the storm environment (DeMaria et al.
2005). The most important dynamical property is the
vertical shear, which is the magnitude of the 850–200-
hPa vector wind difference, where the winds at 850 and
200 hPa are averaged over a circular area centered on
the storm with a radius of 500 km. The thermodynamic
properties are measured by a number of predictors in
SHIPS including the 200-hPa temperature, midlevel
relative humidity, and a parameter that measures the
equivalent potential temperature difference between

an undilute parcel lifted from the surface and that of
the parcel environment. These thermodynamic predic-
tors can be replaced by a single variable obtained from
an entraining plume model, as described below.

As summarized by Zipser (2003), instability indices
such as convective available potential energy (CAPE)
or lifted index (LI), which have been used in the mid-
latitudes are not appropriate for the tropics because
some of the neglected factors such as the weight of the
condensate and entrainment are of first-order impor-
tance. For this reason, an entraining plume model
(Simpson and Wiggert 1969) is used to measure con-
vective instability.

The plume model uses temperature and moisture
soundings from the GFS analyses averaged over an an-
nulus from 200 to 800 km from the storm center and the
Reynolds SST for the surface temperature. The plume
is initialized with a surface-based parcel with an upward
vertical velocity of 8 m s�1. This fairly large value was
chosen so that the parcel would reach its lifting con-
densation level for most soundings. The evolution of
the parcel is determined by the thermodynamic formu-
lation of Ooyama (1990), where the ice phase is in-
cluded by considering a single moisture variable that
behaves like water for temperatures above 0°C and like
ice below 0°C. Entrainment is included by assuming
that the mass entrainment rate is inversely proportional
to the radius of the parcel (Simpson and Wiggert 1969),
so that

� 1
M� dM

dz
�

CE

r
, �24�

where M is the parcel mass, z is height, r is the parcel
radius, and CE is the entrainment rate (specified to be
0.1). The initial parcel radius is 0.5 km, which is a rea-
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sonable value for tropical convection (LeMone and
Zipser 1980). The calculation includes the weight of the
condensate and virtual temperature effects on the
buoyancy. Precipitation was included by assuming that
the rate of fallout of the condensate from the parcel is
proportional to the amount of condensate present, with
a proportionality constant of 600�1 s�1.

Figure 5 shows vertical velocity profiles from the
plume model for a mean Atlantic tropical sounding (J.
Dunion 2008, personal communication). The sounding
is a composite from Caribbean stations that were de-
termined to be uninfluenced by the stable Saharan air
layer (SAL). The effects of condensate weight and en-
trainment can be seen by comparing the three profiles
in Fig. 5. Without these two effects, the vertical veloc-
ities are unrealistically large. With both effects in-
cluded, the vertical velocities are on the high side but
within the range of what has been observed in tropical
convection (Zipser 2003).

For the reduced predictor set, dynamical effects are
included through the 850–200-hPa vertical shear (S)
and thermodynamic effects are include through the pre-
dictor (C), which is the z � 0–15-km average of the
vertical velocity of the parcel in the plume model. With
these assumptions (12) becomes

� � a1S � a2C � a3SC � b. �25�

The a3 term is included in (25) to allow for interactions
between the vertical shear and convective instability.
With the reduced predictor set the parameter estima-
tion problem is reduced to finding the six constants �, n,
a1, a2, a3, and b that minimize the LGEM intensity
solution error.

6. Simulation of individual storms

As a first test of the generalized parameter estima-
tion, LGEM simulations of the entire life cycles of in-
dividual storms were considered. These simulations
evaluate how well the mathematical representation de-
scribed in section 2 and the assumed form of � in (25)
can fit the observations for the case when the track,
SST, S, and C are accurately estimated. For these simu-
lations, SST, S, and C are determined along the ob-
served storm track using the Reynolds SST and GFS
analyses. The predictors S and C are normalized by
subtracting their sample means and dividing by the
standard deviations so that ai and b in (25) have the
same units as �, and b represents the mean value of �.

The first test case is Hurricane Frances (2004), which
formed west of the Cape Verde Islands at 0000 UTC 25
August, intensified to a category four hurricane over
the mid-Atlantic, and weakened to a category 2 storm
before striking southeast Florida north of Palm Beach
(Beven 2004). Frances weakened to a tropical storm as
it crossed Florida, briefly reentered the Gulf of Mexico,
but did not regain hurricane intensity. Frances made a
second landfall in the Big Bend region of northwest
Florida and transitioned to an extratropical cyclone
over West Virginia. LGEM was initialized at 0000 UTC
25 August with an intensity of 25 kt and was run until
just before the extratropical transition at 1800 UTC 8
September (14.75 days).

The steepest descent algorithm converged after a few
hundred iterations and the mean absolute error (MAE)
of the intensity prediction over the 14.75-day forecast
period was reduced to a surprisingly low 3.9 kt. Figure
6 shows the maximum wind from the LGEM simula-
tion, the NHC best track, and the MPI. This figure
shows that the fitted LGEM reproduces nearly every
aspect of the intensity variation of Frances. The largest
error occurs near 280 h where the inland wind model
predicted too much decay as the storm crossed Florida.
However, the difference between the LGEM predic-
tion and the best track is less than about 10 kt for the
rest of the integration.

Additional tests of the parameter estimation were
performed for long-lived storms from 2001 to 2006. The
13 cases are listed in Table 1, which were selected to
include storms over different parts of the Atlantic basin

FIG. 5. The vertical velocity as a function of height from the
entraining plume model. The temperature and moisture profiles
of the parcel environment are from a mean Atlantic hurricane
sounding. Three versions of the model were run where both en-
trainment and condensate weight were neglected, entrainment
was neglected, and both entrainment and condensate weight were
included.
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and different times during the hurricane season. Table
1 also shows the values of the six constants that mini-
mize the LGEM simulation for each storm and the
MAE. Table 1 shows that the MAE was reduced to
between 2.8 and 10.6 kt, with a 13-storm-average MAE
of 6.0 kt. This result provides justification for the func-
tional form assumed in LGEM since 6 kt is close to the
noise level of the NHC best-track intensities, which are
rounded to the nearest 5 kt.

Table 1 shows the values of the six constants for each
storm fit, and the 13-storm average. Although there is

variability in the coefficients, there is also some consis-
tency. The 13-storm-average coefficients show that the
growth rate � decreases with S and increases with C as
expected from a physical basis. The average value of a3

is positive, which can be interpreted as a modification
of the impact of shear by convection. When C is large,
this term will partially cancel the a1 term, reducing the
impact of the vertical shear.

In many cases the deviation of the fitted LGEM
simulation from the NHC best track can be related to
storm characteristics not included in the model. As an
example, Fig. 7 shows the fitted LGEM solution and
best track for Hurricane Katrina. The LGEM simula-
tion is generally too high from about 84 to 96 h. The
observed intensity stayed fairly constant during this pe-
riod as the storm went through an eyewall replacement
cycle (Knabb et al. 2005). The intensity changes during
this period were determined by inner-core processes,
rather than the large-scale processes included in
LGEM. From about 100 to 120 h, Katrina rapidly in-
tensified to 150 kt and the LGEM prediction underes-
timated the maximum wind. The storm moved over a
warm ocean eddy during this period (Mainelli et al.
2008), which was not represented in the model since the
SST was fairly constant during this period.

7. Multiple storm parameter estimation

To use LGEM in a predictive mode rather than for
simulations as in section 6, a single set of the six con-
stants needs to be determined from training data and

TABLE 1. Values of the LGE model parameters for 13 Atlantic storms from the 2001–06 seasons and the mean absolute error of the
intensity simulation. The starting time–date, LGE model integration length, and peak intensity of the each storm from the NHC best
track are also shown. The values for a simultaneous fit of the LGE model to all Atlantic storms from 2001 to 2006 are also listed.

Name Yr Time–start date
Length

(h)

Peak
intensity

(kt) n � (h�1) b (h�1) a1 (h�1) a2 (h�1) a3 (h�1)
MAE
(kt)

Felix 2001 0600 UTC 10 Sep 8.75 100 2.1 0.0224 0.0179 0.0074 0.0098 0.0248 3.5
Olga 2001 0000 UTC 24 Nov 10.75 80 1.3 0.0377 0.0130 �0.0117 0.0071 0.0006 3.0
Isidore 2002 1200 UTC 17 Sep 10.00 110 3.3 0.0263 0.0132 �0.0021 0.0017 0.0026 5.1
Kyle 2002 1800 UTC 20 Sep 21.75 75 2.1 0.0548 0.0492 �0.0105 0.0015 0.0003 7.6
Claudette 2003 1800 UTC 8 Jul 8.25 75 1.7 0.0630 0.0160 �0.0125 �0.0146 0.0144 4.5
Isabel 2003 0000 UTC 6 Sep 13.25 145 2.4 0.0580 0.0336 �0.0180 0.0096 0.0108 9.4
Frances 2004 0000 UTC 25 Aug 14.75 125 2.5 0.0416 0.0189 �0.0068 0.0013 0.0055 3.9
Ivan 2004 1800 UTC 2 Sep 15.75 145 2.6 0.0212 0.0129 �0.0032 0.0049 0.0020 10.6
Katrina 2005 1800 UTC 23 Aug 7.00 150 2.9 0.0634 0.0285 0.0078 �0.0123 0.0000 6.6
Wilma 2005 1800 UTC 15 Oct 10.00 160 4.8 0.0408 0.0151 �0.0064 0.0007 �0.0044 10.2
Epsilon 2005 1200 UTC 29 Nov 9.25 75 2.5 0.0010 0.0079 0.0029 0.0125 0.0149 5.0
Ernesto 2006 1800 UTC 24 Aug 7.75 65 2.8 0.0448 0.0083 0.0053 0.0164 �0.0182 2.8
Helene 2006 1200 UTC 12 Sep 12.00 105 2.5 0.0548 0.0166 �0.0018 �0.0043 0.0030 6.1
13-storm avg — — 11.50 108 2.6 0.0408 0.0159 �0.0030 0.0026 0.0043 6.0
2001–06 sample — — 4.0 76 2.6 0.0256 0.0063 �0.0085 0.0005 �0.0041 11.1
2001–05 sample — — 4.0 77 2.6 0.0253 0.0065 �0.0087 0.0007 �0.0040 11.1

FIG. 6. The 14.75-day LGEM forecast of the intensity of Hur-
ricane Frances (2004) and the corresponding NHC best-track in-
tensity. The MPI estimated from the SST is also shown.
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then used on new storms. For this purpose, the model
was simultaneously fitted to all of the Atlantic storm
cases from 2001 to 2006. The cases before 2001 used to
develop LGEM-MR described in section 3 were ex-
cluded because the SHIPS developmental sample uses
operational GFS analyses since 2001, but NCEP re-
analysis fields before 2001. The NCEP reanalysis mois-
ture fields had a low-level dry bias relative to the op-
erational analyses, which made the C predictor incon-
sistent before and after 2001.

To better represent how the model would be used in
real time, each storm case was divided into a sequence
of 5-day forecasts. For example, if a particular storm
lasted for 6 days (144 h), it was divided into 24 forecasts
from 0 to 120, 6 to 126, . . . 138 to 144 h. The first 5 cases
are 120-h predictions, the next is 114 h and the last is 6
h. The 2001–06 sample includes 2465 forecast cases at 6
h, decreasing to 836 cases at 120 h.

Similar to the individual storm fits, S and C are nor-
malized by subtracting the sample mean and dividing
by the standard deviation. For the 2001–06 sample, the
mean and standard deviation are 9.0 and 5.6 m s�1 for
S and 7.5 and 4.1 ms�1 for C.

The values of �, n, a1, a2, a3, and b that minimize the
forward model error for the 2465 forecasts from 2001 to
2006 are shown at the bottom of Table 1. The value of
n for the 2001–06 sample is the same as that from the
average of the 13 individual storm fits, and the signs of
all the other constants are the same, except for a3. As
will be described below, the negative value of this co-
efficient for 2001–06 is related to storms that are un-
dergoing extratropical transition. Using the 2001–06
values in Table 1 for � and n and the value of b for the
average value of �, the steady solution defined by (4) is

only about 58% of the MPI. This result is consistent
with DeMaria and Kaplan (1994) and Emanuel (2000)
who showed that TCs rarely reach their MPI.

The roles of dynamic and thermodynamic factors on
the LGEM intensity changes can be seen by consider-
ing � as a function of S and C using the 2001–06 fit.
Figure 8 shows contours of �, where S and C range from
zero to the mean plus three standard deviations. For S
less than about 12 m s�1, � increases with C and de-
creases with S. Over most of this region the influence of
S is more important than C since the contours are al-
most vertical. For low values of C, the influence of S
decreases. Physically, this result suggests that as long as
there is some potential for convection, the primary in-
fluence on TC intensification is the vertical shear. For
very large values of shear, � becomes negative, indicat-
ing dissipation. For large values of shear, the relation-
ship between C and � is reversed. This is probably due
to the influence of higher-latitude storms that are be-
ginning to take on extratropical characteristics. For
these storms, the C values tend to be low, but the S
values are high. The growth rate is less negative or
slightly positive for these types of storms.

Equation (4) can be written as

Vs

Vmpi
� � |�|

� �1�n

. �26�

Using the 2001–06 coefficients from Table 1, (26) and
(25) can be used to calculate the ratio of the steady-
state solution to the SST-based MPI estimate as a func-
tion of S and C. This ratio can be interpreted as an MPI
adjustment factor (MAF) that takes into account shear
and convective instability. Figure 9 shows that for very
low S and high C, the MAF is close to 1. As expected,

FIG. 7. As in Fig. 6, but for the 7-day LGEM forecast of the
intensity of Hurricane Katrina (2005) . FIG. 8. The growth rate � as a function of S and C.
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the MAF decreases to zero as the shear becomes large,
and there is greater sensitivity to S than C. The effect of
shear on the MPI in Fig. 9 is qualitatively similar to that
described by Zeng et al. (2008). The reversal of the
effect of C on MAF for large values of S is again due to
storms beginning extratropical transition.

Figures 8 and 9 show that the location in the S–C
plane determines the storm intensity evolution in
LGEM. Thus, it is instructive to consider the S–C tra-
jectory of storms as they evolve. Figure 10 shows the
S–C evolution for Hurricane Katrina from its initial
formation on 23 August until just before its Gulf Coast
landfall on 29 August. The storm spent nearly its entire
lifetime in the upper-left quadrant of the diagram,
which indicates that the shear was below average and
the convective potential was above average. Katrina
underwent at least one eyewall replacement cycle and
also rapidly intensified.

Figure 10 also shows the average S and C values for
the 108 cases that rapidly intensified (RI), the 31 cases
that had secondary eyewall formation (SEF), and the
20 cases that were identified as annular hurricanes
(AH). Rapid intensification cases are those where the
maximum winds increased by 30 kt or more in the fol-
lowing 24 h (Kaplan and DeMaria 2003), the SEF cases
were identified from microwave imagery (J. Kossin and
M. Sitkowski 2008, personal communication), and the
annular hurricanes are fairly steady-state storms with
large eyes and few rainbands as determined by Knaff et
al. (2008). The RI and SEF points are located in the
upper-left quadrant, similar to Katrina. However, the
AH point is in the lower-left quadrant. This result in-
dicates that low vertical shear is important for all three
types of storms, but the convective instability helps to

distinguish between RI–SEF behavior and AH behav-
ior.

Figure 11 shows the S–C evolution for Hurricane
Claudette (2003) from its formation on 8 July until just
before its landfall in Texas on 15 July. Claudette trans-
formed from a wave into a tropical storm in the Central
Caribbean and briefly became a category 1 hurricane
after about 2 days before weakening to a tropical storm
due to interaction with strong vertical shear (Beven

FIG. 11. The time evolution of S and C for Hurricane Claudette
(2003) from its initial formation to just before its Texas coast
landfall. The dashed lines are the sample mean values of C and S.

FIG. 9. The MPI adjustment factor as a function of S and C.
FIG. 10. The time evolution of S and C for Hurricane Katrina

(2005) from its initial formation to just before its Gulf Coast land-
fall. The average S–C values for all rapidly intensifying TCs, storm
with secondary eyewall formation, and annular hurricanes from
the 2001–06 sample are also shown. The dashed lines are the
sample mean values of C and S.
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2003). The storm moved into the Gulf of Mexico and
remained a tropical storm until just before its landfall
along the central Texas coast when it again strength-
ened to a category 1 hurricane. The storm was in the
upper-right quadrant of the S–C diagram for most of its
lifetime with S values near 12 m s�1 and C values near
10 m s�1. In this quadrant the favorable convective in-
stability is balanced by unfavorable shear. Figure 8
shows that for these values of S and C, � is small but
positive. Infrared satellite imagery for Claudette (not
shown) indicated that Claudette maintained deep con-
vection, but it was asymmetric and highly transient.
This result suggests that storms in this part of the phase
space have a very unsteady behavior and do not inten-
sity rapidly. Just before landfall Claudette moved into
the upper-left quadrant of the S–C phase space, which
is consistent with its reintensification to a hurricane.

The above results suggest that monitoring the S–C
evolution might be useful for anticipating TC behavior.
Figure 12 shows a conceptual diagram further illustrat-
ing this idea. The various behaviors would not be rep-
resented by single points in a diagram like Fig. 12, but
as probability distributions in the S–C plane that could
be determined from large samples of various types of
storms. The locations of the maximum probabilities
could also be determined as were shown for the RI,
SEF, and AH cases in Fig. 10.

The results in section 3 showed that LGEM-MR im-
proved on the SHIPS forecasts at most times for real-
time runs from the 2006 to 2007 seasons. These cases
were with fully independent data and operational input.
As a test of LGEM with the reduced predictor set, the
Atlantic cases from 2006 to 2007 are again used. The
2007 LGEM runs used the six coefficients in Table 1
from the 2001 to 2006 sample, and the 2006 runs used
the coefficients from the 2001 to 2005 sample, which are
also shown in Table 1. The coefficients from the sample
without 2006 are very similar to those with 2006, sug-
gesting that the model fit is fairly robust. For compari-

son with LGEM, the 2007 version of the operational
SHIPS model and LGEM-MR were run on these same
cases. Similar to LGEM, the SHIPS and LGEM-MR
models for the 2007 (2006) forecasts were developed
from data through 2006 (2005). The combined 2006–07
sample includes 390 forecast cases at 12 h decreasing to
102 cases at 120 h.

For the independent LGEM evaluation with the re-
duced predictor set, “perfect prog” input was used for
the LGEM, SHIPS, and LGEM-MR forecasts, where
the predictors are determined along the best track and
from GFS analyses instead of GFS forecasts. The NHC
forecast track and GFS forecast could have been used
(as in the real-time evaluation described in section 3),
but the errors in the track and GFS model forecasts
introduce errors that can mask the differences between
the three models. Using predictors for the independent
cases with the same level of accuracy as were used to fit
the model for the dependent cases eliminates this ad-
ditional source of uncertainty.

Figure 13 shows the percent improvement of the
LGEM forecasts relative to LGEM-MR and SHIPS for
the 2006–07 independent sample. The LGEM forecasts
were better than those from SHIPS at all forecast times,
with the most improvement at the longer times. The
differences between SHIPS and LGEM were statisti-
cally significant at the 95% level at 72 h. LGEM showed
small improvements over LGEM-MR out to 84 h, with
some degradation at 96–120 h. However, none of the
differences between LGEM and LGEM-MR were sta-
tistically significant, so the forecasts can be considered
comparable.

FIG. 12. A conceptual diagram illustrating the use of the S–C
phase space to anticipate tropical cyclone behavior.

FIG. 13. The percent improvement of the LGEM intensity fore-
casts over SHIPS and SHIPS-MR for independent cases from the
2006–07 Atlantic hurricane seasons. All forecasts used “perfect-
prog” input.
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The SHIPS model included 420 coefficients and
LGEM-MR had 296 coefficients [14 predictors at 21
forecast times (0, 6, . . . 120 h) plus � and n]. The inde-
pendent test results indicate that LGEM can produce
better or comparable results with just six coefficients,
which provides confidence in the generalized param-
eter estimation with the reduced predictor set.

8. Applications

LGEM with the reduced predictor set has a number
of potential applications, which are briefly described
here. Perhaps the most obvious application is for op-
erational TC intensity forecasting, similar to what was
described in section 3 for LGEM-MR. An advantage of
LGEM is that there is one set of coefficients for all
forecast times so that it could be used for any forecast
length, provided that a track and GFS model forecast
were available. This is not true for LGEM-MR because
a separate set of coefficients are used at each forecast
interval, and the model would have to be rederived to
extend the prediction beyond 5 days. Also, given the
simplicity of LGEM compared to LGEM-MR, the fore-
casts could be supplemented with the S–C phase dia-
grams and maps of the steady-state solution in (4) for
interpretation of the forecasted intensities. The model
could also be run along an ensemble of tracks, and with
predictors from a variety of global model forecast
fields. Since LGEM takes less than 1 s to run, the en-
semble size could be made very large.

For operational prediction, it would be useful to in-
corporate persistence information in LGEM from the
evolution of the storm up to the time of the forecast. As
described in section 3, LGEM-MR includes persistence
using the intensity changes from the previous 12 h. The
generalized parameter estimation technique provides a
straightforward method to incorporate any portion of
the previous history up to the forecast time. For ex-
ample, suppose a storm has already existed for 48 h, so
that the intensity and track are known from t � �48 h
to t � 0. The six LGEM constants that provided the
best fit to the intensity during this period could easily
be determined, as was done for the simulation of indi-
vidual storm life cycles in section 6. It would also be
possible to optimize the model by varying only a subset
of the six constants. Then, a weighted average of the
constants that best fit the previous history of the storm
and those from the fit to the developmental sample
could be used during the forecast period. Considerable
experimentation would be required to refine this pro-
cedure, but in principle, this method could be used to
incorporate any portion of the previous storm history to
improve the future forecasts.

As a preliminary test of this idea, the two Atlantic
storms from 2007 that lasted at least 5 days (Dean and
Noel) were considered, and only one of the six LGEM
constants [b in (25)] was allowed to vary during the
preforecast fitting procedure. The value of b that opti-
mized the 0–6, 0–12, and so on up to the full life cycle,
of each storm was determined, holding the other five
constants at their values from the 2001 to 2006 fit. Fig-
ure 14 shows the values of b as a function of the length
of the previous history period. This figure shows that b
changes fairly rapidly until about a 48-h history of the
storm intensity is available. After that time, the optimal
value of b becomes fairly stable. This result suggests
that this procedure may only be useful after a long
enough storm history is available.

NHC’s guidance models, including SHIPS and
LGEM-MR, are run for all existing storms. It would
also be possible to combine LGEM with a global model
prediction to make a genesis and intensity forecast. The
GFS model includes a “tracker” (Marchok 2008) that
uses automated procedures to detect the formation of
tropical cyclones and then track them. Once a storm
was identified in the model, LGEM could be applied to
make an intensity prediction using the GFS model track
and forecast fields to determine the necessary predic-
tors.

An application related to genesis–intensity predic-
tion is the use of LGEM as a downscaling procedure in
climate simulations. Climate models develop circula-
tions that resemble tropical cyclones, but are less in-
tense than observed storms due to resolution limita-
tions (e.g., Bengtsson et al. 2007). Once a procedure to
identify tropical cyclones in the climate model was de-

FIG. 14. The coefficient b, which represents the mean value of
the growth rate �, when fitted to the first 6 h, first 12 h, . . . , etc.,
of the observed intensities of Hurricanes Dean and Noel from the
2007 Atlantic hurricane season.
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veloped, LGEM could be applied to estimate the inten-
sity given the SST and the atmospheric fields. For this
application it would be preferable to replace the em-
pirically based MPI formula that is a function only of
SST with a more general formula such as that of Bister
and Emanuel (1998), which also takes into account the
atmospheric environment.

9. Concluding remarks

A simplified dynamical system for TC intensity pre-
diction based on a logistic growth equation (LGE) was
developed. The application of the LGE is based on an
analogy with population dynamics, and constrains the
solution to lie between zero and an upper bound. The
maximum wind evolution over land is determined by an
empirical inland wind decay formula and the combined
water–land prediction system is referred to as the LGE
model (LGEM). The LGE contains four free param-
eters, which are the time dependent growth rate and
MPI, and two constants that determine how quickly the
intensity relaxes toward the MPI. The MPI was esti-
mated from an empirical formula as a function of SST
and storm translational speed. A version of LGEM
where the remaining parameters were determined by a
multiple regression method using a subset of the input
to the SHIPS model was run in real time in 2006–07
(called LGEM-MR). Results showed that the average
LGEM-MR forecasts were up to 17% smaller than
those from the SHIPS model.

LGEM-MR contains almost as many prediction co-
efficients as the SHIPS model (296 versus 420). The
adjoint of LGEM was used to provide a more general
method for finding the free parameters to make the
predictions as close as possible to the NHC best-track
intensities. Under the assumption that the growth rate
is a function of the vertical shear (S) and a convective
instability parameter (C) determined from an entrain-
ing plume model, the adjoint parameter estimation
technique was used to develop a version of LGEM with
just six coefficients. It was shown that this version can
very accurately simulate the life cycles of individual
storms when fitted to the observed intensities. For use
in a predictive mode, a single set of the six coefficients
was determined by fitting all Atlantic cases from the
2001–06 seasons. Results from dependent and indepen-
dent cases show that the reduced predictor set version
of LGEM fits the observed intensities better than the
SHIPS formulation and comparable to LGEM-MR.
Results also show that the LGEM solution (and some
properties of real storms) can be explained by the evo-
lution in the two-dimensional S–C phase space.

Several potential LGEM applications were de-

scribed, including real-time forecasting, ensemble pre-
diction and coupling with a global model to produce a
genesis and intensity forecast. LGEM could also be
used in a “downscale” mode in climate models to com-
pensate for the lack of horizontal resolution.

This paper presented the basic framework of LGEM.
There are a number of ways that the model could be
improved. For real-time forecasting a procedure for in-
cluding the storm intensity history up to the time of the
forecast was outlined. Considerable experimentation is
needed to determine the optimal way to include that
information. Also, the parameters of the entraining
plume model were chosen from physical consider-
ations. These parameters could also be tuned to opti-
mize the intensity forecasts. Finally, the surface tem-
perature in the MPI calculation and in the entraining
plume model was assumed to be equal to the SST. The
current version of SHIPS includes a very simple ocean
cooling parameterization based on the work of Cione
and Uhlhorn (2003) that is a function of latitude and
storm translational speed. It might be possible to im-
prove LGEM by incorporating a more general cooling
parameter that also includes storm intensity and sub-
surface ocean structure information, which is currently
included in SHIPS from satellite altimetry based OHC
analyses.
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