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Abstract. Advanced preparation for satellite data from the next-generation GOES-R advanced
baseline imager (ABI) is supported by coupling high resolution mesoscale and radiative transfer
numerical models. Calculated GOES-R ABI imagery is produced in a two-step process. First, a
mesoscale model is used to simulate an event over a region with 400 m horizontal grid spacings;
secondly, output from the mesoscale model is used as input to a second model that calculates top
of the atmosphere radiances at selected GOES-R ABI wavelengths. Such radiances or brightness
temperatures are referred to as synthetic imagery. In order for the synthetic imagery to contain
realistic horizontal variability of values of surface reflectance at wavelengths from 0.44 to
2.25 μm, MODIS 16-day albedos are incorporated in the radiative transfer calculations. One
application of synthetic GOES-R imagery is that of algorithm development and testing.
Algorithms may focus on, but are not limited to, the detection and retrieval of smoke, volcanic
ash, fires, blowing dust, and the state of surface physiography. Proper identification of such
features is, at times, dependent on the horizontal variability of surface reflectance values.
MODIS 16-day spectrally dependent albedos are a valuable dataset in aiding the generation
of synthetic GOES-R imagery. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.7.073584]

Keywords: MODIS; albedo; GOES-R; advanced baseline imager; fire; volcanic ash; synthetic
imagery.

Paper 12210 received Jul. 16, 2012; revised manuscript received Dec. 18, 2012; accepted for
publication Jan. 24, 2013; published online Feb. 22, 2013.

1 Introduction

For the past several years, synthetic GOES-R advanced baseline imager (ABI) imagery has been
produced at the Cooperative Institute for Research in the Atmosphere (CIRA). A few reasons
exist to motivate this effort. First, synthetic imagery can help with the interpretation of observed
imagery; second, to prepare for future sensors such as the ABI that will be on the GOES-R
satellite; and third, to help evaluate solutions from numerical models.1 Although the imagery
of future satellites can also be generated from observed satellite imagery,2 synthetic imagery
has a few advantages. Temporal sampling from ABI will be 5 min with a footprint size of
at most 2 km.3 Satellites currently in geostationary orbit may at times be able to produce imagery
at a frequency similar to ABI, but not the footprint size. In contrast, satellites in polar orbit may
be able to produce a footprint similar to ABI, but not replicate the temporal frequency. With
synthetic imagery, both the temporal frequency and footprint size similar to those of ABI
can be generated.
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One of the first steps in developing a system to produce synthetic satellite data is to generate
synthetic imagery of operational satellites and make a direct comparison with observations.
Grasso et al.1 compared synthetic GOES-12 to observed GOES-12 at both 6.5 and 10.7 μm
for a thunderstorm event that occurred on 8 May 2003. Results indicated that the synthetic
imagery was in reasonable agreement with observed imagery at both wavelengths. A relatively
small cold bias, on the order of a few Kelvins, was noted at the tops of thunderstorms. Similar to
efforts at CIRA, synthetic imagery is also being produced at the Cooperative Institute for
Meteorological Satellite Studies (CIMSS). Otkin et al.4 conducted a large scale simulation
and compared synthetic Spinning Enhanced Visible and Infrared Imager (SEVIRI) to observed
SEVIRI at seven infrared bands. Results showed reasonable agreement between observed and
synthetic SEVIRI imagery. In addition to the separate SEVIRI bands, the channel differences of
synthetic imagery also compared well with observed channel differences. As a result of the
above studies, both CIMSS and CIRA have been producing datasets of synthetic GOES-R
imagery for the purpose of aiding the development and testing of a variety of ABI detection
and retrieval algorithms. In addition to algorithm development, synthetic imagery can also
be used to evaluate numerical models.

Numerical models are typically evaluated by comparing certain predicted variables with
observations. Some of these variables include surface winds, temperatures, dewpoint temper-
atures, and pressure. Upper air data is also used to compare simulated variables on constant
pressure surfaces. Simulated clouds, on the other hand, are a challenge to evaluate.
Synthetic imagery is an ideal way to compare simulated clouds directly to observed cloud fields.
In one case, Grasso and Lindsey5 compared synthetic GOES-12 imagery at 3.9 μm to observed
imagery and found a discrepancy between two simulated thunderstorm anvils over the upper
Midwest. Observed GOES-12 imagery indicated that the simulated thunderstorms reflected
less solar energy compared to observed thunderstorms. This result suggested an error with
the prognostic equation of pristine ice number concentrations. Once the error was fixed, the
resulting synthetic imagery was in accord with observations. In another study, Jankov et al.6

simulated an atmospheric river event over California. Several simulations were performed
with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model7;
the only difference between the runs was the choice of microphysics. Synthetic GOES-10
imagery was produced at 10.7 μm and compared to observed GOES-10 imagery for each of
the microphysical runs. Results were able to identify strengths and weaknesses of the micro-
physical schemes. The above two examples illustrate the value of using synthetic imagery to
evaluate the solution of a numerical model.

One feature common to synthetic imagery at wavelengths greater than or equal to 3.9 μm is
the inclusion of spectrally dependent surface emissivity values. Satellite-based surface emissivity
values8 are a robust way to include surface heterogeneity in synthetic imagery. An examination
of the solar and terrestrial Planck functions indicates that both curves intersect near 3.9 μm. At
this and longer wavelengths, the Earth emits energy; hence, the use of spectrally dependent
surface emissivity values when making synthetic imagery. In contrast, however, the Earth
emits little energy at wavelengths shorter than 3.9 μm; rather, the surface of the Earth reflects
incoming solar energy. As a result, surface emissivity values should be replaced with spectrally
dependent surface albedo values when producing synthetic imagery at wavelengths less than
3.9 μm. In this study, similar to surface emissivity values, surface albedo values are based
on measurements from the moderate-resolution imaging spectroradiometer (MODIS) instrument
and are referred to as MODIS 16-day albedos.9,10

GOES-R ABI will have six bands, or channels, with central wavelengths less than 3.9 μm.
They are 0.47, 0.64, 0.867, 1.38, 1.61, and 2.25 μm. In particular, 0.47 and 0.64 μm are des-
ignated as the blue and red bands, respectively. ABI is void of a green band near 0.55 μm; one
consequence is the challenge of producing a natural color image from the combination of the red,
green, and blue bands. In spite of this shortfall, methods are being explored at CIRA to produce
natural color imagery from ABI by using the near infrared band at 0.867 μm. This method
employs look-up tables to construct a green band from the channels centered at 0.47, 0.64,
and 0.867 μm.11,12 Once a green band is derived, an ABI natural color image can be produced.

Details of the process of generating synthetic ABI imagery at wavelengths that contain
solar reflection is described herein. Different examples of synthetic ABI imagery utilizing
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MODIS 16-day albedos are included. They encompass natural color imagery of cloudy scenes,
the inclusion of an idealized volcanic ash and smoke plume, and hotspots from canopy wildfires.
Realistic synthetic ABI imagery has potential uses in the development and testing of detection
and retrieval algorithms.

2 Computational Methodology

Two numerical models were used to simulate past weather events. They are the Colorado State
University Regional Atmospheric Modeling System (CSU-RAMS) model13 and the WRF-ARW
model.7 Both models simulated variables on four grids. Grid 1, spanning the largest area, had
horizontal grid spacings of 50 km in each direction; grid 2, had horizontal grid spacings of
10 km; while grids 3 and 4 had horizontal grid spacings of 2 km and 400 m, respectively.
Avalue of 2 km was chosen for grid 3 as this value is near the size of the GOES-R ABI footprint.
On the other hand, 400 m was chosen to allow the inclusion of subpixel fire hotspots in the post-
simulated domain of grid 4. Grids 2 through 4 were nested within their respective parent grid; all
grids employed two-way interactive communication of prognostic variables. An illustration of
the sizes of all four grids is displayed in Fig. 1. In all cases, two-moment microphysics was
chosen. RAMS simulations included the small and large cloud droplet hydrometeor class
along with pristine ice, snow, aggregates, hail, graupel, and rain water. In all eight hydrometeor
classes, both the mass mixing ratio and number concentrations were predicted. WRF-ARW sim-
ulations included the following hydrometeor classes: cloud droplets, rain water, ice, snow, and
graupel. In contrast to RAMS, all hydrometeor mass mixing ratio and number concentrations
were predicted except for cloud droplets. Two-moment microphysics was chosen due to the
important dependence of the reflection of solar energy on particle size.

Depending on the simulation, model initialization used the North American Regional
Reanalysis dataset14 or data from the Global Forecast System.15 All simulations were run for
a total of at least 6 h while output was written at a frequency of 5 min. This value was chosen
to match the temporal sampling frequency of the ABI instrument. After a simulation completed,
output was then used as input to another model that computed ABI top of the atmosphere
radiances.

Fig. 1 An illustrative example of the relative sizes of the four grids used in simulations with RAMS
and WRF-ARW. Although the actual location of the grids depends on the particular event being
simulated, the sizes of each grid remained fixed.
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Radiance calculations were performed by an observational operator that was developed
at CIRA.16–18 Radiance values at 0.47, 0.64, 0.865, and 2.25 μm were calculated using a
one-dimensional version of the spherical harmonic discrete ordinate method (SHDOMPP).19 In
general, absorption by water vapor should be included in radiance calculations for some of the
ABI bands. At the bands listed above, however, absorption by water vapor is less important than
Raleigh scattering; as a result, water vapor absorption was neglected. Cloud hydrometeor optical
properties (total extinction and single-scattering albedo) were calculated from modified anoma-
lous diffraction theory.20 Also at the wavelengths listed above, SHDOMPP requires
surface albedos as a lower boundary condition. Horizontally varying values of surface albedo
were chosen over a horizontally constant value. As a result, MODIS derived values of surface
albedo were used.

The MODIS bidirectional reflectance distribution function (BRDF) and albedo standard
product (MCD43) is produced globally on a 500 m grid.9,10,21,22 A semi-empirical BRDF
model is fit to all high-quality, cloud-clear, atmospherically corrected, directional surface reflec-
tances available over a 16-day period. Data from MODIS instruments on both the Terra and
Aqua satellites are used. High-quality spectral retrievals are only possible when there are suffi-
cient directional observations to adequately sample the surface reflectance anisotropy. These
BRDFs are then integrated over all view and illumination angles to generate bihemispherical
reflectances (or white sky albedos) under isotropic illumination. The validated23–26 white sky
quantity is an intrinsic measure of the surface albedo and does not include atmospheric multiple
scattering effects. However, white sky values are used here as a stable representation of the
reflective character and variability of the surface for the purpose of generating synthetic
GOES-R ABI radiances.

3 Development of Natural Color GOES-R ABI Imagery

Two existing simulated case studies were used to aid in the development of natural color imagery
for the ABI sensor. These are the 23 October 2007 southern California wildfire event and the 27
June 2005 upper Midwest convective event. The first case study was simulated to aid in the
development of a GOES-R fire retrieval algorithm. This was done by producing synthetic
ABI imagery at 2.25, 3.9, 10.35, and 11.2 μm. During the day on 27 June 2005, a cold
front had moved southward over the northern central plains of the United States. One conse-
quence was the development of thunderstorms over eastern Wyoming and central Iowa. Once the
thunderstorms produced an anvil canopy, observed GOES-12 imagery at 3.9 μm indicated a
relatively significant difference in the reflective signature over the majority of the anvils of
these thunderstorms. Due to the different behavior of the anvils, this case was simulated
with RAMS to study the possible different microphysical structure of the anvils.5 As a result
of the computational demands of these simulations, both cases were chosen to be used to aid in
the development of synthetic natural color GOES-R imagery.

Since a green band is absent from the ABI instrument, reflectance values for green [Refl(G)]
are derived from the following three ABI bands: blue (B: 0.47 μm), red (R: 0.64 μm), and near
infrared (NIR: 0.865 μm). This is done using the following regression formula:

ReflðGÞ ¼ 0.416 � ReflðRÞ þ 0.523 � ReflðBÞ þ 0.065 � ReflðNIRÞ − 0.005: (1)

Once a green band has been acquired, a natural color image is produced by combining the blue,
green, and red bands. In addition, effects of Rayleigh scattering have been minimized in the
natural color image followed by the application of an enhancement that is designed to brighten
the image.11,12 In order to obtain realistic horizontal variability in surface reflectance, MODIS-
derived albedo values were used as a lower boundary condition to SHDOMPP in both cases.
Although albedo values are only retrieved over land, albedo values did exists over some inland
water bodies,such as the Salton Sea over southern California. These spectrally dependent values
were used for portions of the Pacific Ocean west of California. One possible alternative to
utilizing the MODIS derived albedo values would be to use a constant value over the domain.
The resulting image, however, would appear unrealistic.
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The above procedure was first applied to the 23 October 2007 southern California wildfire
case, at 1800 UTC, neglecting any clouds that may have formed during the simulation (Fig. 2).
One way to evaluate the natural color image generated with a green band derived from Eq. (1) is
to generate a synthetic green band at 0.555 μm from SHDOMPP (Fig. 3). As can be seen in the
figures, the natural color image in Fig. 2 has a green bias. This may be a consequence of the
number of observed satellite images used to build the coefficients in Eq. (1). Since the simulation
of the southern California case produced few clouds, the 27 June 2005 case was used to make
synthetic natural color imagery that includes clouds.

As stated above, SHDOMPP is a one-dimensional radiative transfer model. That is, radiance
values are computed along one atmospheric column and they are independent of adjacent
columns. Therefore, variability in the values of reflectivity at cloud top is a consequence of
variations in cloud optical depth as opposed to cloud shadows. For the 27 June 2005 case,
imagery was generated every 5 min, to match the sampling rate of ABI, over a 6-h period
from 1800 UTC 28 June 2007 to 0000 UTC 29 June 2007. In addition, the time dependence
of incoming solar radiation was accounted for over the 6-h period that imagery was produced. A
loop showing the final product, using derived green reflectance values from Eq. (1), is displayed
in Video 1. Both cases were then extended with the inclusion of (1) an idealized smoke plume for
the 23 October 2007 case and (2) an idealized volcanic ash plume for the 27 June 2005 study.

3.1 Inclusion of an Idealized Smoke and Volcanic Ash Plume

As a first step at producing synthetic GOES-R natural color imagery that contains an aerosol, an
idealized smoke plume was included in the radiative transfer calculations of the 23 October 2007
study. Natural color MODIS imagery of this event (Terra pass, 1825 UTC, 23 October 2007) was
used to extract information about the shape and display-screen brightness of the observed smoke
plume. Brightness values varied from 0.0 to 1.0. Values of the optical properties (extinction,
single-scatter albedo, and asymmetry factor) of the smoke plume were adapted from Reid
et al.27 Optical properties of the plume were specified within a layer that extended from 1 to
3 km above the ground and were vertically constant. Spectrally dependent extinction values

Fig. 2 Natural color image of the cloud-free 23 October 2007 southern California case, at 1800
UTC, using a look-up table green reflectance values from Eq. (1).
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were multiplied by the extracted brightness of the observed plume. This was done to produce
some horizontal structure within the smoke plume of the synthetic GOES-R natural color image.
Reflectance values of each synthetic band were produced and compared to observed reflectance
values at the corresponding MODIS band. Such a comparison was done to assure that the
synthetic reflectance values from the smoke plume compared reasonable well to observed values.
Once this was accomplished, a natural color synthetic ABI image was produced (Fig. 4). As can
been seen in the figure, most of the smoke plume existed over water. In order to include an
aerosol over land, an idealized volcanic ash plume was included in the 27 June 2005 study.

Similar to the smoke plume in the 23 October 2007 case, MODIS imagery of the
Eyjafjallajökull eruption (Terra pass, 12:40 UTC, 7 May 2010) that extended southward
from southern Iceland was used. Information about the shape and brightness of the ash

Fig. 3 Natural color image of the cloud-free 23 October 2007 southern California case, at 1800
UTC, using synthetic green reflectance values from SHDOMPP.

Video 1 Natural color loop from 1800 UTC 27 June 2005 to 0000 UTC 28 June 2005 over the
northern central plains of the U.S. (MOV, 3.5 MB) [URL: http://dx.doi.org/10.1117/1.JARS.7.1
.073584.1].
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plume was extracted from the imagery. This particular MODIS image was chosen because of the
northwest to southeast orientation of the plume. Brightness values for this case also varied from
0.0 to 1.0. Values of optical properties (extinction, single-scatter albedo, and asymmetry factor)
of the ash plume were adapted from Prata and Grant.28 Values of the extinction were multiplied
by the extracted brightness of the plume in the MODIS image. The plume was placed between 8
and 11 km above ground and was vertically homogeneous. Synthetic ABI reflectance values at
0.47, 0.64, and 0.865 μmwere compared to observed MODIS reflectance values. After synthetic
reflectance values compared favorably to observed values, a natural color image was produced
(Fig. 5). For clarity, reflectance values for green in Fig. 5 were derived from Eq. (1).

Unlike the smoke plume in Fig. 4, the ash plume in Fig. 5 exhibits a color that is similar to
some clear-sky regions. In particular, the color of the ash is similar to portions of the surface of
Wyoming and eastern Colorado. Since some ash retrieval methods may rely on background
values of surface albedo, a preliminary test of the sensitivity of the color of the ash to variations

Fig. 4 Same as Fig. 2 with an idealized smoke.

Fig. 5 Synthetic GOES-R ABI natural color image of an idealized volcanic ash plume included in
the 27 June 2005 study.
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in values of the radiance at 0.865 μm band was examined. The coefficient of the NIR band in
Eq. (1), 0.065, is approximately one order of magnitude smaller that of the other two coefficients.
This suggests that some uncertainty in the value of the radiances at 0.865 μm may have a
relatively small impact on the values of radiances for the derived green band, and thus the natural
color of the ash. Values of the single-scatter albedo were increased, only for the ash, at 0.865 μm
until reflectance values of the ash were about 10% larger than those used to generate Fig. 5. The
corresponding green band was derived and the subsequent natural color image was generated
(Fig. 6). Likewise, the procedure was repeated, but this time until the reflectance values of the ash
were about 10% lower than those used to generate Fig. 5. After the green band was derived, the
natural color image was generated (Fig. 7).

In order to highlight the difference of the values of reflectivity in the derived green band,
differences were calculated. This was done by computing the following formulas:

Percent change ¼ 100.0 � ½IncReflðGÞ − ReflðGÞ�∕IncReflðGÞ (2)

Percent change ¼ 100.0 � ½DecReflðGÞ − ReflðGÞ�∕DecReflðGÞ (3)

where IncReflðGÞ and DecReflðGÞ are the values of reflectivity of the derived green band using
the 0.865 band with increased and decreased reflectivity values of the ash, respectively. Results
from Eq. (2) are shown in Fig. 8 and indicate an approximate 2.5 percent increase in the derived
green reflectance values. Similarly, results from Eq. (3) are shown in Fig. 9 and indicate an

Fig. 6 Same as Fig. 5 except the reflectance values of the ash plume were increased by 10%
at 0.865 μm.

Fig. 7 Same as Fig. 5 except the reflectance values of the ash plume were decreased by 10%
at 0.865 μm.
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approximate 1.5 percent decrease. These results suggest that a rather significant error in
measured 0.865 μm reflectance values will lead to a relatively small variation in derived
green reflectance values using Eq. (1). However, note that the weights of ReflðRÞ and
ReflðBÞ are approximately one order of magnitude larger than the weight of ReflðNIRÞ. As
a result, a larger constraint is placed on the accuracy of measured ReflðRÞ and ReflðBÞ relative
to ReflðNIRÞ.

3.2 GOES-R ABI 2.25 μm Imagery of Fire Hotspots

Operational GOES-13 and GOES-15 are capable of imaging subpixel hotspots from active fires
at 3.9 μm. Common fire types are canopy wildfires, grassland fires, and agricultural fires. At
times, some fires become either large and/or hot enough that the radiance measurements of the
imager, for either satellite, saturate at 3.9 μm. For both satellites the saturation temperature of the
imager at 3.9 μm is near 330 K. As a result, fire detection and retrieval algorithms are unable to
retrieve fire information when the imager saturates at 3.9 μm. Retrieval of fire information is used
as input to aerosol prediction systems. This information is then used for, but not limited to,
visibility forecasting.29

In addition to fires causing the saturation of either imager, in the warm season in the United
States relatively large skin temperatures of nonfire pixels can also saturate the imager at 3.9 μm.
This typically occurs over southwestern portions of the U.S. and creates a challenge to retrieve

Fig. 8 Percent change in look-up table green reflectance values by using a 10 percent increase
in the reflectance values of just the ash plume in the 0.865 bands.

Fig. 9 Percent change in look-up table green reflectance values by using a 10 percent decrease
in the reflectance values of just the ash plume in the 0.865 bands.
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fire information from either GOES-13 or GOES-15. In recognition of the above issues, the ABI
has a design so that imager saturation will occur at a larger temperature: approximately 400 K
at 3.9 μm.

Due to the higher saturation temperature at 3.9 μm for the ABI instrument, a larger percent-
age of otherwise nonretrievable fires from GOES-13 and/or GOES-15 may become retrievable.
Some canopy wildfire, however, may still cause saturation of the ABI at 3.9 μm; thus no infor-
mation may be obtained from such fires. One difference between the ABI and the current imager
on GOES-13 or GOES-15 is the inclusion of several additional channels. One such channel is
centered near 2.25 μm.

Although one purpose of measurements at 2.25 μm is to infer information about cloud
properties and cloud particle size, subpixel hotspots from active burning may also be present
at this band. This was the motivation for producing synthetic 2.25 μm GOES-R ABI imagery
that contains fire hotspots. Some subpixel hotspots may saturate the ABI at 3.9 μm and be
hot enough to radiate enough energy at 2.25 μm to appear in imagery at this wavelength.
Such a result suggests that although some fires may elude retrieval at 3.9 μm, radiant
energy at 2.25 μm of subpixel fires may allow fire information to be obtained via retrieval
at this wavelength.

Synthetic 2.25 μm GOES-R ABI imagery was produced for the 23 October 2007 wildfire
case over southern California. Fire information was obtained from the Wild Fire-Agricultural
Biomass Burning Algorithm (WF-ABBA).30 Information extracted from this dataset was a sat-
ellite pixel temperature, latitude, longitude, and a variable indicating the confidence that the
measured radiance was consistent with a fire. Each latitude longitude pair of a satellite pixel
associated with a fire was used to locate the grid point in the simulated domain where the
fire will be located. Satellite retrieved fire temperatures then replaced the simulated canopy tem-
perature in the model domain. Finally, a two-dimensional field of simulated canopy temperatures
(containing satellite retrieved fire temperatures) was passed into a radiative transfer model. This
model then calculates values of the top of the atmosphere radiance at 2.25 μm. Due to the small-
est horizontal grid spacings of 400 m, the smallest fire size was 400 m. Although such a size may
be too large in some cases, this is a first step at including subpixel fires in synthetic ABI imagery.
Since the surface of the Earth reflects solar energy at 2.25, use of the MODIS 16-day albedo
product was essential to generate realistic synthetic imagery.

Inclusion of MODIS 16-day albedo values highlights the spatial dependence of the subpixel
fire. That is, the appearance of fires at 2.25 μm will depend on the reflective nature of the non-
burning surface that surrounds the fire. For a given fire, a relatively large contrast between the
fire and the nonburning surface could exist. In contrast, the same fire in a different location may
have a relatively small contrast with the nonburning surface. This would be due to the large
reflective nature of the nonburning surface. Therefore, the use of MODIS 16-day albedo values
is essential for the generation of realistic ABI imagery containing subpixel fires. These issues are
demonstrated in Video 2.

4 Summary and Future Direction

Synthetic imagery, presented herein, was produced for the GOES-R ABI bands that contain
radiances primarily from solar reflection from the surface of the Earth. One way to produce
realistic imagery is through the inclusion of the MODIS 16-day albedo product. Without
horizontally varying surface albedo data, all synthetic imagery of the solar bands for ABI
would be unrealistic. A constant surface albedo could give the false impression that fire detection
with synthetic imagery at 2.25 μm is less challenging compared to the same process with
observed imagery. Dust detection is less challenging over water compared to over land;
smoke detection can be challenging over a stratus cloud layer compared to the land surface.
This example is far from hypothetical. In October 2012, the Fern Lake fire, located in
Rocky Mountain National Park, produced a smoke plume that moved eastward. In time,
the smoke plume moved above a stratus cloud layer that was over the Front Range of northern
Colorado. These are a few example of how detection of a feature may depend on the varying
characteristics of the background albedo.
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Although the ABI lacks a green band, natural color imagery can be produced from the
blue band (0.47 μm), the red band (0.64 μm), and the near IR band (0.865 μm). Results presented
herein suggest that derived green band reflectance values are less sensitive to errors in observed
reflectance values at 0.865 μm compared to those at 0.47 and 0.64 μm. Examples of synthetic
natural color imagery contained aerosols such as smoke, volcanic ash, and fire hotspots.

Synthetic satellite imagery represents an important component in the development and test-
ing of detection and retrieval algorithms. Observations that can be used to evaluate detection and
retrieval algorithms are, in general, lacking. Whereas optical properties are specified when syn-
thetic imagery is made. This way, detection and retrieval algorithms can process synthetic
imagery and compare retrieved properties, such as optical depth of volcanic ash, with those
that were specified to make the imagery. Future work will focus on the generation of synthetic
GOES-R ABI imagery containing a time-dependent smoke and dust plume. That synthetic
imagery will then be available for the purpose of testing algorithms to detect and retrieve aerosol
optical properties.
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