
The rapid maturation of ensemble prediction of tropical  

cyclones allows the possibility of new uncertainty products.

T	 he chaotic growth of initial condition errors  
	 (Lorenz 1996) and model imperfections cause  
	 inevitable uncertainty in numerical weather 

forecasts. In the near future, for tropical cyclone (TC) 
forecast products, we expect to be able to estimate the 
uncertainty (i.e., the expected error) and convey how 
it varies from one storm to the next. For example, 
instead of providing emergency managers with a fore-
cast that incorporates a standardized 225-km position 
uncertainty estimate1 for a 3-day forecast, suppose 
that we could reliably estimate and 
convey and uncertainty estimates 
of 150 km in one circumstance and 
300 km in another (Fig. 1). We could 
thus facilitate informed case-by-case 
decisions on the extent of coastline 
evacuation, saving unnecessary 
evacuations. Users generally prefer 
receiving uncertainty information 
rather than having that informa-
tion hidden from them (Morss et al. 
2008), and, when no such uncer-
tainty information is provided, users 
tend to estimate the uncertainty 
themselves (Joslyn and Savelli 2010), 

perhaps inaccurately. Users also tend to make better 
decisions when reliable uncertainty information is 
provided (Joslyn et al. 2007; Nadav-Greenberg and 
Joslyn 2009) and are more willing to use marginally 
skillful forecasts and become more fault tolerant of 
forecast misses when the expected error is quantified 
(LeClerc and Joslyn 2009).

Forecasters and segments of the public use uncer-
tainty products based on ensemble prediction tech-
niques more and more, though there are significant 

Fig. 1. Conceptual illustration of how situationally dependent uncer-
tainty such as provided by ensembles in track forecasts can improve 
decision making. (a) The “cone of uncertainty” for a hurricane, 
estimated using the errors of prior forecasts, provides ambiguous 
information as to whether to evacuate a city. (b) In this case, a 
hypothetical calibrated ensemble is suggesting a narrower cone of 
uncertainty, indicating a decreased threat and implied commen-
surate actions for the city. (c) Conversely, the uncertainty is much 
larger and encompasses most of the city, suggesting a potential dif-
ferent course of actions for the city.
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1	An est imate chosen arbitrari ly for 
purpose of illustration.
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challenges to more widespread use (Novak et al. 2008; 
Hirschberg et al. 2011). With ensembles, multiple 
parallel forecast simulations are typically generated 
from slightly different initial conditions that reflect 
the analysis uncertainty. To also estimate the uncer-
tainty contributed by model imperfections, different 
member forecasts sometimes incorporate stochastic 
dynamics, different parameterizations, or even differ-
ent models. Modern ensemble systems demonstrate 
some ability to quantify the situational forecast 
uncertainty of TCs (Majumdar and Finocchio 2010; 
Hamill et al. 2011a,b).

Even before the advent of ensemble prediction, TC 
forecasts included some probabilistic information. 
For example, in 1983 the National Weather Service 
(NWS) implemented quantitative products that 
provided “strike” probabilities of TC tracks coming 
within about 60 nautical miles (111 km) of specified 
coastal locations (Sheets 1985). Beginning in 2006, 
these were replaced with more general surface wind 
probability products that included information about 
the uncertainty in the track, intensity, and wind 
structure forecasts (e.g., DeMaria et al. 2009). The 
original track probabilities and the more recent wind 
probability products are primarily statistically based, 
where the uncertainty information is estimated from 
error statistics of operational track, intensity, and 
structure forecasts from previous years. In 2010, a 
small step toward incorporating real-time ensemble 
model-based information was initiated. In particular, 
the track error distributions that are utilized to gen-
erate the probabilities are now being stratified based 
on the spread of the tracks from several determin-
istic forecast models (Kidder et al. 2009). These are 

used in the graphical and text products that provide 
the probability of 34-, 50-, and 64-kt (~17, 26, and 
33 m s−1) winds every 12–120 h (see section 2b and 
online appendix A for more information).

Current statistically based NWS TC probability 
products provide an accurate measure of the aver-
age expected uncertainty in the operational tropical 
cyclone forecasts. However, the uncertainty estimates 
do not change much from one forecast situation to the 
next, as desired. Conceptually, providing situation-
dependent uncertainty forecasts based on ensembles 
appears to be straightforward. However, uncertainty 
estimates that are formulated directly from current-
generation model-based ensembles are sometimes 
overly confident, offering an unrealistically narrow 
range of solutions and often biased uncertainty 
estimates, though the TC ensemble forecasts are 
improving (Hamill et al. 2011a,b).

Because these ensemble systems are improving 
and provide increasingly reliable TC uncertainty 
guidance, TC product developers should be ready to 
provide visually effective ensemble-based forecast 
products to forecasters, emergency managers, broad-
casters, the media, and other users. What should 
these ensemble-based products look like? We start 
by providing some context for the development of 
ensemble products, discussing some of the scientific 
challenges related to ensemble prediction of TCs 
and the current suite of uncertainty products and 
tools (section 2). We then speculate on some possible 
ensemble-based products that could be developed in 
the next several years, especially products relevant to 
forecasters (section 3). Section 4 provides conclusions. 
We hope this article will stimulate discussion and 
will engage the community to think more broadly 
about how ensemble predictions can be leveraged in 
the forecast process. We welcome your contributions 
to this discussion.

THE CURRENT STATE OF PROBABI-
LISTIC PREDICTION, PROBABILISTIC 
HURRICANE PRODUCTS, AND THEIR 
USE. The evolving science of ensemble numerical 
weather prediction. As specific as we might wish 
the forecasts to be, the rapid growth of errors in 
numerical forecasts will inevitably introduce error. 
These errors grow at different rates, with small scales 
quicker than large. Hence, heavy rain associated with 
individual thunderstorms may have predictability2 
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2	Predictability here means the ability to predict detail of a 
phenomenon with more specificity than the climatological 
distribution of that phenomenon.
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in a TC for only a fraction of an hour, eye wall size 
and asymmetries may be predictable for less than 
a day, and the synoptic-scale environment may be 
predictable for perhaps a week or two. No matter 
what model and ensemble system improvements are 
implemented, the rapid growth of errors in an envi-
ronment of 3D turbulence may constrain our ability 
to predict much detail beyond these approximate 
time ranges (Lorenz 1969; Tribbia and Baumhefner 
2004). During the time period when forecast errors 
are growing but have not yet saturated, ensembles 
are expected to provide the case-dependent esti-
mates of that uncertainty. What are the challenges 
to providing reliable estimates of uncertainty from 
ensemble predictions of TCs?

Defining an ensemble of accurate initial condi-
tions around TCs is one such challenge, and it will 
require advanced data assimilation techniques. Four-
dimensional variational data assimilation (4DVAR; 
Le Dimet and Talagrand 1986; Courtier et al. 1994; 
Rabier et al. 2000; Rawlins et al. 2007), the ensemble 
Kalman filter (EnKF), and hybridizations of EnKFs 
and variational systems represent the current evolving 
state of the art in data assimilation and TC initial-
ization. The European Centre for Medium-Range 
Weather Forecasts (ECMWF) generates its control 
analysis using 4DVAR and perturbed analyses around 
the control using parallel cycles of 4DVAR that cycle 
reduced-resolution ensembles and assimilate distinct 
perturbed observations (Buizza et al. 2010). ECMWF 
also computes “diabatic singular vectors” (Puri et al. 
2001) to generate perturbations around TCs that may 
grow rapidly. The U.S. Navy has recently updated 
their global data assimilation to a 4DVAR algorithm 
(Xu et al. 2005), and their operational ensemble 
initialization method was changed to a “banded” 
ensemble transform technique (McLay et al. 2010), 
which have both improved TC track forecasts. Other 
operational centers use a variety of ensemble initial-
ization techniques, mostly not specific to TCs. For 
example, the National Centers for Environmental 
Protection (NCEP) currently uses an “ensemble 
transform with rescaling” (Wei et al. 2008), and the 
Met Office (UKMO) uses a local ensemble transform 
Kalman filter (Bowler et al. 2008, 2009).

The National Oceanic and Atmospheric Admin-
istration (NOAA) is experimenting with the EnKF 
(e.g., Houtekamer and Mitchell 1998; Hamill 2006; 
Hamill et al. 2011a) and its hybridization with the 

existing 3DVAR for global ensemble initialization 
(Buehner et al. 2010a,b; Kleist et al. 2009; Hamill 
et al. 2011b).3 Nested high-resolution regional model 
EnKFs are also being developed for TCs (Torn and 
Hakim 2009; Zhang et al. 2009, 2011; Wu et al. 2010; 
Torn 2010), with the hope that the regional ensemble 
systems will, by virtue of their increased resolution, 
be able to provide more accurate physical depictions 
of the inner core and thereby storm intensity. The 
potentially more accurate inner-core estimates may 
improve the regional assimilation and may improve 
the subsequent regional ensemble forecasts (Zhang 
et al. 2009, 2011; Torn 2010).

An equally challenging problem is how to deal in 
scientifically sound ways with the significant uncer-
tainty introduced by model imperfections. Large-
domain, high-resolution ensembles are not currently 
computationally feasible on current-generation pro-
duction computers. Hence, some errors are intro-
duced by conducting the ensembles at limited resolu-
tion (Gentry and Lackmann 2010) and/or limiting the 
domain size for regional ensembles (Warner and Hsu 
2000; Nutter et al. 2004). Deterministic and ensemble 
predictions of TCs are sensitive to parameterizations 
of sea spray (Andreas and Emanuel 2001; Gall et al. 
2008), cloud microphysics and aerosols (Wang 2002; 
Li and Pu 2008), boundary layer processes (Drennan 
et al. 2007; French et al. 2007), parameters for hori-
zontal mixing length (Bryan et al. 2010), and more. 
Ensemble predictions inherit deficiencies of deter-
ministic models and the parameterizations they use, 
so that ensembles as well as deterministic forecasts 
commonly overforecast of TC genesis and do not pre-
dict rapid intensity changes well (Kaplan et al. 2010). 
NOAA’s Hurricane Forecast Improvement Project 
(HFIP) is helping to address these problems through 
concerted development of improved parameteriza-
tions relevant to the inner-core physics.

Three general approaches can and are being 
combined to deal with systematic errors in ensemble 
prediction systems. The first is to improve the forecast 
systems, perhaps increasing the resolution (Fiorino 
2009; Richardson et al. 2010, Fig. 27), improving 
the fidelity of parameterizations, generating the 
ensembles with larger or global domains, and ap-
propriately coupling predictive models for the state 
components such as the ocean and atmosphere. For 
example, NCEP has recently upgraded the resolu-
tion of their global ensemble forecast system to T190 

3	NCEP expects to implement the global hybrid EnKF/3DVAR for purposes of improving the control initial condition during 
the first half of 2012. Pending more successful testing, the global EnKF perturbations may be used for ensemble initialization 
operationally somewhat later than that (B. Lapenta 2011, personal communication).
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(~95 km grid spacing at 25°N),4 and the deterministic 
model was upgraded in summer 2010 to T574 (~32 km 
grid spacing at 25°N), with upgrades to the many 
parameterizations. ECMWF recently upgraded their 
ensemble prediction system to T639 (~28 km at 25°N; 
Richardson 2010), which significantly reduced TC 
intensity biases. Several scientists are currently dem-
onstrating the utility of regional ensemble prediction 
systems for hurricanes (Torn and Hakim 2009; Zhang 
et al. 2009, 2011; Wu et al. 2010; Torn 2010).

The second general approach is to introduce 
stochastic effects to represent model uncertainty 
in a physically realistic fashion. One underlying 
problem is that many of the parameterizations are 
formulated deterministically; given the same large-
scale input, the same response of subgrid forcing 
upon the resolved scales is always predicted, even 
though a range of responses is plausible. Techniques 
that are being used in operations or are being tested 
include perturbing the parameterized tendencies with 
random numbers or structured noise (Buizza et al. 
1999; Palmer et al. 2009), using an ensemble system 
with multiple parameterizations (Charron et al. 2010; 
Hacker et al. 2011; Berner et al. 2011), introducing 
stochastic aspects into parameterizations (Lin and 
Neelin 2002; Teixeira and Reynolds 2008; Plant and 
Craig 2008), and including “stochastic backscatter” 
(Shutts 2005; Berner et al. 2009, 2011; Charron et al. 
2010). Collectively, this is an area where much more 
research is needed, because many of the parameter-
izations in models are still deterministic and many of 
the approaches taken currently are ad hoc (i.e., they 
increase spread but not necessarily for scientifically 
defensible reasons). At this point, most of the research 
has occurred with global models and is not specific 
to the problems of TCs.

The third approach is to postprocess. A simple 
approach may be to combine output from existing 
models. Goerss (2007) has shown the value of a mul-
timodel consensus, if that is available. This technique 
has been used, at first subjectively, by forecasters 
at the National Hurricane Center (NHC) for more 
than a decade and currently provides among the best 
automated track guidances (Rappaport et al. 2009). 
The technique may be more suitable to variables 
where errors are more random (track) than systematic 
(intensity).

Another type of postprocessing consists of applying 
statistical corrections based on discrepancies between 
past forecasts and observations. Krishnamurti et al. 

(2006) discussed the “superensemble” concept, com-
bining regression-corrected ensemble guidance. 
When making statistical corrections, especially for 
a phenomenon like a TC that may impact a given 
location only once every 5–10 yr, it is helpful to be able 
to examine the characteristics of numerical guidance 
from similar past events. Reforecasts, a database of 
past forecasts using the same model and assimilation 
system, can provide just that, compensating for model 
systematic biases (Hamill et al. 2006). ECMWF now 
operationally generates a five-member, real-time 
reforecast once weekly, creating forecasts for the 
past 18 yr (Hagedorn 2008; Hagedorn et al. 2012). 
For TCs, they use real-time reforecasts to calibrate 
their forecasts of TC genesis (Vitart et al. 2010). An 
even more extensive reforecast dataset, with forecasts 
more often than once weekly, may be helpful for TC 
calibration.

Current probabilistic forecast tools and products. Here, 
we will focus mostly on the probabilistic tools used 
by and products produced by NOAA’s NHC (see 
online appendix B for more information). We will not 
consider tools and products from other centers such 
as the U.S. Navy’s Joint Typhoon Warning Center 
(JTWC), though the spectrum of tools and products 
should be somewhat similar.

NHC forecasters routinely examine both conven-
tional ensembles and “poor person’s” ensembles, with 
the latter consisting of guidance from a range of de-
terministic models. Forecasters consider limited-area 
model output from the Geophysical Fluid Dynamics 
Lab (GFDL) model (Bender et al. 2007) and the 
Hurricane Weather Research and Forecast (HWRF) 
model (Bao et al. 2010). NHC forecasters also exam-
ine global deterministic forecasts from the Global 
Forecast System (GFS), the U.S. Navy’s Operational 
Global Atmospheric Prediction System (NOGAPS; 
Peng et al. 2004); the Met Office global model (Bowler 
et al. 2008, 2009) and the ECMWF model (www 
.ecmwf.int/research/ifsdocs/). Forecasters consider 
guidance from some ensemble systems, including 
the NCEP Global Ensemble Forecast System (GEFS), 
and strike probabilities from the ECMWF ensemble 
system. NHC forecasters currently pay less attention 
to ensemble output from other international centers. 
Users from other organizations find the broader 
range of real-time ensemble TC information from op-
erational centers of use. These are currently available, 
for example, through The Observing System Research 

4	Grid spacing calculations here uniformly assume 2N + 1 grid point per latitude circle, where N is the triangular truncation. 
In fact, some centers like NCEP transform to 3N + 1 grid points. See Hamill et al. (2011b) for more discussion on this.
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and Predictability Experiment (THORPEX) Interna-
tional Grand Global Ensemble (TIGGE; Bougeault 
et al. 2010; for details, see online at http://cawcr.gov 
.au/projects/THORPEX/TC/index.html; http://tparc 
.mri-jma.go.jp/cyclone/login.php).

NHC forecasters routinely evaluate several other 
probabilistic or ensemble-based products. For track, 
the Goerss predicted consensus error (GPCE; Goerss 
2007; see also online appendix B) is used. Given 
the errors associated with purely dynamical guid-
ance, especially with intensity, NHC forecasters use 
statistical–dynamical intensity models such as the 
Statistical Hurricane Intensity Prediction Scheme 
(SHIPS; DeMaria et al. 2005) and the Logistic Growth 
Equation Model (LGEM; DeMaria 2009). Because 
none of the intensity forecast models reliably predicts 
rapid intensification, NHC forecasters also use a rapid 
intensity index (RII). The RII uses satellite observa-
tions and the NCEP global model forecast to provide 
a quantitative estimate of the probability of a rapid 
intensification in the next 24 h.

NHC forecasters produce real-time products to 
convey the current and forecast location, intensity 
(wind speed), and size of TCs and their precursors, as 
well as associated effects (e.g., storm surge). Textual 
products with uncertainty information (see online 
appendix A for examples) include a tropical weather 
outlook, which provides probabilities of TC forma-
tion in the next 48 h and a TC discussion providing 
forecaster reasoning and alternate scenarios based on 
model guidance diversity. Surface wind speed prob-
abilities are provided in tabular format, based on a 
Monte Carlo approach that considers on the order of 
1,000 realistic track, intensity, and size possibilities 
(DeMaria et al. 2009). Graphical forecast products 
include some with probabilistic elements: surface 
wind speeds, storm surge heights, a coastal watch/
warning, and 3- and 5-day cones of uncertainty for 
TC center position (see online appendix A for ex-
amples). Local NWS weather forecast offices provide 
additional products (not shown).

Emergency management officials do use wind 
speed probabilities and the uncertainty cones for 
evacuation decisions, deployment of resources, and 
briefing elected officials (R. Jennings 2010, personal 
communication). How much the public uses these 
products is hard to quantify; all are posted on the NHC 
website and are used by some segment of the public 
and by some weather forecasters. We need to interact 
more with public, both to educate them on how to 
make better decisions with probabilistic information 
and to help guide our development of useful, intuitive 
probabilistic products (Hirschberg et al. 2011).

RECOMMENDATIONS FOR ENSEMBLE-
RELATED PRODUCT DEVELOPMENT. We 
propose some ensemble-related products that could 
be helpful to emergency managers, the media, and 
especially forecasters.

Emergency managers and the media are likely to 
prefer products that will be visually intuitive and that 
will help them communicate uncertainty informa-
tion to their audiences. Simple and easily explainable 
products are preferable because their customers will 
be more familiar with deterministic products. For 
example, one modest change might be to enhance 
the deterministic products with some confidence 
index (low/medium/high) based upon ensemble 
uncertainty estimates. For newer and more complex 
graphics, training may be necessary before users 
embrace them. Explanatory web pages could be cre-
ated and associated with the new product web pages. 
Additionally, through conferences and training facili-
ties such as the Cooperative Program for Operational 
Meteorology, Education, and Training (COMET), 
advanced users could be trained in how to interpret 
the new probabilistic guidance.

Below, we concentrate more on describing po-
tential new uncertainty guidance for forecasters. 
As opposed to emergency managers, these products 
are more interpretive, designed to help forecasters 
understand the potential situational uncertainty 
rather than to convey it simply to end users. However, 
many beyond the forecast community may also be 
interested in such graphics. Should these experi-
mental ensemble-based products be disseminated 
beyond the ranks of government forecasters, they 
should include appropriate disclaimers. They may 
note, for instance, that these products represent ex-
perimental guidance that may not produce reliable 
probabilities and that they should not be considered 
“official” forecasts.

Intensity products. Because track forecasts have made 
steady improvement but intensity forecasts have 
not, forecasters want improved intensity-related 
uncertainty products first and foremost, including 
the probability distribution of intensity change. This 
presents a considerable challenge given the current 
difficulties that ensemble systems and deterministic 
models have with predicting intensity change.

Ensemble information could be incorporated 
into existing statistical models of intensity changes 
such as the LGEM, providing a value-added en-
semble product. LGEM predicts intensity and inten-
sity change based on sea surface temperature (SST; 
DeMaria and Kaplan 1994; Whitney and Hobgood 
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1997), forecast vertical shear, convective instability, 
and translational speed. LGEM could easily be 
adapted to produce an ensemble of intensity change 
forecast estimates, one for each forecast track of an 
ensemble. The LGEM ensemble of intensity change 
estimates might differ as the ensemble produced a 
range of atmospheric environment forecast input and 
as the different forecast tracks positioned the TC over 
different SSTs. Unfortunately, LGEM ensemble guid-
ance may be biased by ensemble systematic errors. 
For example, should the mean forecast position be 
biased, LGEM would use SSTs under the biased track 
positions, potentially degrading its accuracy.

Were a reforecast dataset available, forecast track 
statistics could be generated for a long period of 
time from a stable model. This approach may permit 
systematic track errors to be estimated and corrected 
from real-time forecasts. It may also be possible to 
train a statistical model like LGEM not using analy-
sis data (a “perfect prog” approach) but rather using 
forecast data (a “model output statistics” approach) 
and in this way account for potential biases in fore-
casts of the environmental information.

Other products could also convey predictive 
information related to intensity to forecasters. 

Figure 2 provides a synthetic example of how a 
common spaghetti plot of tracks could be augmented 
with intensity-related information. Included on this 
plot is analyzed SST. The arrows associated with 
each track position represent the associated vector 
850–200-hPa wind shear. Also displayed are the fore-
cast central pressures rounded to the nearest hPa. A 
visual display like this permits a forecaster to see the 
interactions of several variables that may be related to 
intensity. In this case, for example, the wind shear is 
somewhat weaker and the SST warmer at 48 h to the 
southwest, suggesting that, if the storm’s actual course 
is southwest of the predicted mean, it may be stronger 
than a storm moving northeast of the mean. In this 
case, the intensity difference is also reflected in the 
model–forecast central pressure estimates.

“Meteograms” of the ensemble distribution 
could also be produced for intensity-related storm 
parameters, such as shear, midlevel moisture, insta-
bility, and maximum wind speed, as illustrated in 
Fig. 3. Another possibility would be the creation of 
ensemble-derived probability maps of important vari-
ables, which might depict, for example, the probabili-
ties of exceedance of critical variables, such as RH < 
50% at 500 hPa or 850–200-hPa vertical shear > 15 kt 

(~7.7 m s–1). Finally, were a reforecast 
dataset available, an “extreme fore-
cast index” (LaLaurette 2003) could 
be created for intensity forecasts, 
representing how the ensemble of 
forecast intensities compare to the 
climatological distribution of fore-
cast intensities.

Tropica l c yc logenes i s produc t s . 
Forecasters also desire new prod-
ucts to help them predict the relative 
likelihood of TC genesis. However, 
given the common misestimation 
of genesis frequency in numeri-
cal models, the potential skill of 
such products may be marginal, 
at least until reforecasts are avail-
able to estimate the climatological 
frequency of genesis from past fore-
casts. Recently, ECMWF staff has 
developed experimental guidance 
for the probability of tropical cyclo-
genesis; these are calibrated using 
the forecast climatology derived 
from their 20-yr, once-weekly re-
forecast dataset (D. Richardson 2010, 
personal communication; Hagedorn 

Fig. 2. Illustration of a potential display of intensity-related infor-
mation. A (synthetic) 10-member ensemble forecast of tracks is 
shown, with 0-, 24-, and 48-hour positions denoted by the dots. 
The underlying contours denote the analyzed SST; the wind barbs 
denote the vertical (200–850 hPa) wind shear, measured in knots 
(1 kt = 0.5144 ms–1). A full wind barb equals 10 knots, a half barb 
equals 5 knots. The two numbers plotted over top of the cyclone 
position denote the model-forecast mean sea level central pressure, 
measured in hPa minus 900.
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2008). Figure 4 illustrates 
how ECMWF represented 
the relative likelihood of 
TC genesis in several basins 
in their real-time forecast 
compared to the frequency 
of genesis determined from 
past forecasts.

Even without reforecasts, 
forecasters may still find 
ensemble-based guidance 
of TC genesis informative. 
Ensemble tracks of model-
generated storms can be 
plotted, and genesis prob-
abilities can be estimated 
from the ensemble with-
in specific geographical 
regions. Another possibil-
ity is to examine whether a 
statistical model of genesis 
(Schumacher et al. 2009) 
incorporating ensemble 
genesis information might 
provide skillful guidance.

Structure products. Uncer-
tainty information is de-
sired for storm structure 
as well, including storm 
size and average wind ra-
dii at various thresholds 
in different storm quad-
rants. Possible products 
include 1) ensemble aver-
ages of the radius of the 
outermost closed isobar 
(OCI), which provides one 
possible measure of over-
all storm size, which is 
relevant for shipping and 
storm surge; 2) ensemble-
mean predictions of 34-, 
50-, and 64-kt (15.4, 25.7, 
and 32.9 m s−1) wind radii in different quadrants, 
where the ensemble of storms is relocated to a com-
mon position; and 3) probability distributions of the 
OCI and wind radii.

Track products. In addition to the possibilities in-
dicated in the “Intensity products” section above 
for augmenting track information with intensity-
related variables, other track-related products may be 

useful. Figure 5 shows how track information could 
incorporate ensemble data from previous forecast 
cycles as well as cones of uncertainty that are no 
longer purely circular. Such a plot could be further 
enhanced if the older forecasts had been subjected to 
quality control to eliminate or deweight prior forecasts 
that did not match recent observed positions. In order 
to identify the dominant synoptic patterns associated 
with different track forecasts, a “cluster analysis” 

Fig. 3. Synthetic example of a potential meteogram-style plot of intensity-
related information from an ensemble system. Each panel provides the 
ensemble-mean forecast (solid line and dots), whereas the blue bars denote 
the lowest and highest values from the ensemble. White lines denote the 20th 
and 80th percentiles of the distribution.

215february 2012AMERICAN METEOROLOGICAL SOCIETY |



can be used to distinguish 
between dominant track 
paths, followed by the cre-
ation of a composite of the 
associated forecast fields in 
each cluster.

Assoc ia ted phenomena : 
Storm surge, winds, rainfall, 
and tornadoes. As ensem-
bles are improved and 
perhaps postprocessed, 
they may provide more 
reliable track, intensity, 
and storm size estimates. 
These in turn may per-
mit probabilistic guidance 
to be generated for many 
important storm-related 
effects. For example, storm 
surge probabilities might 
be generated by driving 
surge models like the Sea, 
Lake, and Overland Surges 
from Hurricanes (SLOSH; 
Houston et al. 1999) using 
ensemble-based guidance. 

Postprocessed ensemble guidance 
can provide improved probabilistic 
estimates of precipitation (Hamill 
and Whitaker 2006) from land-
falling TCs or from predecessor rain 
events (PREs; Galarneau et al. 2010). 
Statistical models can be formulated 
to estimate tornado probabilities 
based on the environmental char-
acteristics. Additional probabilistic 
forecasts can be generated for winds 
above critical thresholds such as 
tropical storm or hurricane strength 
and can provide information on the 
timing (onset and duration).

Fig. 4. An example of ECMWF’s extended-range forecast of tropical cyclo-
genesis, here for the week of 6–12 Sep 2010. Activity is monitored separately 
in the various basins, separated by the blue lines. The green bars show the 
mean number of TCs predicted to develop during the week 6–12 Sep (i.e., 
in each basin count all new TC geneses in each ensemble members in that 
7-day period and calculate the mean of that number over the ensemble; the 
actual number is shown below the green bar). The orange bar (and number) 
is determined from the reforecast climate at this time of the year.

Fig. 5. Lagged ensemble track forecasts 
for Hurricane Earl (2010) from the 
GFS/EnKF (see Hamill et al. 2011a). 
Light grey lines denote track forecasts 
initialized at 0000 UTC 31 Aug 2010. 
Darker grey lines denote track fore-

casts initialized at 1200 UTC 31 Aug 2010. Black lines denote track forecasts initialized at 0000 UTC 1 Sep 2010. 
Red dots denote positions of ensemble members, with the large red dot the position of the ensemble-mean 
member. The ellipse is from a fitted bivariate normal distribution, with the contour enclosing 90% of the fitted 
probability (ibid.). Numbers indicate the forecast lead in days corresponding to the 1 Sep forecast.

216 february 2012|



Guidance for locations of supplemental observations. 
Ensemble-based techniques may be useful for deter-
mining the most useful locations for supplemental 
observations (Aberson 2010). The observations may 
be dropsondes from reconnaissance aircraft or, in the 
future, the processing of higher-density cloud-track 
winds or satellite radiances. Typically, an ensemble-
based targeting algorithm considers how much the 
forecast uncertainty would be reduced as a result of 
the reduction in analysis-error variance in an en-
semble due to the assimilation of extra data. These 
techniques are promising but are limited in their 
utility by the lack of calibration of the ensemble and 
the assumption of linear error growth (Majumdar 
et al. 2006; Reynolds et al. 2010).

CONCLUSIONS. Studies indicate that users are 
able to make better decisions when provided with 
relevant uncertainty information. Ensemble predic-
tion techniques that generate such information for 
TCs are improving but are still affected by systematic 
errors, such as underforecasting intensity in global 
models. As ensemble systems improve, the weather 
forecast community is planning for how to incorpo-
rate more ensemble-based uncertainty information 
into the forecast process and how TC uncertainty 
can be conveyed to forecasters, emergency managers, 
the media, and the public. This article discussed 
some preliminary ideas for how ensemble informa-
tion can be interpreted and used more extensively. 
Special attention was paid to new ensemble products 
for intensity forecasting, which has not improved as 
much as track forecasts over the past few decades. Our 
product recommendations assume that forecasters 
will be interested in products that are more diagnostic 
in nature and can provide additional information 
about the range of possible outcomes. Emergency 
managers and the media may be more interested 
in user-friendly graphics that could be understood 
readily by their customers. We invite you to join the 
discussion of how ensemble data can be leveraged to 
improve hurricane guidance.
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