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ABSTRACT

This work describes tropical cyclone rapid intensification forecast aids designed for the western North

Pacific tropical cyclone basin and for use at the Joint Typhoon Warning Center. Two statistical methods,

linear discriminant analysis and logistic regression, are used to create probabilistic forecasts for seven in-

tensification thresholds including 25-, 30-, 35-, and 40-kt changes in 24 h, 45- and 55-kt in 36 h, and 70-kt in 48 h

(1 kt 5 0.514 m s21). These forecast probabilities are further used to create an equally weighted probability

consensus that is then used to trigger deterministic forecasts equal to the intensification thresholds once the

probability in the consensus reaches 40%. These deterministic forecasts are incorporated into an operational

intensity consensus forecast as additional members, resulting in an improved intensity consensus for these

important and difficult to predict cases. Development of these methods is based on the 2000–15 typhoon

seasons, and independent performance is assessed using the 2016 and 2017 typhoon seasons. In many cases,

the probabilities have skill relative to climatology and adding the rapid intensification deterministic aids to the

operational intensity consensus significantly reduces the negative forecast biases.

1. Introduction

Forecasters at the Joint Typhoon Warning Center

(JTWC) have to predict the future movement, intensity,

and the extent of the wind field for tropical cyclones

(TCs). To aid in the forecast process, progress has been

made in developing forecast guidance tools. As guid-

ance tools improve, so do the TC forecasts produced by

operational centers. Illustrating this point, JTWC’s op-

erational track forecasts have steadily improved since

the 1990s due primarily to the improvement in global

(and regional) numerical weather prediction (NWP)

models (e.g., Elliot et al. 2014). More recently, opera-

tional intensity forecasts have shown slight improve-

ments due to increasingly skillful guidance and to the

use of simple consensus forecasts (Sampson et al. 2008;

DeMaria et al. 2007; DeMaria et al. 2014). Based on

Atlantic basin validations, gale-force—awind exceeding

34 kt (1 kt 5 0.514m s21)—wind field guidance now

seems to be able to provide skillful information

(Sampson and Knaff 2015) leading to improved opera-

tional forecasts that are currently generated out to day 5

in the western North Pacific. While track, intensity, and

wind-field forecasts have improved, operational guid-

ance for unanticipated rapid TC intensification is es-

sentially nonexistent in the western North Pacific TC

basin.

Many definitions of rapid intensification (RI), also

referred to as rapid development/deepening, exist for

the western North Pacific. Brand (1973) defined RI as a

50-kt change in intensity in 24 h. Holliday (1977) and

Holliday and Thompson (1979) define RI as a 42-hPa

drop in central pressure in a day. Looking at these def-

initions from the perspective of the Atkinson and

Holliday (1977) wind–pressure relationship (WPR) and

the Dvorak (1984) intensity estimation method, these

techniques share similarities. A central pressure of

985 hPa—the higher range of onset central pressuresCorresponding author: John Knaff, john.knaff@noaa.gov
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corresponds to the 19th percentile in Holliday (1977)—

corresponds to ;55kt in the Dvorak method (Dvorak

1984). Subtracting 42hPa from that central pressure

value (985 hPa) roughly corresponds to 45 kt of intensity

change with the Atkinson and Holliday WPR. These

studies focused on the most rapidly intensifying systems,

or about 25% of the storms that initially had central

pressures ranging from 995 to 950 hPa (Holliday 1977)

that correspond to ;35kt of change or an intensity of

115 kt, respectively, using the operational WPR em-

ployed at the time.

While central pressures were considered more accu-

rate in 1977, maximum wind speed estimates—the pri-

mary intensity metric in today’s historical records of TC

intensity—have uncertainties around 8kt (Torn and

Snyder 2012), and the Dvorak method has been shown

to have RMSEs ranging from 8 to 12 kt (Knaff et al.

2010). Since wind speeds are the basis for intensity

verification, more recent RI work uses definitions based

on wind speed changes (Kaplan and DeMaria 2003;

Kaplan et al. 2010, 2015; Shu et al. 2012). We will use the

change in maximum wind speeds for our RI definitions,

as has been done in more recent papers.

This study develops intensification guidance designed

to anticipate TC rapid intensification in the western

North Pacific, a tool recently transitioned into opera-

tional use at JTWC. The work uses a statistical–

dynamical methodology, wherein application prognostic

predictors from dynamic forecast models are used to

make statistical forecasts, and uses a ‘‘perfect prog’’ de-

velopment approach, where analyses of the prognostic

data, considered perfect, are used for statistical infer-

ence (Neumann and Lawrence 1975). Section 2 describes

the data and methods used to create the guidance, and

section 3 describes the details of the statistical–dynamical

models used and how those models provide the in-

formation to make deterministic forecasts. Section 4

shows results based on two years of independent data,

and section 5 summarizes and provides comments on the

utility of our algorithm and some ideas for improvement.

2. Data and methods

a. Independent and dependent variables

The intensity records from JTWC’s best tracks pro-

vide the TC location and intensity based on a postseason

reanalysis of all the data available and current opera-

tional practices. These data are in the native Automated

Tropical Cyclone Forecast (ATCF) system format

(Sampson and Schrader 2000; available at http://www.

usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/).

The files contain 6-hourly position, intensity, and wind

radii information for each storm reaching tropical de-

pression status in JTWC’s warnings. In these files, the

native units—operational units—are expressed in knots

for intensities (i.e., 1-min maximum sustained winds).

For consistency with operational practices, this study

uses knots throughout.

Table 1 contains the forecast parameters that are

considered during the development of the rapid in-

tensity change guidance. The parameters are grouped

into three categories: 1) a subset of the environmental

condition parameters available in the RAMMB (2017)

developmental dataset, 2) storm-centered infrared (IR)

imagery–based initial conditions, and 3) real-time, best-

track parameters. This limited set of predictors was

chosen based on past research on RI forecasting, the

authors’ experience, and the many years of forecaster-

derived insight on this topic.

Environmental condition parameters (top section in

Table 1) used in this application come from the Statis-

tical Hurricane Intensity Prediction Scheme (SHIPS;

DeMaria and Kaplan 1999) developmental dataset (see

RAMMB 2017). The developmental data consisted of

western North Pacific TCs during the years 2000–15.

Most of the environmental predictors [e.g., relative

humidity in a 200–800-km annulus around the TC

(RHMD), 200-hPa divergence (DIVC), and oceanic

heat content between the surface and the depth of the

268C isotherm (OHC)] require little explanation.

However, a brief description and/or justification of some

of the less straightforward environmental predictors is

provided. The 850–200-hPa layer shear (the vector dif-

ference between 200 and 850hPa) is the traditional

measure of vertical wind shear, but it is probably less

reliable in complicated vertical wind profiles. Further-

more, shear at lower levels is better correlated with in-

tensification/weakening (e.g., Velden and Sears 2014;

Wang et al. 2015), and the depth and height of wind

shear can vary with individual situations (Finocchio and

Majumdar 2017), so we want to capture as much of the

predictive signal of shear as possible in a single param-

eter. We satisfy this objective by relying on the gener-

alized vertical wind shear parameter (GSHR). The

GSHR is the mass-weighted, root-mean-square de-

viations of the winds from 4 times the mass-weighted,

deep-layer mean winds. The factor of 4 is used to make

the values comparable to the more conventional mea-

sure of 200–850hPa and is equal to that scalar difference

for the case when shear is constant with respect to

pressure. We also want to investigate a measure of

upper-level eddy fluxes to ascertain TC interactions with

troughs. This is done using the relative eddy flux con-

vergence (REFC; see Knaff et al. 2005). Finally, low-

level temperature advection (TADV) can potentially be
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important to the TC intensification process (see

Callaghan and Tory 2014) and is included for inspection.

IR imagery is a subjective analysis tool for predicting

the onset of RI, and it is available almost in-

stantaneously at operational centers, thus making the

imagery ideal for an application such as ours. With this

premise in mind, we use IR imagery to capture two

characteristics related to intensification (see the middle

section of parameters in Table 1). The first is convective

vigor and symmetry. Previous work has shown that

convective vigor can be discerned through cold-

temperature-based pixel counts and that convective

symmetry can be computed with standard deviations of

the azimuthal temperatures surrounding the storm in

the 100–300-km annulus (SDO; see Mundell 1990;

Fitzpatrick 1997; Kaplan et al. 2010). The convective

vigor predictors used here, PC50 and PC60, were chosen

based on sensitivity work shown in Knaff et al. (2014a),

where 2508C and colder pixel counts improved dis-

crimination of RI events in the Atlantic and eastern

Pacific. The storm size and structure is the second

characteristic provided by the IR imagery. Knaff et al.

(2014a, 2016) developed a normalized IR-based TC size

(FR5), where the TC size parameter (R5 from Knaff

et al. 2014b) is divided by its intensity-based climato-

logical values. FR5, in essence, determines whether a TC

at a specific intensity is large or small relative to the

global climatology. We include this parameter because

studies (e.g., Xu and Wang 2015) find that small TCs

have a tendency to intensify more quickly than larger

TCs. In addition to the overall TC size, we also make use

of the radius of minimum azimuthally averaged IR

temperature (RMNT)—a crude measure of inner-core

and eye size, the latter being inversely correlated to in-

tensification (Musgrave 2011; Carrasco et al. 2014).

Because of the nature of operations, nonphysical

values can arise in the real-time, best-track parameters

(bottom section in Table 1). Since large changes in op-

erational intensity estimates are sometimes related to

the inspection of time-late information (e.g., microwave

imagery and scatterometry) and/or restrictions man-

dated by diagnostic techniques (e.g., Dvorak intensity

estimate), we limit our 12-h intensification rate (DV) to

physically realistic values using the following relation-

ship (VMAX is the current TC intensity):

DV5min[min(VMAX3 0:33, 17:5),DV]. (1)

This effectively limits DV to constraints used in Dvorak

(1984) and provides a more stable predictor for the

linear statistical techniques used in this work. If our DV

development dataset has large positive outliers, those

will adversely influence the statistics. If DV is large and

positive in real time (e.g., the forecaster received new

TABLE 1. Potential predictors for algorithms used to predict the probabilities of RI at various intensification rate thresholds. Predictors

include forecast parameters (environmental predictors) and initial conditions (IR predictors and best-track/advisory-based predictors).

Static predictors (i.e., those available only at t 5 0) are italicized.

Acronym Description

Environmental predictors (time averaged from t 5 0 to time of the forecast)

GSHR 850–200 hPa generalized wind shear calculated as the mass-weighted root-mean-square deviations of the winds from

the mass-weighted deep-layer mean winds times a factor of 4 calculated in a 200–800-km annulus (Knaff et al.

2005)

OHC Oceanic heat content between the surface and the depth of the 268C isotherm (Shay et al. 2000, and references

within)

RHMD 700–500-hPa relative humidity averaged within a 200–800-km annulus

DIVC 200-hPa divergence following the storm calculated in a 500-km circle centered on the TC

POT Potential intensification calculated from the potential intensity as a function of SST at the storm center and the

current intensity (at t 5 0)

REFC Average relative eddy momentum flux convergence (m s21 day21) calculated in a 100–600-km annulus vs time

TADV The temperature advection between 850 and 700 hPa averaged from 0 to 500 km calculated from the geostrophic

thermal wind

IR predictors

PC50 Percentage of IR pixels colder than 2508C within a 50–200-km annulus

PC60 Percentage of IR pixels colder than 2608C within a 50–200-km annulus

SDO Standard deviation of IR brightness temperature at 100–300 km

RMNT Radius of minimum brightness temperature (0–150 km)

FR5 The deviation of IR-based TC size (R5) from the climatological population as a function of TC intensity

Best-track/advisory-based predictors

VMAX Current TC intensity (t 5 0)

DV 12-h change in TC intensity, which is limited by the following function: DV5min[min(VMAX3 0:33, 17:5), DV]
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data that dramatically increased the current intensity

estimate, but did not have data to modify the past in-

tensity estimates), those will adversely influence our RI

algorithm forecast. Including this parameterized DV

value improved the dependent model fit, and sensitivity

tests (not shown) indicated that capping DV in this

physically consistent way resulted in better modeling of

RI and answered the more basic question of whether the

storm has been intensifying.

Construction of the RI algorithm follows the same

process as past RI algorithm development efforts (e.g.,

Kaplan and DeMaria 2003; Kaplan et al. 2010, 2015),

using a combination of current TC conditions, environ-

mental conditions, and information about the current

IR structure to forecast the probability of various in-

tensification rates. In development, we use analyses (i.e.,

perfect prog) of environmental conditions. In applica-

tions, environmental conditions are based on forecasts.

We also use two statistical methods to create forecasts

from which we construct a two-member consensus

forecast. The two methods are a linear discriminant

analysis and logistic regression.

b. Linear discriminant analysis

Linear discriminant analysis (LDA) is a classification

method originally developed by Fisher (1936). In

LDA, a linear combination of variables that best sepa-

rates two or more groups is developed. We define just

two groups for the LDA: group 1, for when the in-

tensification threshold is reached or exceeded, and

group 2, for when the intensification threshold is not

reached. In the two-class LDA, the goal is to find the

n-dimension vector of observations that best assigns a

case to belonging to either group 1 or 2. In our appli-

cation, we assume both groups have the same covariance

structure, so the vector has a direction in n-dimensional

space that maximizes the distance between the means of

groups 1 and 2 in standardized units. This is formalized

as the discriminant function d, which is the scalar pro-

jection of the data vector x in the direction of maximum

separation (i.e., Mahalanobis distance), which is called

the discriminant vector a. The equation for d is

d5 aTx , (2)

where x is the data vector (our predictors) and a is the

discriminant vector.

We have used the International Mathematical and

Statistical Libraries (IMSL 2017) to make the calcula-

tions [see Wilks (2006) for a discussion of LDA]. For-

ward variable selection is used with a 95% confidence

(F test), with an occasional backward step to remove

variables that are no longer statistically significant. To

estimate probabilities from the discriminant function

provided by LDA, a windowing procedure relates prior

probabilities (i.e., dependent data) to discriminant

function values. This windowing procedure is a one-

dimensional single-pass Barnes (1964) analysis, sam-

pling the discriminant function at discrete intervals, 0.1

in this case, where all the discriminant function values

within a radius of influence of 0.3 of each interval are

weighted by the square distance from the interval. In

application, a cubic spline provides a probability given

the discriminant function value.

c. Logistic regression

Logistic regression (LRE) is a model where the de-

pendent variable is a defined category. In our case, ‘‘1’’ is

used for reaching the intensification threshold and ‘‘0’’

for not having met the intensification threshold. LRE

is a special case of the generalized linear model, where

the natural log of the odds ratio or logit based on cate-

gorical data is fit to a linear combination of independent

predictors (x1, . . . , xn) with intercept bo and weights

(b1, . . . , bn) that are determined via the method of

maximum likelihood:

ln

�
p
e

12 p
n

�
5 b

o
1 b

1
x
1
1⋯1 b

n
x
n
. (3)

To perform variable selection and the model fit, we use

FORTRAN 90 code from CSIRO (2017) that produces

linear logistic models by iteratively reweighted least

squares. Model fit is based on maximum likelihood cri-

teria. Forward variable selection was used with the

knowledge of the LDA model formulations. An occa-

sional backward step was performed to remove pre-

dictors that had lost their statistical significance (99%,

chi squared). The logistic regression model has different

assumptions about the relationship between dependent

and independent variables when compared to linear

regression. The two primary differences are 1) since the

dependent variable is binary, the conditional distribu-

tion is a Bernoulli distribution rather than a Gaussian

distribution, and 2) the predicted values are probabili-

ties of a particular outcome. Once fitted, the probability

of exceeding the intensification threshold takes the form

p
RI
5

1

(11 e2(bo1b1x11⋯1bnxn))
. (4)

The measure of the quality of fit for logistic regression

is in terms of deviance: a generalization of the idea of

using the sum of squares of residuals in ordinary least

squares to cases, but where the model is fit using a

maximum likelihood criterion. Deviance is defined

as 22 times the log-likelihood ratio of the fitted model
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compared to the full (i.e., perfect) model. One can also

define the percent deviance explained as 1 minus the

ratio of the fitted model deviance to the deviance of a

model containing only the intercept bo (Knaff and

DeMaria 2017).

3. Statistical–dynamical model formulations

For this work, we will examine several intensification

thresholds. These include 25-, 30-, 35-, and 40-kt changes

in 24h; 45- and 55-kt changes in 36h; and 70-kt changes

in 48h. These changes in the western North Pacific

correspond to the 81.2, 87.0, 90.7, and 93.7 percentile

values of 24-h intensity change; the 87.7 and 92.6 per-

centile values for the 36-h intensity change; and the 92.6

percentile value of the 48-h intensity change. We will

refer to the thresholds as RI25, RI30, RI35, RI40, RI45,

RI55, and RI70, respectively. We also tried to predict

the 85-kt increase of intensity in 72 h, but dependent fits

were, in our opinion, not good enough to pursue real-

time prediction. With these thresholds, we now describe

the statistical–dynamical models for the LDA and LRE

methods for each of the intensity change thresholds.

a. LDA-based models

As mentioned in section 2, LDA is primarily a cate-

gorization method and probabilistic forecasts based

on discriminant function values come from prior/

dependent frequencies. For our intensification thresh-

olds, we seek the model with the best developmental

Brier scores (BSs; i.e., the mean square distance in

probabilistic space) and Brier skill scores (BSSs). The

calculation of BSS is provided in (5), where BSf is the BS

of the forecasts and BSr is the BS of the reference (Wilks

2006), In this case, the reference is climatology:

BSS5 12
BS

f

BS
r

. (5)

This also corresponds to the discriminant vector that

provides the best categorization of cases that meet or

exceed the intensification threshold and cases that do

not. For fitting LDA models, we calculate time-

averaged values of nonstatic predictors up until each

forecast lead time. In application, we use forecast values

of these quantities for the calculation of averaged pre-

dictor values. The previous section provided the clima-

tological rate of RI for each threshold, and Table 2

provides statistics including climatological frequency of

RI for each threshold, BS andBSS values, the number of

predictors used, and the number of cases for each in-

tensification threshold. BSS values decrease with in-

creasing rates of intensity change and forecast difficulty.

The following set of eight predictors is used to make

forecasts for RI25, RI30, and RI35 intensification rates:

VMAX, DV, GSHR, OHC, PC50, SDO, potential in-

tensification (POT), and DIVC (see Table 2). Forecasts

for RI40 make use of the same predictors, save the PC50

predictor. In this case, PC60, the colder pixel count

predictor, replaces PC50. The remaining intensification

thresholds, RI45, RI55, and RI70, use the same pre-

dictors as RI40 with the addition of the inner-core

predictor RMNT.

Figure 1 shows the normalized (by their standard

deviations) discriminant function weights [i.e., vector a

in (2)] used for each intensification threshold; 24-, 36-,

and 48-h lead times in blue, green, and red hues, re-

spectively. The first observation with respect to the

individual predictors is the similarity between the dif-

ferent intensification threshold forecasts. Static pre-

dictors tend to become less important for the longer lead

times, especially the pixel counts, PC50 and PC60, and

the initial intensity. Forecast conditions for GSHR and

DIVC appear to become more important as lead time

increases, while OHC contributions are remarkably

consistent among the thresholds. It is also important to

note that VMAX and POT predictors appear to be in-

versely related to each other. In the absence of VMAX,

one would expect POT to be positively correlated with

RI, but in Fig. 1, we see the opposite. Upon further in-

spection, we found a much better discrimination when

we used both of these variables despite their collinearity.

Other that the POT coefficients, the others make sense

physically with lower initial intensity (VMAX), vertical

TABLE 2. Statistics associated with the LDA models for various intensity change thresholds.

Intensification threshold Climatological frequency (%) BS BSS No. of predictors No. of cases

RI25 18.8 1162.8 23.8 8 5447

RI30 13.0 890.4 21.1 8 5396

RI35 9.3 681.0 19.4 8 5301

RI40 6.5 519.7 15.0 8 5211

RI45 12.3 871.4 19.5 9 4432

RI55 7.4 576.4 15.8 9 4166

RI70 7.4 594.7 13.0 9 3290
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wind shear (GSHR), convective variability (SDO), and

smaller inner-core conditions (RMNT) and recent in-

tensification (DV), higher OHC, DIVC, and more deep

convection (PC50, PC60) being favorable for rapid in-

tensification events. It is noteworthy that when VMAX

is not used as a predictor, the POT coefficient has a

positive sign, further suggesting that the negative POT

coefficient is due to collinearity.

b. Logistic regression-based models

As described in section 2, we used logistic regression

to create probabilistic forecast modes for the intensity

change thresholds. For the development of these

models, we used the same potential predictors (Table 1),

but here we seek to minimize the deviance (i.e., maxi-

mize the deviance explained) for each intensity change

threshold. Table 3 presents the number of predictors,

the deviance explained, and the BSS for each intensity

change threshold. These statistics show that these

models consistently explain about 24%–29% of the de-

viance using between 8 and 10 predictors and dependent

BSSs that are just a little bit larger than the LDA-based

models. Table 4 shows the predictors used in each

model. It is interesting to note that the static predictors

DV, PC50, and RMNT, and time-varying predictors

GSHR andOHC, are selected for every lead time. In the

LRE-based models, the importance of the SDO pre-

dictor is reduced compared to the LDAmodel. Also, the

LRE predictor selection included FR5 (TC size) as a

predictor for many of the lead times while it was not for

the LDAmodel. RHMD and TADV become important

specifically for theRI70 forecasts in the LREmodel, and

the reasons for this and other predictive relationships

are now explored.

Since the coefficients of the logistic regression have

essentially the same convention and meaning as linear

regression coefficients, we show the normalized co-

efficients for these models in Fig. 2. The positively cor-

related RHMD and negatively correlated TADV that

are important specifically for the 48-h RI70 forecasts

appear on the right in Fig. 2. These are likely related to

extratropical transition cases. Positive temperature ad-

vection and decreased humidity could both be effects

from an approaching midlatitude trough, and so should

suppress RI. As is the case for LDA, the LRE predictors

VMAX and POT are covariant. And as is the case with

the LDA, removing either predictor significantly in-

creased the deviance and decreased the percent de-

viance explained. This covariance between VMAX and

FIG. 1. Normalized discriminant function coefficients for LDA models of RI25, RI30, RI35,

and RI40 (blue hues); RI45 and RI55 (green hues); and RI70 (red). Predictors, which are listed

just under the y 5 0 line, are described in Table 1.

TABLE 3. Number of predictors and percentage deviance

explained by dependent logistic regressions for the intensification

thresholds used in this study. BSSs are also provided for comparison

with LDA-based models in the column labeled BSS.

Intensity

change

threshold

No. of

predictors

Percentage deviance

explained BSS

RI25 10 27 26.5

RI30 8 28 24.4

RI35 9 29 21.4

RI40 9 28 22.2

RI45 10 26 21.5

RI55 9 28 18.0

RI70 9 24 12.4
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POT causes a nonphysical coefficient sign on the

VMAXpredictor. Similarly, if POT is removed from the

model, the sign of the VMAX coefficient becomes nega-

tive and physically consistent. The remaining predictors all

have physically consistent sign conventions. Similar to the

LDA results, the time-averaged environmental predictors

generally become more important for longer forecasts

(e.g., RI70) and the static predictors exert less influence.

Both TC size (FR5) and inner-core size (RMNT) make

significant contributions in most models, suggesting that

smaller storms and those with the coldest brightness tem-

peratures near the center are more likely to be rapid in-

tensifiers. The result that smaller TC sizes are favorable

for rapid deepening is consistent with the work of

Weatherford (1989), who found that rapid deepeners

started with higher central pressures [smaller TCs gener-

ally have higher central pressures; see Knaff and Zehr

(2007), Courtney and Knaff (2009), and Chavas et al.

(2017)]. It is also consistent with the inner/outer convec-

tion ratio predictor described in Mundell (1990) that

measures the concentration of convection in the 08–28
range (pixels colder than 2708C) relative to the 28–68
range (pixels colder than 2608C). The finding that RI

favors smaller inner-core convective rings also agrees with

results obtained by Xu and Wang (2015) and Carrasco

et al. (2014). It is also worth mentioning that there is no

advantage to using PC60 in any of the equations. It is also

clear that convective vigor is more important as the in-

tensification threshold/rate increases in the LRE models.

This is different from coefficientweights found in theLDA

models. Also unlike the LDA models, there are the rela-

tively small or zero weights for the SDO predictor.

The differences in weights and predictors in the LDA

and LRE models suggest that the results of these two

methods may be different. This difference implies some

independence in themethods, making them ideal for use

in a consensus forecast. Consensus forecasts, averages of

forecasts from more than one method, have been shown

to yield improvements over individual forecasts in a

variety of fields varying from economics (Bates and

Granger 1969) to investment decisions (Jones 2014) to

sensible weather (Sanders 1973) to political elections

(Graefe et al. 2014). Furthermore, these studies all in-

dicate that the degree of independence among consen-

sus members is an important factor when combining

forecasts, contributing to forecast improvements (e.g.,

Sampson et al. 2008, their appendix B). With the goal of

creating the most skillful forecasts and useful guidance

for rapid intensification, the next section discusses the

preprocessing and combining of the LDA- and LRE-

based models and the creation of deterministic intensity

forecasts.

TABLE 4. Listing of the predictors used in LRE models for each

intensification threshold and eachmodel. The symbolO is for LDA

and X is for LRE models.

Predictor RI25 RI30 RI35 RI40 RI45 RI55 RI70

VMAX O, X O, X O, X O, X O, X O, X O

DV O, X O, X O, X O, X O, X O, X O, X

GSHR O, X O, X O, X O, X O, X O, X O, X

OHC O, X O, X O, X O, X O, X O, X O, X

PC50 O, X O, X O, X X X X X

PC60 O O O O

SDO O, X O, X O O O, X O O

POT O, X O, X O, X O, X O X O, X O, X

DIVC O, X O O, X O, X O, X O, X O, X

FR5 X X X X X

RMNT X X X O, X X O, X O, X

RHMD X

TADV X

FIG. 2. As in Fig. 1, but for LRE.
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c. Preprocessing and combining forecasts and
deterministic forecasts

The LDA- and LRE-based models described above

provide probabilistic RI forecasts for distinct in-

tensification thresholds and lead times. The models use

slightly different predictors and therefore exhibit some

degree of independence. As a result, the RI model

forecasts can occasionally produce probabilities that are

inconsistent; that is, a higher RI threshold (e.g., RI35)

may have a higher probability than the lower RI

thresholds for that lead time (RI25 and RI30). In such

cases, probabilities of the lower RI thresholds are

assigned the probability of the higher RI threshold. In

our example above, the probabilities associated with

RI25 and RI30 are assigned the RI35 probability. This

consistency check among RI thresholds is performed for

both 24- and 36-h forecasts, and for each forecast

methodology (LDA and LRE) independently. Follow-

ing the consistency check, we use probabilities from the

two forecast methodologies for each intensification

threshold to create an equally weighted average (CON).

Traditionally the rapid TC intensification forecast

problem led to categorical/binary (Mundell 1990) or

probabilistic (i.e., Kaplan and DeMaria 2003) forecasts.

Despite the reasoning for this decision, forecasters

are still required to provide a deterministic forecast

of intensity. Intensity guidance has been improving

(DeMaria et al. 2007, 2014) in terms of mean absolute

error (MAE), but intensity forecast verification shows

that most models have low biases, especially in RI cases

(Kaplan et al. 2015). To address the negative biases in RI

forecasts, Sampson et al. (2011) demonstrated a method

of providing deterministic intensity forecasts based on

RI forecast probabilities. In this method, threshold

values of the probabilistic forecast trigger deterministic

forecasts for the valid forecast lead time. For instance,

when the RI35 forecast exceeds the threshold proba-

bility, the algorithm generates a 12-hourly deterministic

forecast of 35 kt in 24 h starting with the observed in-

tensity at t5 0 and ending 24 h later with an intensity of

the initial intensity plus 35 kt. These deterministic

forecasts are then added to the operational intensity

consensus forecast at JTWC, which is the most skillful

intensity guidance (DeMaria et al. 2014). Both mean

errors and biases are smaller when the intensity forecast

aid contains deterministic RI aids (Sampson et al. 2011).

The threshold probability for triggering rapid aids is

determined using past forecasts. For our purposes, and

based on independent CON forecasts, we found the

threshold of ;40% 6 10% for all of the intensification

thresholds. For this reason, the 40% probability triggers

deterministic rapid intensification forecast aids for RI25,

FIG. 3. Examples of deterministic RI forecasts triggered during

Typhoon Talim (wp202017) vs the working best-track intensities.

Deterministic forecasts are shown for (top) RI25, (middle) RI35,

and (bottom) RI45. These forecasts were produced in real time at

JTWC, and graphics represent how these are displayed in ATCF.
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RI30, RI35, RI40, RI45, RI55, and RI70 based on the

CON forecast probabilities. Only the deterministic

member with the highest intensification rate for each

lead time is triggered. So conceivably, for one consensus

forecast, three deterministic RI members could be

added, one each for 24-, 36-, and 48-h leads. Figure 3

shows an example for Typhoon Talim (wp202017) for

the thresholds RI25, RI35, and RI45 at the times they

were triggered, capturing the periods of time whenmore

rapid intensity changes were occurring. Note this was

the first TC captured after these aids became available in

operations at JTWC, and they represent an operational

forecast.

Above, we described probabilistic rapid intensifica-

tion aids using LDA and LRE methods for seven in-

tensification thresholds (RI25, RI30, RI35, RI40, RI45,

RI55, and RI70), how a simple consensus (CON) is

formed, and how CON is used to trigger deterministic

forecast members that are used by JTWC’s operational

intensity consensus guidance tool. In the next section,

we discuss the independent verification of LDA, LRE,

and CON forecasts.

4. Independent verification

To evaluate the performance of the models described

in section 3, we now present verification statistics based

on almost two years of independent forecasts produced

as part of the vetting process. Verification data include

all forecasts from the 2016 season and forecasts through

27 October 2017. We present BSSs with the climatology

of the individual intensification thresholds, reliability,

and the verification of the impact of the deterministic

rapid intensification members triggered by the proba-

bilistic models.

Before presenting statistics, we review the methods.

The BS is simply the mean squared probability error

for a given probabilistic forecast (Murphy 1973). One

can form a skill score referred to as the BSS using (5),

where BSf and BSr are the BS for the forecast method

and for a reference forecast, respectively. In our case,

the reference forecast is the climatological frequency of

the event occurring. The BSS in (5) answers the fol-

lowing question: What is the relative skill of the proba-

bilistic forecast over that of climatology, in terms of

predicting whether an event occurred? The reliability

diagrams (Fig. 4) show observed frequency against

the forecast probability, where the range of forecast

probabilities is divided into 10 bins (e.g., 0%–10%,

10%–20%, 20%–30%, etc.). The sample size in each bin

is also included as a histogram inside the reliability di-

agram. Reliability diagrams answer three questions

graphically including 1) ‘‘reliability,’’ or the agreement

between forecast probability and mean observed fre-

quency; 2) ‘‘sharpness,’’ measuring the tendency to

forecast probabilities near 0 or 1 versus values clustered

around the mean; and 3) ‘‘resolution,’’ or the ability of a

forecast to resolve events into subsets with characteris-

tically different outcomes (CAWCR 2017).

Table 5 shows the independent BSSs (%) for LDA,

LRE, and CON forecasts for each intensification

threshold. This is admittedly a limited sample with less

than two years of verification. Brier skill scores show

that the LRE methods are skillful for all the in-

tensification threshold forecast models developed and

that the LDA method produces skillful forecasts for

only the RI25 intensification threshold model. Consen-

sus forecasts provided skill for all but the RI55 cases.

These results are discouraging for the LDA-based

methods, but suggest that the LRE and CON have de-

livered skillful guidance. Results are subject to change

due to changes in the final 2017 best tracks, particularly

because modification of best-track intensities is likely

when rapid intensity changes occur. Nonetheless, results

are encouraging. Experience also suggests that at least

three independent typhoon seasons are typically needed

to make solid verification inferences.

Figure 4 shows reliability diagrams associated with

our sample of independent forecasts. The LDAmethods

generally produce low-biased reliability (i.e., below the

1:1 line), whereas for the more rare intensification

thresholds LRE results are indicative of high bias. We

wish we could report that the CON is the best method in

this sample, but it appears that the LREs have better

reliability for RI25, RI30, RI35, and RI45. The CON

forecasts generally produce reliabilities in between

those of the LDA and LRE, but this is not always the

case, suggesting that there may be a fair bit of in-

dependence between the LDA and LRE methods (e.g.,

RI45 for higher probabilities and frequencies). In

general, these performance results are similar to rapid

intensification aids in other basins—overconfident and

low biased (e.g., Kaplan et al. 2015). It is also interesting

to note that the 40% CON forecasts in general would

trigger deterministic forecasts for about 15%–25% of

the cases (i.e., overconfidence). We now move on to the

discussion of the impact of using the rapid intensification

deterministic forecasts in the intensity consensus at

JTWC.

The addition of deterministic forecasts of rapid in-

tensification based on the probabilistic models de-

veloped here should help with this issue by reducing the

biases and possibly reducing the MAEs. Results based

on our independent forecast sample used here have

found this to be the case. Using the ideas presented in

Sampson et al. (2011) and a 40% triggering probability
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results in a dramatic decrease in the biases, which shows

reductions in MAEs for 24-, 36-, and 48-h forecasts.

These results represent a significant improvement of

season intensity given the slow rate of change in in-

tensity forecast performance. Table 6 shows the in-

tensity verifications of the intensity consensus with the

deterministic rapid intensification member versus those

without. The 12- and 24-h periods have enough cases to

provide a sense of the performance. The improvement

inMAE at 24h is 0.4 kt, and the expected low bias for RI

cases is reduced by 1.9 kt. The improvements in MAE

are very small or negative, but the reduction in bias is

relatively large. The performance at the 36- and 48-h

periods is promising, especially upon inspection of the

individual cases, but there are too few cases to make any

firm conclusions other than that the biases are reduced.

The improvements in MAE are small for these time

periods, but this is partly a construct of availability. The

RI aids at 24 h are available in 15% of all forecasts. As

discussed in Sampson et al. (2011), raising the threshold

above 40% improves the performance in terms of MAE

and lessens the bias correction, but also reduces the

availability. One can think of the 40% threshold as a

tuning knob: turn it up and you get better MAEs, less

bias correction, and fewer RI forecasts nudging the

consensus; turn it down and you typically increase the

MAE, improve the bias correction, and more often

nudge the consensus. In this work, we turned the knob

up to 50% and noticed the same behavior as discussed in

detail in Sampson et al. (2011, their Fig. 2), and decided

that 40% would also work in this basin. We also felt that

overtuning of this parameter was possible given the

short sample of developmental and independent data.

Tuning this factor is something that can be revisited

once the independent sample increases in size.

5. Summary

This article describes the development of TC rapid

intensification models for the western North Pacific

basin. We chose seven intensification thresholds in-

cluding 25-, 30-, 35-, and 40-kt intensity changes in 24 h;

45- and 55-kt intensity changes in 36 h; and 70-kt in-

tensity changes in 48 h, also referred to as RI25, RI30,

RI35, RI40, RI45, RI55, and RI70, respectively. The

models were developed as probabilistic algorithms fol-

lowing work in other basins and using two methodolo-

gies: linear discriminant analysis (LDA) and logistic

regression (LRE). The years 2000–15 were used in the

development, and then independent testing was per-

formed with the years 2016 and 2017. Equally weighted

averages of the LDA and LRE probabilities are com-

puted (CON), and those are then used to trigger de-

terministic forecasts for each of the seven intensification

thresholds when the probabilities reach 40%.

Dependent LDA models had Brier skill scores rang-

ing from 13% to 24% that indicated they could produce

skillful (relative to climatology) probabilistic forecasts.

Dependent LREmodels, on the other hand, explained a

little less than 30% of the deviance and had slightly

better BSSs than LDA models. In independent tests,

LDA models with the exception of RI25 failed to pro-

duce skillful forecasts, but both LRE and CON pro-

duced skillful probabilistic forecasts. We also examined

TABLE 6. Deterministic intensity consensus evaluation. ICNW is the JTWC operational consensus that includes the deterministic RI

aids while ICNC is the same consensus without RI aids. Cases include only those where at least one of the deterministic RI aids for a given

forecast time was available. The dataset is independent and includes western North Pacific cases from 1 Jan 2016 through 27 Oct 2017.

Quantity/forecasts Statistic 12 h 24 h 36 h 48 h

No. of forecasts 127 125 58 14

ICNW MAE (kt)/bias (kt) 8.9/23.7 13.9/27.2 18.8/212.8 16.5/24.8

ICNC MAE (kt)/bias (kt) 9.0/24.6 14.3/29.1 18.7/214.2 14.4/26.9

Percentage improvement MAE (%)/bias (%) 1.0/19.6 2.7/21.0 20.5/9.9 214.6/30.4

TABLE 5. Probabilistic RI algorithm evaluation. Dataset is independent and includes western North Pacific cases from 1 Jan 2016 through

27 Oct 2017.

RI25 RI30 RI35 RI40 RI45 RI55 RI70

No. of forecasts 678 678 678 678 601 601 531

Percentage of climate 12 13 9 6 12 6 4

Percentage of observed 14 10 7 5 10 6 5

LDA BSS (%) 2 24 232 210 219 227 25

LRE BSS (%) 18 13 10 9 11 4 9

CON BSS (%) 13 8 2 5 4 22 5
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reliability diagrams for independent forecasts of the LDA,

LRE, and CON probabilities. The reliability results are

typical for the rapid intensification problem, resulting in

forecasts that are overconfident (e.g., Kaplan et al.

2015). The overconfidence suggests that the 40%

CON forecast threshold would ultimately trigger de-

terministic forecasts for about 15% of the cases.

In independent verification with the 2016 and 2017

data, the JTWC intensity consensus that includes de-

terministic RI guidance clearly shows reduced negative

biases and somewhat improvedMAEs (i.e., reduction in

RMSE), indicating that some independence and skill are

garnered by including them in the consensus. The de-

terministic RI aids should also give forecasters improved

intensity guidance spread, though this is yet to be shown.

We are also happy to report that experiments running

these aids in JTWC’s operations in the Indian Ocean

and Southern Hemisphere have been rather successful,

anticipating the rapid intensification associated with

TCs they were forecasting and capturing the attention of

forecasters at JTWC and at the Australian Bureau of

Meteorology. Forecasters, and the authors, are still

trying to formulate how to best use these guidance tools

at these centers. Feedback thus far has concerned

overprediction and thus poor performance in cases

when the TC is relatively weak and the creation of de-

terministic forecasts when the TC is making or is ex-

pected to make landfall (J. Courtney and B. Strahl 2018,

personal communications). The exchange of ideas of

how to best use these aids and how to best nudge the

intensity consensus is critical and still ongoing.

Future work will revolve around improving the use of

these relatively new RI aids by providing examples of

how these aids work and their shortcomings to those

making forecasts at JTWC and elsewhere. We will also

continue experimenting with using these aids in the

other TC basins where best tracks are less reliable and

the numbers of cases are relatively few, respectively. It is

likely that a larger independent dataset and more fore-

caster feedback will further elucidate benefits and det-

riments of the new RI models, prompting changes and

improvements in how these aids are used and presented

to forecasters, as well as training on best practices
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