
Solar Irradiance Nowcasting Case Studies near Sacramento

JARED A. LEE, SUE ELLEN HAUPT, AND PEDRO A. JIMÉNEZ

Research Applications Laboratory, National Center for Atmospheric Research,a Boulder, Colorado

MATTHEW A. ROGERS AND STEVEN D. MILLER

Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

TYLER C. MCCANDLESS

Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 12 May 2016, in final form 27 September 2016)

ABSTRACT

TheSun4Cast solar power forecasting system, designed to predict solar irradiance and power generation at solar

farms, is composedof several componentmodels operating on both the nowcasting (0–6 h) andday-ahead forecast

horizons. The different nowcasting models include a statistical forecasting model (StatCast), two satellite-based

forecasting models [the Cooperative Institute for Research in the Atmosphere Nowcast (CIRACast) and the

Multisensor Advection-Diffusion Nowcast (MADCast)], and a numerical weather prediction model (WRF-

Solar). It is important to better understand and assess the strengths andweaknesses of these short-rangemodels to

facilitate further improvements. To that end, each of these models, including fourWRF-Solar configurations, was

evaluated for four case days in April 2014. For each model, the 15-min average predicted global horizontal

irradiance (GHI) was compared with GHI observations from a network of seven pyranometers operated by the

Sacramento Municipal Utility District (SMUD) in California. Each case day represents a canonical sky-cover

regime for the SMUD region and thus represents different modeling challenges. The analysis found that each of

the nowcastingmodels performbetter orworse for particular lead times andweather situations. StatCast performs

best in clear skies and for 0–1-h forecasts; CIRACast and MADCast perform reasonably well when cloud fields

are not rapidly growing or dissipating; and WRF-Solar, when configured with a high-spatial-resolution aerosol

climatology and a shallow cumulus parameterization, generally performs well in all situations. Further research is

needed to develop an optimal dynamic blending technique that provides a single best forecast to energy utility

operators.

1. Introduction

Installed solar energy capacity is steadily increasing

both around the nation and around the world. As a

weather-dependent, variable resource, energy utility

and independent system operators (ISOs) require ac-

curate forecasts of the solar power availability to con-

tinually balance supply and demand on the electrical

grid. Accurate forecasts allow grid operators to optimize

unit commitment and minimize the need for running

baseline or spinning-reserve fossil fuel plants when

unnecessary, which ultimately saves ratepayers money

(Marquis et al. 2011; Mahoney et al. 2012) and benefits

the environment by reducing carbon dioxide (CO2)

emissions as well as those of other pollutants. Grid oper-

ators need these forecasts on time horizons from minutes

and hours ahead to several days ahead (Tuohy et al. 2015).

On clear days, the global horizontal irradiance (GHI),

and hence the power generated by a given farm, can be

calculated with relative ease. When clouds are present,

however, GHI and power predictions become signifi-

cantly more difficult. Important parameters include

cloud-top height and geometric thickness, the solar ge-

ometry, and the cloud optical properties that determine

transmittance and downwelling solar irradiance reach-

ing the surface. Aerosol and water vapor concentrations

also attenuate irradiance andmust be properly accounted
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for, especially because many types of aerosols function as

cloud condensation nuclei or ice condensation nuclei; this

is the aerosol indirect effect. Changes in a cloud field that

shadows a solar panel array can cause significant ramps

(rapid changes) in GHI, and therefore energy generated,

in a matter of seconds to minutes. Reducing forecast er-

rors in the timing and magnitude of these ramps is a

primary goal of solar power forecasting. The regionally

divided nature of the current U.S. electric grid and

relatively small load balancing areas make ramp events

even more crucial to predict accurately (e.g., MacDonald

and Clack et al. 2016).

There are various techniques available to make

nowcasts (short-range intraday forecasts on time scales

of 0–6 h) of GHI. The first, and simplest, technique is a

‘‘smart persistence’’ forecast. Smart persistence fore-

casts begin with themost recent observations of GHI (or

clearness index, which is the ratio of ground-level GHI

to top-of-atmosphere GHI) and integrate them forward

in time, accounting for changing solar zenith angle and

the associated transmission adjustment. Particularly for

forecast horizons of 30min or less, GHI persistence

forecasts are difficult to beat statistically (e.g., Perez

et al. 2010, 2013; McCandless et al. 2016a).

A second technique is applying statistical machine

learning algorithms to a large training dataset and the

few most recent GHI observations. When properly

trained and tuned, these methods can outperform

persistence by leveraging historical observations,

though the value of these predictions begins to wane

after about 2–3h (e.g., McCandless et al. 2015, 2016a,b).

Diagne et al. (2013) and Inman et al. (2013) both provide

FIG. 1. Map of the locations of the SMUD pyranometers (colored ‘‘pins’’) and nearby METAR sites (colored diamonds).

TABLE 1. Weights and threshold values for adjacent pixel group

assignment in CIRACast.

Parameter Threshold value Effective weight

Same cloud type — 0.35

Similar cloud type — 0.25

Change in cloud-top height 2–3 km 0.30

Change in effective radius 5–10mm 0.05

Change in cloud optical depth 5–10 0.05
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helpful overviews of recent developments in a multi-

tude of solar energy forecasting techniques, not just

with machine learning techniques, but also the other

general techniques discussed below.

A third technique can be broadly defined as cloud

tracking and cloud advection. Total-sky imagers (TSIs)

and other ground-based cameras are used to identify

and track clouds over a local area, though their forecast

horizon is generally limited to a few minutes (Chow

et al. 2011; Huang et al. 2013; Peng et al. 2015; Urquhart

et al. 2015). Satellite imagery can also be used to iden-

tify cloud features and advect them based on either

recent cloud motion or the wind field of a numerical

weather prediction (NWP) model (Miller et al. 2011;

Auligné 2014a,b; Descombes et al. 2014; Rogers et al.

2015). Satellite-based cloud advection methods can

provide forecasts several hours out over a wide area

but can experience difficulties with orographic clouds,

TABLE 2. The 550-nm AOD values at 1800 UTC on each case

day from the MERRAero dataset at the grid point nearest to

Sacramento (38.58N, 121.258W).

Case AOD

1 (17 Apr 2014) 0.115

2 (13 Apr 2014) 0.104

3 (22 Apr 2014) 0.072

4 (25 Apr 2014) 0.218

FIG. 2.GOES-15 visible (0.65mm) satellite imagery during case 1, at (a) 1500, (b) 1800, (c) 2100, and (d) 0000UTC.

The locations of SMUD sensors 67–73 are indicated by the colors in the legend.
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marine-layer clouds in coastal zones, and other clouds that

rapidly grow or dissipate after forecast initialization.

A fourth technique uses NWPmodel short-term cloud

forecasts directly. NWP models can be applied for ir-

radiance forecasting both on time horizons from min-

utes ahead, if properly initialized, to days ahead. NWP

models generally provide accurate estimates of irradi-

ance in clear-sky conditions, but skill decreases mark-

edly in partly cloudy to cloudy conditions (e.g., Mathiesen

and Kleissl 2011; Perez et al. 2013). This decrease in skill

typically arises because of unresolved or poorly resolved

clouds in the model, and thus overpredictions of GHI

(Lara-Fanego et al. 2012). Improving predictions of

subgrid-scale clouds can also have large impacts on

cloud–radiation feedbacks, with a commensurate im-

provement to GHI predictions (Alapaty et al. 2012;

Deng et al. 2014; Jiménez et al. 2016b). Aerosol–

radiation feedbacks should also be accounted for to

improve GHI forecasts from NWP models, particularly

in clear-sky conditions (Ruiz-Arias et al. 2014; Jiménez
et al. 2016a).

In this study, we examine several different solar irra-

diance forecasting techniques for four case days for the

region surrounding Sacramento, California. These four

case days represent typical cloud cover regimes of the

region, and thus are a good test of GHI prediction sys-

tems.We compare 15-min averageGHI predictions with

observations from seven pyranometers owned and op-

erated by the Sacramento Municipal Utility District

(SMUD). A map indicating the locations of these pyr-

anometers and nearby METAR sites appears as Fig. 1.

Results indicate that each forecast system has its own

strengths and weaknesses in the various regimes, times

of day, and forecast lead times.

The paper is organized as follows. Section 2 describes

the Sun4Cast forecasting system, the component models

of which make up our forecast techniques. Section 3

briefly describes the four case days. Results are pre-

sented in section 4, and section 5 summarizes and con-

cludes the study.

2. The Sun4Cast system

The Sun4Cast (there is a registered trademark ap-

plication pending for this model) solar power fore-

casting system (Haupt 2013; Haupt et al. 2016; Haupt

and Kosović 2016; Jiménez et al. 2016a) is composed

of a nowcasting system that predicts 15-min average

GHI out to 6 h and the Dynamic Integrated Forecast

(DICast; DICast is a registered trademark) system

(Mahoney et al. 2012) that blends NWP forecasts for

hourly intervals out to 72 h. The aim of the system is to

provide the most appropriate forecast technology for

each time scale to accurately forecast power at par-

ticular solar installations. To do this requires leverag-

ing both physical–dynamical models and artificial

intelligence techniques. At the shortest time scales, the

system employs data from TSIs to observe clouds from

the ground and project their location over the following

15min (TSICast) (Peng et al. 2015). StatCast (described

below) blends surface pyranometer data with a variety of

meteorological observations in generating artificial

intelligence models to predict from 15min out to 3 h.

The version assessed here is StatCast-Cubist. The other

nowcasting systems [the Cooperative Institute for Re-

search in the Atmosphere Nowcast (CIRACast), the

WRF-Solar Model, and the Multisensor Advection-

Diffusion Nowcast (MADCast)] are described in more

detail below and provide 15-min average forecasts out

to 6 h. Beyond the nowcast horizon, the system lever-

ages NWP forecasts from national centers, as well as

local runs of the WRF-Solar system, to optimize the

blend for each solar plant. The nowcast and DICast

system forecasts are merged to provide seamless irra-

diance predictions. The system includes appropriate

conversions between the GHI observed and the plane

of array component of the irradiance that becomes the

important component for most systems [although the

concentrated solar plants utilize only the direct normal

irradiance (DNI) component of the radiation].

Once the irradiance forecast is finalized, it must be

converted to power. The irradiance-to-power conversion

FIG. 3. Time series of 15-min-average GHI recorded by SMUD

sensors 67–73 for case 1. The color for each sensor is indicated in

the legend.

88 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56



algorithm consists of a machine learning model based

on regression trees. The power forecast is further

tuned using an analog ensemble (AnEn; DelleMonache

et al. 2011, 2013; Alessandrini et al. 2015) approach that

also provides uncertainty quantification, resulting in a

tuned probabilistic forecast. The results are verified

and validated with user-defined metrics and the power

forecasts are translated to the end user at the utilities

and ISOs to use in real-time decision-making. Our

research team is working with those end users to

assess the value of these probabilistic power forecasts.

Because of the volume, variety, and complexity of the

data involved, operationalizing the Sun4Cast system

is a ‘‘big data’’ problem (Haupt and Kosović 2015,

2016).

a. StatCast-Cubist

McCandless et al. (2015) developed StatCast-Cubist

as a technique to forecast short-term (0–3h) irradiance

at points where historical data are available. The artifi-

cial intelligence technique used for statistical short-

range solar irradiance forecasting in StatCast-Cubist is

the model tree, or Cubist model, which is the M5 model

tree from Quinlan (1992) formatted as a set of rules

(Kuhn et al. 2012). The model tree uses an algorithm to

search for a rule that explains part of the training

FIG. 4. The 15-min GHI predictions (colors) and observations (black) for case 1, averaged over the SMUD 67–73

sensors, for (a) StatCast, (b) CIRACast, (c) MADCast, and (d) WRF-Solar Aero1ShCu. The error bars for select

time series denote 61 std dev across the SMUD sensors.
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instances, separates these instances, and continues this

process until no instances remain (Quinlan 1996). The

algorithm organizes the tree into a set of rules and

defines a multivariate linear model at each leaf to pre-

dict the continuousGHI values. Quinlan (1987a,b, 1992)

provides a detailed explanation of this process. The

process ‘‘grows’’ a tree that includes multivariate linear

regression models at its nodes and leaves. The final

prediction is a weighted average of the multivariate

linear regression equations at each node in the tree

down to the final leaf (Kuhn et al. 2012). This weighted

averaging is accomplished via a smoothing process that

adjusts the predicted value from the leaf up to the root to

capture the skill in the predicted values at nodes along

the tree down to the final leaf, which prevents errors due

to overfitting the training data.

The first step in implementing StatCast-Cubist was to

build the dataset for training the model. The model re-

quired two sets of inputs: GHI observations from SMUD

pyranometers and weather observations from the nearest

METAR sites (KSAC, KSMF, and KMHR near Sacra-

mento; see Fig. 1). One hour of 1-min-resolution irradi-

ance observations from the SMUD observational

network were averaged into four 15-min intervals leading

up to the forecast initialization time. METAR observa-

tions for the most recent available observations (i.e., the

hour preceding forecast initialization) were required for

the three observational sites nearest to the point forecast

FIG. 5. As in Fig. 4, but for (a) WRF-Solar Baseline, (b) WRF-Solar Aero, (c) WRF-Solar ShCU, and (d)

WRF-Solar Aero1ShCu.
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location. The weather variables used were temperature,

dewpoint temperature, cloud cover, categorical pre-

cipitation (0 or 1), observed precipitation amount, and

wind speed, which were selected to quantify the atmo-

spheric state of the region at the time of the forecast.

Additionally, the hour of the day (UTC) and yearday

were inputs to the model, allowing the algorithm to

model any seasonal and daily patterns.

The StatCast-Cubist model was trained with tenfold

cross-validation on data for all daylight hours (i.e., both

METARs and GHI observations.25Wm22 at forecast

initialization time) for the period from 25 January to

28 May 2014, excluding the four case study days. We

trained 12 individual StatCast-Cubist models in-

dependently to predict each of the 12 forecast lead times

from 15min out to 180min. Each of the 12 models had

the same predictors, but each model had different pre-

dictands, with each model’s predictands being historical

GHI observations at one of the 12 specified forecast lead

times. This training configuration allowed the StatCast-

Cubist model to correct for any inherent systematic

biases for those lead times.

b. CIRACast

The CIRACast forecast algorithm (Miller et al. 2012;

Rogers et al. 2015) offers a satellite-derived short-term

FIG. 6. Normalized (a),(c) MEs and (b),(d) RMSEs for case 1, as a function of (top) forecast lead time and

(bottom) initialization time. Errors were calculated only when the SMUD network-average GHI was at least

50Wm22. Open diamonds denote the 61 std dev range. Colors are described in the legends.
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prediction of GHI on a time scale of 5min, providing

forecasted GHI from the initial observation period out

to 3 h from the time of observation. The method utilizes

satellite retrievals of cloud-top properties derived from the

NOAAPathfinderAtmospheres–Extended (PATMOS-x;

Heidinger et al. 2014) with an account for satellite viewing

parallax displacements and 3D shadow casting for the

current solar geometry. To yield a 15-min average GHI

prediction, the arithmetic mean of three consecutive

GHI forecasts covering the 15-min period of interest is

calculated.

The CIRACast algorithm is predicated on the

satellite-observed cloud field being projected forward in

time using steering winds interpolated in space and time

from NWP output. Retrieved cloud properties, including

cloud-top height, cloud optical depth, and other physical

properties taken from the PATMOS-x retrieval suite are

used in the context of a similarity matrix (Rogers et al.

2015) to identify pixels belonging to unique cloud fea-

tures using empirically determined similarity functions

(Table 1). Placing these similar pixels into unique cloud

groups, the identified cloud features are then advected

forward in time using the centroid of each cloud group,

and the identified cloud-top height for that centroid

as the corresponding steering wind level from NWP

guidance. Group trajectories utilize wind guidance in-

terpolated in time from successive forecast periods

within theNWP guidance rather than relying on a single,

‘‘frozen’’ vector taken from the initial NWPwind vector.

As cloud groups are advected forward in time, the cloud

FIG. 7. As in Fig. 2, but for case 2.
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properties for each group at each time step are saved as

input data for a standalone version of the Satellite Al-

gorithm for Surface Radiation Budget (SASRAB) ra-

diative transfer code (Pinker and Laszlo 1992) employed

within PATMOS-x to compute surface irradiance; spe-

cifically, cloud properties such as cloud-top height and

cloud-cleared surface reflectivity (from a running two-

week average from satellite observations) are used to

account for parallax (a function of satellite viewing ge-

ometry and cloud-top height) and cloud shadow in-

formation (computed from sun angle and cloud-top

height information) along with changes in steering

wind velocity taken from the NWP guidance. The re-

sulting calculations of GHI, DNI, and diffuse irradi-

ance are then mapped to the original surface grid,

allowing for direct forecasting as well as ingestion into

the Sun4Cast system.

Observations from GOES-West and GOES-East are

ingested, utilizing the conterminous United States

(CONUS) scans from each satellite to define a forecast

‘‘box’’ large enough to contain the forecast locations

and a sufficient area surrounding the locations to allow

for several hours of translation within the advective

scheme. Forecast lag time for each run amounted to

approximately 15min from the beginning of the satellite

scan to the final advection-derived forecast.

c. MADCast

MADCast is a new model designed for the analysis

and short-term forecasting of clouds (Auligné 2014a,b;

Descombes et al. 2014). The cloud analysis is based on

retrievals of multiple infrared sensors using the multi-

variate minimum residual (MMR) scheme (Auligné
2014a,b). MMR is implemented in the Gridpoint Sta-

tistical Interpolation analysis system (GSI; Kleist et al.

2009) and provides three-dimensional cloud fields.

These cloud fields are used to initialize a modified ver-

sion of the WRF Model (Skamarock et al. 2008). The

model runs with simplified physics that allows for the

faster speeds necessary to meet the needs of nowcasting

applications. Finally, the predicted cloud field is used to

diagnose the surface irradiance, completing the short-

term forecast. The interested reader is referred to

Descombes et al. (2014) for a complete description of

this nowcasting component.

MADCast simulated the cloud field in a 9-km grid

over the CONUS. The initial and boundary conditions

were provided by the Rapid Refresh (RAP; Benjamin

et al. 2016) analysis data from NCEP. The MADCast

simulations are 6h long with the lateral boundary con-

ditions updated every 3 h. Three simulations were per-

formed for each case study with the model initialized

at 1200, 1500, and 1800 UTC. The model output was

recorded every 15min. The aerosol direct effect was

represented using a 48 latitude 3 58 longitude monthly

climatology from Tegen et al. (1997), which is also the

climatology used by the ECMWF global NWP model.

Although MADCast is designed to assimilate irradi-

ances from different satellite instruments, the forecasts

herein presented only assimilated GOES-East irradi-

ances [from channels 4 (10.7mm) and 5 (12.0mm),

available at 30-min intervals] to analyze the potential of

imagers on board geostationary satellites for solar irra-

diance forecasting.

d. WRF-Solar

WRF-Solar is a specific configuration of the WRF

Model designed for solar energy applications (Jiménez
et al. 2016a,b). Model developments include 1) de-

velopments to internally diagnose atmospheric variables

for solar energy applications; 2) a flexible representation

of aerosol–radiation feedbacks; 3) incorporation of

cloud–aerosol feedbacks; and 4) enhanced representa-

tion of the cloud–radiation feedbacks, chiefly through

the introduction of a new shallow cumulus parameteri-

zation scheme (Deng et al. 2014).

For these case studies, we ran four versions of WRF-

Solar. The first experiment, ‘‘Baseline,’’ only activated

the solar augmentations introduced in support of solar

energy applications, including an improved solar track-

ing algorithm and updates in the modeled surface irra-

diances at every time step of the model integration. The

second experiment, ‘‘Aero,’’ activated the aerosol direct

FIG. 8. As in Fig. 3, but for case 2.
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effect using a high-resolution aerosol monthly clima-

tology over CONUS (0.058 3 0.058) generated from

aerosol climatological data provided by Solar Consul-

ting Services, as described in Jiménez et al. (2016a). The
third WRF-Solar experiment, ‘‘ShCu,’’ activated the

Deng et al. (2014) shallow cumulus parameterization

scheme to represent radiative effects of unresolved deep

and shallow convective clouds (and thus, more precisely,

it is a mass-flux parameterization scheme). The last

WRF-Solar experiment, ‘‘Aero1ShCu,’’ used both the

higher-resolution climatological aerosol data and the

Deng shallow cumulus scheme.

The four WRF-Solar experiments were run in an

analogous way to the MADCast forecasts. The WRF

domain had a horizontal grid spacing of 9 km over

CONUS, and RAP analysis data were used as initial and

boundary conditions of the 6-h simulations. The model

was run three times per case study, initialized at 1200,

1500, and 1800 UTC, and the irradiances were recorded

every 15min.

3. Case descriptions

With the aid of archived METAR sky-cover obser-

vations from the Sacramento Executive Airport

(KSAC) and GOES-15/GOES-West visible (0.65mm)

imagery, we identified four days in April 2014 that ex-

hibited typical cloud cover regimes over the Sacramento

FIG. 9. As in Fig. 4, but for case 2.
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area. Each of these four case days presents a unique

challenge for models:

1) Case 1 (17 April 2014): This day had mostly clear

skies around Sacramento, with only a few small,

isolated clouds that briefly moved over individual

SMUD pyranometers during the middle of the day.

This is essentially a control case. Extensive cloud

cover in northern and central/southern California

made it a challenging clear day to model, however.

2) Case 2 (13 April 2014): This day had a low deck of

marine stratocumulus in the Sacramento area in the

morning. By about 1900 UTC [1200 Pacific daylight

time (PDT)], the stratocumulus had burned off, leaving

clear skies over each SMUD pyranometer. Predictions

of the development, advection, and burn-off of ma-

rine stratocumulus clouds are challenging, and are of

acute interest to utility operators on the West Coast.

3) Case 3 (22 April 2014): This day had mostly clear

skies in the early morning, before a field of small

cumulus clouds formed over the Sacramento area

around 1800 UTC (1100 PDT). The mix of clouds

and sun remained through sunset. This case is a

challenging one for any model, as the field of fair-

weather cumulus clouds was essentially stochastic.

4) Case 4 (25 April 2014): This day had mostly overcast,

rainy conditions from sunrise to sunset, and 0.42 in.

(10.67mm) of rain fell at KSAC. From theGOES-15

FIG. 10. As in Fig. 5, but for case 2.
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imagery it was apparent that occasionally thinner

cloudsmoved over some of the SMUDpyranometers

throughout the day. This case is another tough test

for the models.

The 550-nm aerosol optical depth (AOD) values from

1800 UTC (1100 PDT) on each case day near Sacramento

are specified in Table 2. These data derive from the

Modern-Era Retrospective Analysis for Research and Ap-

plications Aerosol Reanalysis (MERRAero) (Rienecker

et al. 2011; Buchard et al. 2016). The 550-nm AOD values

specified by the MERRAero dataset are similar to typical

AOD values observed over several years in California’s

San Joaquin Valley (Lewis et al. 2010), so these are not

abnormally clean or polluted–dusty days for the region.

4. Results

a. Case 1

Mostly clear skies dominated the Sacramento region

sky conditions on 17 April 2014, though there was ample

cloudiness to the northwest and to the south of Sacra-

mento throughout the day, as seen in the fourGOES-15

(GOES-West) visible satellite images shown in Fig. 2,

valid at 1500, 1800, 2100, and 0000 UTC. As the day

progressed, clouds advanced toward Sacramento from

both areas. The SMUD pyranometers in general also

exhibited a clear-sky profile for GHI (Fig. 3), with little

variability across the network. Network-averaged GHI

observations and forecasts for the various models are

FIG. 11. As in Fig. 6, but for case 2.
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shown in Figs. 4 and 5, and the network-averaged, nor-

malized GHI mean (bias) errors (ME) and root-mean-

square errors (RMSEs) as a function of both lead time

and initialization time are found in Fig. 6. Normalized

mean absolute errors (MAE) were also calculated, but

they are not shown because they are quite similar to the

RMSE figures and do not materially impact the in-

terpretation of the results.

Note that in Figs. 4a,b, only the lead times out to

60min for StatCast and CIRACast are presented to re-

duce clutter. The remaining panels (Figs. 4c,d and 5)

show the three forecast initialization times (1200, 1500,

and 1800 UTC) for MADCast and WRF-Solar. Error

bars denoting 61 standard deviation across the SMUD

network are always displayed for the observations, but

only for select forecast time series to reduce clutter. The

WRF-Solar Aero1ShCu forecasts are shown in Figs. 4d

and 5d to facilitate easier comparison among the various

forecasts. Additionally, the open diamonds in all four

panels of Fig. 6 denote a range of61 standard deviation

in the normalized errors for each time series. Further-

more, the normalized errors were only calculated for

the times at which the observed average GHI was

$50Wm22 to reduce contamination of the average

scores by inflated normalized errors near sunrise and

sunset, times at which little energy would be generated.

The same plotted quantities, plotting conventions, and

ranges are used for all the cases, except for the nor-

malized errors plots, for which the plotted ranges change

for each case.

FIG. 12. As in Fig. 2, but for case 3.
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Except for MADCast (Fig. 4c), all the forecasting

systems performed well for this day. MADCast, after

performing relatively well for the first few hours during

the 1200 and 1500 UTC runs with average bias errors

generally between21% and26% prior to midmorning,

incorrectly predicted that some of the clouds in the re-

gion would reach the SMUD sites, thus attenuating the

modeled GHI significantly and leading to substantial

underforecasts of 210% to 225% from midmorning

through the afternoon, and average bias errors of

about 215% for the 1800 UTC run (Fig. 6c). This

highlights a limitation of satellite-based techniques,

though CIRACast (Fig. 4b), the other satellite-based

technique here, did not suffer the same issues as

MADCast. On the other hand, CIRACast displayed a

small consistent overforecasting bias of generally

around 4%–7% for all lead times and initialization times

(Fig. 6). This positive GHI bias stems from the param-

eterized aerosol loading in CIRACast being insufficient

for this case day.

This assumption is supported by the WRF-Solar ex-

periments with the default aerosol modeling (Baseline

and ShCu; Figs. 5a,c) having an even larger, consistent

positive GHI bias than CIRACast of generally around

8%–15% for most lead times (the small bump in nor-

malized errors around lead time 150min is caused by the

1200 UTC run forecasting for shortly after sunrise, when

observed GHI is relatively small). Meanwhile, the WRF-

Solar experiments with a representation of the aerosol

direct effect (Aero andAero1ShCu; Figs. 5b,d) yielded a

notably reduced positive GHI bias of around 5%–9% for

most lead times. This is compelling evidence that im-

proved handling of aerosols is necessary for numerical

models to have better clear-sky GHI predictions, which

is a finding consistent with Jiménez et al. (2016a).
The best-performing forecast model on this day was

StatCast (Fig. 4a), which had a mean error from21% to

4% for most lead times (Fig. 6a), and average mean

errors from about 26% to 16% for most initialization

times (Fig. 6c). Note that the StatCast errors for later

initialization times increase markedly in Figs. 6c,d

because of the forecasts heading into the evening,

where small actual errors become much larger normal-

ized errors because of low observed GHI. As StatCast

was trained on actual GHI observations and weather

conditions around the same time, it already accounts

well for the aerosol loading in this region at this time.

This result highlights one of the strengths of statistical

forecasting; provided it is not significantly different from

other days in the training dataset, no direct knowledge

of the local aerosol loading for the current day is needed,

and the observed irradiance on the current day forms an

optimal basis for the prediction.

b. Case 2

An area of marine stratocumulus clouds was wide-

spread across coastal regions of California, and had

infiltrated through the Golden Gate to the Central

Valley around the SMUD region early in the morning of

13 April 2014, as seen in Fig. 7. The stratocumulus

gradually burned off by about 1900 UTC, though not

uniformly over all the sensors, and clear-sky conditions

prevailed the rest of the day (Figs. 7 and 8). Network-

average observations and forecasts are shown in Figs. 9

and 10, and normalized averageGHI forecast errors as a

function of lead time and initialization time are dis-

played in Fig. 11.

The first thing to note about the errors is that each of

the forecast components had large average normalized

errors in the first run of the day (Figs. 11c,d), primarily

because of large relative errors in the very early morn-

ing. This also explains the large increase in normalized

errors at lead time 165min for MADCast and all WRF-

Solar versions (Figs. 11a,b), as the observedGHI did not

reach the 50Wm22 threshold for calculating errors until

165min after the 1200 UTC initialization time.

For the first 90–115min of forecast lead time, StatCast

unquestionably provided the best forecasts, as it had

the lowest errors (Figs. 9a and 11). For these short lead

times, not only did StatCast perform well during

the cloudy morning, but also during the clear skies in

the afternoon, as in case 1. Errors increased steadily at

longer lead times, however, indicating that a longer

training dataset would likely be helpful to capture

FIG. 13. As in Fig. 3, but for case 3.
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additional marine-layer events similar to this one. Once

the skies cleared by late morning, however, the StatCast

forecasts were superb, with average bias errors near 0%

for much of the rest of the day.

CIRACast forecasts for the early morning failed to

capture the marine-layer clouds, but forecasts initialized

later in the morning improved in predicting the cloud-

attenuated GHI for 15–45-min lead times (Fig. 9b). This

short-term improvement for midmorning was likely due

to improved identification of the cloud objects on the

visible satellite data owing to a higher sun angle. How-

ever, even when CIRACast identified the presence of

clouds in the SMUD area at initialization, CIRACast

appeared to advect these stationary clouds out of the area

after about an hour, thereby returning GHI forecasts to

near clear-sky values. Correctly simulating stationary

or terrain-locked clouds remains a difficult problem

for satellite-based forecasts. For the clear skies later in

the day, CIRACast suffered from the same positive

GHI biases that occurred during case 1, but other-

wise performed well, with ME and RMSE generally

,10% for all forecasts initialized after midmorning

(Figs. 11c,d).

MADCast, like CIRACast, predicted insufficient

cloudiness in the morning over the SMUD region, and

so overforecasted GHI in the morning (Fig. 9c). In the

clear-sky conditions, however,MADCast had a negative

GHI bias, unlike any of the other models. This can likely

FIG. 14. As in Fig. 4, but for case 3.
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be primarily attributed to MADCast diffusing and ad-

vecting marine stratocumulus from the northern Cal-

ifornia coast to the Sacramento area, thereby providing a

thin cloud cover in the model over the SMUD sensors,

instead of dissipating the largely stationary clouds by

about midday as was observed. This finding illustrates

that satellite-based methods like MADCast simply can-

not capture formation or dissipation of clouds after

forecast initialization and can also sometimes struggle

handling orographic or other semistationary cloud fea-

tures. And yet, despite these flaws in the forecast,

MADCast had lower errors on average than any of the

WRF-Solar versions for lead times of 150min and beyond

(Figs. 11a,b).

For theWRF-Solar experiments, none of the 1200UTC

runs simulated any clouds, while the 1500 UTC runs

all nearly perfectly handled the marine layer for most

of the morning, except for burning off the stratocu-

mulus about 1–2 h too soon (Fig. 10). The 1800 UTC

runs burned off the clouds at nearly the correct time.

These findings illustrate the tremendous potential

value that NWP can have in tricky forecast situations,

even for nowcasting time scales, though additional

work is needed to identify why the 1200 UTC runs

failed to capture the marine-layer clouds entirely. For

the clear skies later in the day, WRF-Solar forecasts

exhibited similar positive GHI biases that were en-

demic to the case-1 forecasts, with reduced biases

FIG. 15. As in Fig. 5, but for case 3.
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in the Aero and Aero1ShCu experiments (Figs. 10b,d)

relative to the Baseline and ShCu experiments

(Figs. 10a,c).

c. Case 3

Case 3 is a particularly interesting and challenging

case to model because a widespread and long-lasting

field of fair-weather cumulus formed in place over the

SMUD region by about 1800 UTC on 22 April 2014,

after clear skies were present in the morning (Fig. 12).

The immense variability in observed GHI across the

SMUD network throughout the day can be seen in

Fig. 13. For a situation like this, correct predictions of

the extreme variability in the forecast across the

network would be critical to grid operators. GHI

forecasts and observations for StatCast, CIRACast,

MADCast, andWRF-Solar are shown in Figs. 14 and 15.

Normalized forecast errors as a function of lead time and

initialization time appear in Fig. 16.

Figures 14 and 15 indicate that all of the forecast

methods actually performed reasonably well for this

complex and difficult case, though StatCast (Fig. 14a)

and CIRACast (Fig. 14b) generally had an average

positive GHI bias of 25%–40% through the first 60min

of lead time. Later lead times generally had even larger

errors for this case (Fig. 16), which is to be expected in

general, and especially for a case with a highly variable

cloud field that forms in place overhead more or less

FIG. 16. As in Fig. 6, but for case 3.
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stochastically, rather than being advected into the area.

Cases like this are inherently difficult if not impossible

for satellite-based forecasting systems like CIRACast to

capture well.

MADCast, somewhat surprisingly, generally had the

lowest errors overall of any of the forecast modules for

case 3 (Fig. 16), with average bias errors ranging from

0%–30% for most lead times, because its SMUD-

average predictions remained in the middle of the var-

iability (Fig. 14c). The small error bars on theMADCast

predictions are indicative of a smooth cloud field that

was consistent over the entire network at any given

time. So even though the details of the cloud field were

incorrect in MADCast, and even though the vari-

ability was grossly underpredicted, the average GHI

prediction was, on balance, relatively good for this

particular day.

The WRF-Solar runs with the Deng ShCu scheme

turned on (ShCu and Aero1ShCu, Figs. 15c,d) also had

generally improved errors relative to the runs without the

ShCu scheme (Baseline andAero, Figs. 15a,b), illustrating

the benefits of using that scheme to better represent un-

resolved clouds. The underprediction of low clouds in the

Baseline and Aero simulations is consistent with results

from both Cintineo et al. (2014) and Arbizu-Barrena et al.

(2015), which found that WRF tends to underpredict low-

level clouds in particular, regardless of microphysics or

boundary layer parameterization scheme. TheWRF-Solar

ShCu and Aero1ShCu versions had error statistics that

were quite competitive with and sometimes better than

FIG. 17. As in Fig. 2, but for case 4.
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MADCast for this case, with mean errors generally less

than 30% on this challenging day (Fig. 16).

d. Case 4

Skies were overcast throughout 25 April 2014, but not

uniformly overcast, as can be seen in the satellite images in

Fig. 17 every 3h from 1500 to 0000 UTC. The occasional

thinning of the clouds over certain sensors was reflected in

the occasional peaks in observed GHI in Fig. 18, though

observed GHI was quite low most of the day. GHI fore-

casts from the variousmodels are shown in Figs. 19 and 20,

with the normalized forecast errors as a function of lead

time and initialization time displayed in Fig. 21.

StatCast predictions were, on average, generally the

best out to a lead time of 45min (Fig. 19a), but the errors

grew quickly beyond that lead time (Figs. 21a,b). The

short positive trends in GHI as clouds occasionally

thinned appear to have led to StatCast predicting those

thinning trends to continue in many instances, leading to

large errors of.150%at longer lead times.Overcast days

are far less common in Sacramento than clear days, but a

longer training dataset with additional overcast days in-

cluded would likely have led to better StatCast forecasts.

CIRACast predictions initialized early in the morning

(up to 1600 UTC) were among the best forecasts on this

day (Figs. 21c,d).At short lead times (,60min)CIRACast

was also reasonably competitive with the other models

(Figs. 21a,b), but with a marked positive GHI bias in-

dicating that the clouds were not optically thick enough in

the model, and occasional near-clear-sky forecasts for

short periods (Fig. 19b). Errors in the GHI forecast from

CIRACast also grew with time; at lead times beyond

90min, the errors were generally the largest of any of the

models. The satellite loop for that day revealed pockets of

clear sky or thin clouds to the west of Sacramento peri-

odically, which eventually were filled in by other, thicker

clouds before reaching the Sacramento area. It is these

clear pockets that CIRACast detected and predicted

would advect over the SMUD region. As with case 3,

satellite-based forecast methods have extreme difficulty

performing well when the cloud field rapidly develops or

dissipates after initialization.

MADCast did predict cloud cover, and the analyses at

the initial time were not bad, but, like CIRACast, the

cloud cover was not optically thick enough (Fig. 19c).

Also, as in case 3, the variability in the MADCast

forecasts was generally far smaller than the observed

variability, and far smaller than the CIRACast vari-

ability. Even so, it was one of the better forecasts on this

day, from an average error standpoint, though the errors

did grow steadily with lead time (Figs. 21a,b).

The WRF-Solar forecasts without the Deng scheme

(Baseline and Aero, Figs. 20a,b) did a poor job simulating

the clouds through most of the day. Positive GHI biases

were often large because of insufficient cloud coverage

and thickness, and the average errors were frequently the

largest of any model, with average bias errors often ex-

ceeding 200% (Fig. 21). As with case 3, this result is

consistent with the general underprediction of low-level

cloudiness in WRF that was found by Cintineo et al.

(2014) and Arbizu-Barrena et al. (2015). On the other

hand, in the experiments with the Deng shallow cumulus

scheme (ShCu and Aero1ShCu, Figs. 20c,d), the GHI

biases were markedly reduced and even nearly elimi-

nated during the middle of the day. These experiments

generally produced the lowest errors of any model for

case 4, with average bias errors under 75% for the 1500

and 1800 UTC runs (Fig. 21c). Even more so than case 3,

these results for case 4 highlight the vital importance of

simulating unresolved clouds for obtaining good GHI

forecasts.

5. Summary and conclusions

In this study, we compared the GHI forecasts from

several forecast models—StatCast, CIRACast, MADCast,

and four versions ofWRF-Solar—over four case days with

canonical sky-cover regimes for the region of Sacramento,

California. We compared the various forecasts with

observations from seven pyranometers operated by the

Sacramento Municipal Utility District. The four case

days included a clear-sky day, a day with morning

marine-layer stratocumulus followed by clear sky, a day

FIG. 18. As in Fig. 3, but for case 4.
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with a field of fair-weather cumulus forming in place

over the region, and an overcast day.

Statistical forecasting, as accomplished with StatCast-

Cubist, was the best forecast when skies were clear, with

bias errors generally ,5%, because its training dataset

and the observations on that day had already accounted

for attenuation from typical aerosol loading in the area.

Furthermore, there was an abundance of clear days in

the training dataset (64% of the days in the training

dataset had clear skies throughout the daytime period at

KSAC), which benefitted StatCast’s performance for

case 1. For all case days, StatCast also had some of the

lowest errors in the first 45–60min. When clouds were

present, however, GHI forecast errors for longer lead

times increased, unsurprisingly, especially in cases when

trends in GHI reversed themselves due to rapidly

changing cloud cover overhead.

Satellite-based forecasting, as with CIRACast and

MADCast, was also generally good at short lead times

in comparison with the other models but struggled

on days when clouds were rapidly forming, growing,

and decaying after forecast initialization. These types

of situations are a major limitation for satellite-

based forecast models. MADCast generally predicts a

smoother, more diffuse cloud field than does CIRACast,

which sometimes resulted in better mean GHI pre-

dictions across the network for MADCast, but at the

cost of grossly underestimating the GHI variability. On

FIG. 19. As in Fig. 4, but for case 4.
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the clear afternoon of case 2, CIRACast had a positive

GHI bias of a little under 10% because it predicted clear

skies, while MADCast had a negative GHI bias of

about 25% because it advected some thin marine stra-

tocumulus clouds from the coast, even though the ob-

served clouds weremostly stationary and dissipated. For

models that either assimilate or identify cloud features

and then advect those clouds, without including any

other cloud physics in the model, details of how to

handle nearly stationary or terrain-locked clouds are a

vital consideration in many locations.

Numerical weather prediction with WRF-Solar was

shown toprovide rather accurateGHIpredictions for all the

cases studied here, especially when using a high-resolution

aerosol dataset to represent the aerosol direct effect and

when using the Deng shallow cumulus scheme to rep-

resent the radiative effects of unresolved clouds. The

improved aerosol treatment made a small but consistent

and noticeable reduction in GHI errors in clear-sky

conditions. The shallow cumulus scheme led to sub-

stantially reduced GHI errors when cloud cover was

extensive, with errors roughly half as large as WRF-

Solar without the shallow cumulus scheme.

Each of the four case days that we examined revealed

various strengths and weaknesses of the component

Sun4Cast nowcasting systems. At various times of day,

lead times, and sky-cover regimes, different components

do better or worse. This finding reinforces the need to

FIG. 20. As in Fig. 5, but for case 4.
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include all these diverse components in the Sun4Cast

system and also indicates the need to research and

develop a dynamic weighting algorithm to make the

most advantage of the strengths of each system.

This study did not conduct a comprehensive survey of

all possible types of sky-cover situations. One would

expect that NWP models would likely struggle with

GHI predictions on days with new wildfires nearby be-

cause of the suddenly increased aerosol loading, whereas

satellite-based models like CIRACast and MADCast

that could identify and advect the smoke plume would

do better on such days. Statistical learning methods like

StatCast-Cubist, which incorporate themost recent hour

of GHI observations, would also likely make a reason-

able GHI forecast, even if similarly smoky conditions

were not in the training dataset. This is a relevant con-

sideration, especially in the arid western United States

where wildfires are common every summer. Addi-

tionally, on days with a frontal passage and a distinct

synoptic-scale cloud band or cloud field, satellite-based

methods and NWP could be expected to perform well

because of the inclusion of upstream cloud data, perhaps

with some timing errors, while statistical learning

methods may struggle. This further argues for the need

for a diversity of techniques for forecasting GHI and the

resulting power generated by solar plants, whether on a

utility or distributed scale. Amore exhaustive analysis of

the performance of the various forecast components

over a period of several months is available in Haupt

et al. (2016).

FIG. 21. As in Fig. 6, but for case 4.
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Furthermore, in addition to the obvious impact for the

solar energy community, improved irradiance forecasts,

especially in NWPmodels like WRF-Solar, have benefits

for a far wider set of forecast applications. Improving the

irradiance forecasts will improve the surface energy bal-

ance modeling, which will in turn have impacts on ap-

plications ranging from soil and hydrologic modeling, to

atmospheric boundary layer process modeling, to con-

vective initiationmodeling. Thus, continued research and

development to improve irradiance forecasts will benefit

the entire Earth and atmospheric sciences community.
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