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ABSTRACT

It is known that both Dvorak technique and advanced Dvorak technique–derived intensity estimates for

tropical cyclones during extratropical transition are less reliable because the empirical relationships between

cloud patterns and cyclone intensity underlying each technique are primarily tropical in nature and thus less

robust during extratropical transition. However, as direct observations of cyclone intensity during extra-

tropical transition are rare, the precise extent to which such remotely sensed intensity estimates are in error is

uncertain. To address this uncertainty and provide insight into how advanced Dvorak technique–derived

intensity estimates during extratropical transition may be improved, the advanced Dvorak technique is

applied to synthetic satellite imagery derived from 25 numerical simulations of Atlantic basin tropical

cyclones—five cases, five microphysical parameterizations—during extratropical transition. From this, an

internally consistent evaluation between model-derived and advanced Dvorak technique–derived cyclone

intensity estimates is conducted. Intensity estimate error and bias peak at the beginning of extratropical

transition and decline thereafter for maximum sustained surface wind. On average, synthetic advanced

Dvorak technique–derived estimates of maximum sustained surface wind asymptote toward or remain near

their weakest-possible values after extratropical transition begins. Minimum sea level pressure estimates

exhibit minimal bias, although this result is sensitive to microphysical parameterization. Such sensitivity to

microphysical parameterization, particularly with respect to cloud radiative properties, suggests that only

qualitative insight regarding advanced Dvorak technique–derived intensity estimate error during extra-

tropical transition may be obtained utilizing synthetic satellite imagery. Implications toward developing

improved intensity estimates during extratropical transition are discussed.

1. Introduction

The current intensity of tropical cyclones (TCs) can be

assessed using either direct observations or remotely

sensed estimates from meteorological satellites. How-

ever, direct observations of TC intensity, such as by

reconnaissance aircraft, buoys, ships, oil rigs, and land-

based observation stations, are relatively sparse. Con-

sequently, satellite estimates are chiefly relied upon to

assess the intensity of the vast majority of TCs, particu-

larly outside of the North Atlantic basin (e.g., Velden

et al. 2006). This is primarily accomplished utilizing the

Dvorak technique (DT; Dvorak 1984), an internally

consistent, empirical method that an analyst uses to relate

organized TC cloud patterns to cyclone intensity. Further

information regarding the DT is provided by Dvorak

(1984) and Velden et al. (2006). Brown and Franklin
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(2004) found that approximately 50% of DT-based

Atlantic TC intensity estimates are within 5 knots (kt;

for maximum sustained surface wind; 1kt 5 0.51ms21)

of reconnaissance aircraft–aided best-track intensity

estimates.

Despite the enduring success of the DT, it is not

without its limitations. One primary limitation of theDT

lies in its inherent subjectivity owing to the varying ex-

pertise levels of analysts who use it to obtain TC in-

tensity estimates (Velden et al. 2006). The advanced

Dvorak technique (ADT; Olander and Velden 2007), a

fully automated, objective means of assessing TC in-

tensity from satellite imagery, was originally developed

out of a desire to mitigate the subjective nature of the

DT. The mature ADT algorithm has evolved and is not

just an objective application of the DT; rather, through

modifications based upon rigorous statistical and em-

pirical analysis, the ADT extends and, in some cases,

improves upon the original DT. ADT performance is

competitive with a consensus of all available subjective

operational DT intensity estimates with both sources of

estimates exhibiting an overall small weak-intensity bias

(Olander and Velden 2007). Further information re-

garding the ADT is provided by Olander and Velden

(2007, 2013).

Both DT- and ADT-derived TC intensity estimates

are less reliable during extratropical transition (ET;

Jones et al. 2003), or the process by which a TC trans-

forms into an extratropical cyclone (Velden et al. 2006).

As a TC undergoes ET, the development of the pro-

totypical conveyor belt features associated with extra-

tropical cyclones (e.g., Carlson 1980; Browning 1990)

results in deep, moist convection becoming increasingly

asymmetric about the TC’s center. Descent associated

with the cyclone’s developing dry intrusion results in the

erosion of deep, moist convection near and equatorward

of the TC’s center. Concurrently, ascent associated with

the cyclone’s developing warm conveyor belt results in

the formation of a delta-shaped expanse of shallow to

moderately deep moist convection poleward and east-

ward of the TC (Klein et al. 2000). The resultant cloud

pattern most closely resembles the shear or, less com-

monly, curved band ‘‘scene types’’ [e.g., section 5.B of

Olander and Velden (2013)] as identified by both the DT

and ADT. These scene types are those typically associ-

ated with the weakest DT- and ADT-derived intensity

estimates (Dvorak 1984; Olander and Velden 2013).

Consequently, the loss of deep, moist convection near

the center of the transitioning TC and the increasing

distance from the center to which the remaining con-

vection becomes displaced results in DT- (and ADT-)

derived intensity estimates that are unrepresentative

(Miller and Lander 1997). In other words, TC intensity

typically does not decay during ET as rapidly as DT-

and/or ADT-derived intensity estimates would suggest,

even when the decay of such intensity estimates is con-

strained [e.g., rule 9 of Dvorak (1984); the ADT weak-

ening flag of Olander and Velden (2013)]. This occurs as

the transitioning TC begins to extract kinetic energy

from the available potential energy associated with the

vertically sheared background flow, which enables the

TC to maintain its intensity during ET to a greater ex-

tent than if it primarily drew energy from the underlying

ocean surface (and its ultimate vertical transport by and

release in regions of active deep, moist convection).

Further, the cyclone’s pressure–wind relationship changes

as its wind field expands (Evans andHart 2008), such that

the tropical, basin-specific pressure–wind relationships

used by the DT and ADT no longer necessarily hold.

Summarizing, DT- and ADT-derived TC intensity esti-

mates during the ETprocess become less reliable because

the empirical relationships between the associated cloud

patterns and storm intensity that underlie each technique

were primarily derived during tropical stages and are

therefore less robust during and after ET.

The specific extent of the degradation in reliability in

DT- and ADT-derived intensity estimates during ET

has been difficult to document, primarily because of the

lack of verifying observations. Miller and Lander (1997)

note that DT-derived intensity estimates for ‘‘a signifi-

cant number’’ of recurving TCs during the 1994 and 1995

western North Pacific TC seasons were weak biased, in

some cases by as much as three Dvorak ‘‘T’’ numbers.

With respect to the ADT, we conduct a limited verifi-

cation of ADT-derived intensity estimates for TCs

within the preceding two days of completing ET, given

by the time that a given TC is classified as extratropical

within the National Hurricane Center ‘‘best track’’ da-

tabase (Jarvinen et al. 1984), in the North Atlantic basin

between 2005 and 2008. The storms forming this com-

posite are Cindy, Katrina, Ophelia, and Wilma from

2005; Alberto, Beryl, and Ernesto from 2006; Barry and

Noel from 2007; and Hanna, Ike, and Kyle from 2008.

While many of these storms made landfall, only pre- or

at-landfall intensities were evaluated against validation

data obtained from in situ reconnaissance aircraft or

landfall intensity measurements. In the composite mean

(n 5 18), final ADT current intensity estimates for

maximum sustained 10-m wind speed ymax during ET

exhibit a 13.12-kt weak bias with a root-mean-square

error of 14.26kt. For reference, these values are larger

than those typically found with the ADT (Olander and

Velden 2007) and DT (Brown and Franklin 2004) and

are comparable to the uncertainty in satellite-derived

best-track estimates in the North Atlantic basin

(Landsea and Franklin 2013).
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The majority of the cases noted above occur early in

the ET process and are not found at higher latitudes near

the completion of ET. Direct observations of ymax and

minimum sea level pressure pmin during ET are virtually

nonexistent. Routine reconnaissance aircraft missions,

conducted primarily in the North Atlantic basin, typi-

cally cease as a targeted TC enters the midlatitudes if it

poses no threat to land. Furthermore, there are rela-

tively few permanent (buoys, oil rigs) or transient

(ships) observing platforms along the primary mid-

latitude oceanic storm tracks. Thus, while DT- and

ADT-derived intensity estimates are known to be less

reliable and thought to be weak biased during at least

some ET events, the precise magnitudes and temporal

behavior (e.g., from ET start through its completion) of

such errors and bias are unknown as a result of a lack of

observations against which DT- and ADT-derived in-

tensity estimates may be verified.

An alternative satellite-based technique for assessing

the current intensity of TCs during ET was proposed by

Miller and Lander (1997). Their technique, dubbed the

XTmethod, resembles a modified form of the procedure

used to estimate TC intensity for the DT ‘‘curved band’’

cloud pattern type. Intensity estimates are made in

consideration of 1) the arc length of the TC’s primary

outer cloud band that is not connected to its center;

2) the organizational extent of theTC’s lower tropospheric

circulation, assessed from the organization and extent of

shallow convection westward and equatorward of the

TC’s center; 3) the existence of deep, moist convection

near the TC’s center; and 4) the TC’s forward motion.

Greater arc length, a better-organized circulation, the

presence of inner-core deep, moist convection, and a

faster translational speed are each associated with more

intense XT intensity estimates. It should be noted that

similar considerations enter into the Hebert–Poteat

method for estimating the intensity of subtropical cy-

clones (Hebert and Poteat 1975). The XT method has

been used operationally by the Joint Typhoon Warning

Center since the 1997 North Pacific typhoon season

(e.g., Dillon and Andrews 1998) and by the National

Hurricane Center in deriving best-track intensity esti-

mates for an unnamed subtropical storm in 2000 (Beven

2000). However, no documented verification of this

method exists.

Herein, we explore whether synthetic satellite imag-

ery [e.g., Bikos et al. (2012) and references therein], as

derived utilizing a forward radiative transfer model ap-

plied to numerical model simulation output, can be used

to evaluate ADT performance during ET. Synthetic

satellite imagery provides an accessible yet effective

means of visualizing numerical model simulations

(Bikos et al. 2012). Its utility is contingent upon the

numerical model’s ability to accurately simulate cloud

morphology and the evolution of the atmospheric state

(Otkin et al. 2009). With respect to the former, there is

much sensitivity to microphysical parameterization and

its handling of upper-tropospheric hydrometeor species,

particularly cloud ice (e.g., Otkin and Greenwald 2008;

Otkin et al. 2009; Jankov et al. 2011; Bikos et al. 2012;

VanWeverberg et al. 2013; Jin et al. 2014; Cintineo et al.

2014; Grasso et al. 2014). Consequently, it is unknown

whether synthetic satellite imagery can effectively be

utilized by the ADT to infer scene type and cyclone

intensity from raw values of and spatial gradients in

longwave infrared brightness temperature.

The research presented herein thus attempts to ad-

dress the following two questions:

1) Can reliable ADT-derived intensity estimates for

numerically simulated TCs be obtained utilizing

synthetic satellite imagery produced from numerical

simulation output?

2) If so, through an internally consistent comparison of

model-derived ymax and pmin to ADT-derived (from

synthetic satellite imagery) ymax and pmin, what is the

nature of the ADT-derived TC intensity estimate

error and bias during ET?

Alternatively, the first of these questions may be posed

as: Do the relationships between TC cloud patterns and

TC intensity that serve as the underpinnings for the

ADThold for numerically simulated TCs, particularly in

light of sensitivity in the former to cloud microphysics

parameterization? The remainder of this manuscript is

structured as follows. Study methodology, including

numerical simulation formulation, case selection, the

derivation of synthetic satellite imagery, and the appli-

cation of the ADT to simulation output, is described in

section 2. Key findings from this research are presented

in section 3. A discussion of how these key findings

motivate future research toward improved TC intensity

estimates during ET is presented alongside a summary

of the work in section 4.

2. Methodology

a. Numerical simulations

Numerical simulations are conducted utilizing the

Advanced Research version of the Weather Research

and Forecasting Model, version 3.4.1 (ARW;

Skamarock et al. 2008). A horizontal grid spacing of

4 km over a single 4000km 3 4000km domain centered

at 378N, 63.58W with 30 terrain-following hybrid sigma

vertical levels is used for all simulations. Davis et al.

(2008) demonstrated that horizontal grid spacing of
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4 km allows for somewhat realistic explicit simulated

representations of the tropical cyclone inner core and

rainbands, although objective verification of such fea-

tures against inner-core observations remains elusive.

Spacing between individual vertical levels is approxi-

mately 20–40hPa in the lower troposphere, 60–80hPa in

themidtroposphere, and 30–40hPa near the tropopause.

Simulation length for all cases is 120h. Initial and lateral

boundary conditions for each simulation are provided

by the ECMWF’s ERA-Interim with horizontal grid

spacing of approximately 0.78 latitude and longitude and

6-hourly temporal frequency (Dee et al. 2011). No TC

bogus or assimilation of operational TC information is

applied to artificially improve upon the initial repre-

sentation of each TC. All simulations utilize the

Yonsei University planetary boundary layer (Hong

et al. 2006), RRTM for Global Climate Models

(RRTMG) shortwave and longwave radiation (Iacono

et al. 2008), revised MM5 similarity surface layer

[Jimenez et al. (2012), their section 2a], and unified

Noah land surface (Chen and Dudhia 2001) parame-

terizations. Deep, moist convection is treated explic-

itly, or without parameterization. The Garratt (1992)

formulation for the enthalpy transfer coefficient is

utilized as it is believed to be most appropriate for TC

simulations.

Given the previously mentioned sensitivity of syn-

thetic satellite imagery to the choice of microphysical

parameterization, five simulations—each utilizing a

different microphysical parameterization—are con-

ducted for each of the five cases (section 2b) considered

herein. Thus, a total of 25 numerical simulations are

conducted. The five selected parameterizations utilized

are the WSM6 (Hong and Lim 2006), Thompson

(Thompson et al. 2008), Morrison (Morrison et al.

2009), Milbrandt–Yau (Milbrandt and Yau 2005), and

WRF double-moment 6-class (WDM6; Lim and Hong

2010) parameterizations. Each predicts the mixing ratio

for water vapor and five microphysical hydrometeor

species: rainwater, cloud water, snow, cloud ice, and

graupel and/or hail. The Milbrandt–Yau parameteriza-

tion also predicts the number concentration for all mi-

crophysical species and maintains separate classes for

graupel and hail. The Morrison parameterization pre-

dicts number concentrations for all species except cloud

water, the Thompson parameterization predicts number

concentrations only for cloud ice and rainwater, and the

WDM6 parameterization predicts number concentra-

tions for rainwater, cloud water, and cloud condensa-

tion nuclei. A succinct summary of the fundamental

differences between theWSM6, Thompson, andMorrison

parameterizations is provided by Van Weverberg

et al. (2013).

b. Case selection

Simulations are conducted for five selected cases, each

representing an observed ET event in the North Atlantic

basin between 1996 and 2012: Edouard (1996; Pasch and

Avila 1999), Erin (2001; Beven et al. 2003), Noel (2007;

Brennan et al. 2009), Ophelia (2011; Avila and Stewart

2013), and Leslie (2012; Stewart 2013). Each TC completed

ET, as assessed utilizing National Hurricane Center best-

track data, and remained over open water during ET. The

observed tracks of each TC are overlain with the simulation

domain in Fig. 1. Simulations of each case begin approxi-

mately 48–72h prior to the start of ET so as to allow suffi-

cient time for the simulated vortex and its microphysical

fields to spin up prior to the start of our analysis (described

in section 2d below). Simulations of Edouard, Erin, Noel,

Ophelia, and Leslie end 36, 24, 24, 26, and 21h after the end

of ET, respectively, as assessed utilizing National Hurricane

Center best-trackdata.The selected cases reflect a variety of

ET evolutions [e.g., time to complete ET, intensity at the

start and end of ET, and thermal structure evolution; Hart

et al. (2006)], as determined utilizing National Hurricane

Center best-track data and cyclone phase-space (Hart 2003)

trajectory plots for each casederived from6-hERA-Interim

data. These attributes are summarized in Table 1.

c. Synthetic satellite imagery

Synthetic satellite imagery is created using the Com-

munity Radiative Transfer Model, version 2.0.5 (CRTM;

FIG. 1. Model simulation domain with the National Hurricane

Center best-track positions, at 6-hourly intervals, for each of the

five TCs examined within this work. Only the track of each TC

during the time period over which it is simulated within the domain

is depicted. The filled black squares along each track denote the

location at which the National Hurricane Center declared the TC

to have completed ET.
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Han et al. 2006). Synthetic GOES-East 10.7-mm imagery

is produced for each of the numerical simulations de-

scribed above. Gaseous optical depths, which are a

function of wavelength and sensor, are obtained from

simulated three-dimensional fields of pressure (hPa),

temperature (K), and water vapor mixing ratio (g kg21).

Canopy temperatures (K) and monthly averaged, spec-

trally dependent, surface emissivity values (Seemann

et al. 2008) are used as lower boundary conditions for

the CRTM. The particle radius (mm) of each micro-

physical habit type (cloud, rain, snow, graupel, and ice)

is precomputed and is subsequently passed into the

CRTM. Such formulations take advantage of an as-

sumed particle shape and size distribution along with

values of the mass mixing ratio (g kg21) and, when

predicted, number concentrations (kg21). Information

regarding the specific particle size distributions utilized

by the WSM6, Thompson, Morrison, Milbrandt–Yau,

and WDM6 microphysical parameterizations may be

found in Hong and Lim (2006), Thompson et al. (2008),

Morrison et al. (2009), Milbrandt and Yau (2005),

and Lim and Hong (2010), respectively. Top-of-the-

atmosphere radiance values from the CRTM are then

converted into synthetic GOES-East 10.7-mm bright-

ness temperatures at an hourly interval from each

simulation.

d. ADT application and evaluation

In this study, the performance of the ADT during ET

is evaluated utilizing an internally consistent compari-

son between model-derived hourly time series of ymax

and pmin (hereafter truth) and hourly time series of ymax

and pmin derived from applying ADT, version 8.1.5, to

synthetic satellite imagery obtained from each model

simulation (hereafter synthetic ADT). In this version of

ADT, pmin is obtained by utilizing the pressure–wind

relationship of Knaff and Zehr (2007) and Courtney and

Knaff (2009), wherein model-derived values of cyclone

latitude, translation speed, mean radius of 34-kt (gale

force) 10-m wind, and sea level pressure of the out-

ermost closed isobar are utilized in conjunction with the

synthetic ADT-derived value of ymax to obtain

pmin. Error statistics—herein root-mean-square error

(RMSE) and bias—are computed utilizing ‘‘synthetic

ADT’’ minus ‘‘model.’’ Thus, positive (negative) values

of this difference for ymax (pmin) denote that the syn-

thetic ADT-estimated intensity is too high compared to

model truth. Evaluation of synthetic ADT performance

begins 18 h into each model simulation so as to allow

sufficient time for the simulated microphysical species

(i.e., cloud fields) to spin up. The National Hurricane

Center best-track intensity for each TC is used as the

first-guess ADT intensity at t 5 18 h. Synthetic ADT-

derived intensity estimates during ET, typically occur-

ring between 48 and 96h into each simulation, are

insensitive to whether the best-track or model-derived

intensity is used as the first-guess ADT intensity at t 5
18h (not shown). This occurs as ADT’s ‘‘memory’’ of

previous intensity estimates, as manifest by the Dvorak

(1984) weakening flag (rule 9) and constraint limits (rule

8), is limited to approximately 24 h (Olander and

Velden 2013).

First-guess TC center positions at all times are

provided by the location of the simulated 850-hPa geo-

potential height minimum. The spiral-centering/ring-

fitting autocentering technique described by Olander

and Velden (2007) is applied to update these positions if

the synthetic ADT current intensity (CI No.) at the

previous time (t 2 1 h) is greater than 3.5. To facilitate

comparison of results between cases, all error statistics

are presented with respect to the ET timeline of Hart

et al. (2006). Particular emphasis is given to the mile-

stones of 24 h prior to ET start (TB2 24h), ET start (TB;

development of substantial cross-cyclone thermal

asymmetry), the midpoint of ET (TMID), and ET end

(TE; loss of warm-core thermal structure), each as de-

termined utilizing the cyclone phase space of Hart

(2003). Please note that the TB utilized herein does not

refer to brightness temperature, which is often referred

to asTb. To ensure that the evaluated intensity estimates

are representative, hourly model truth and synthetic

ADT-derived values of both ymax and pmin are averaged

TABLE 1. Intensity, thermal structure, and timing information during ET for each of the five cases considered herein. The time at which

ET began (ET start time) and the posttransition thermal structure for each case are derived following Evans andHart (2003) as applied to

ERA-Interim data. The time at which ET completed (ET end time) and all intensity information (pmin, ymax) for each case are obtained

from the National Hurricane Center best-track database.

Case Simulation start time ET start time ET end time

Post-ET

thermal structure ET start intensity ET end intensity

Edouard (1996) 1800 UTC 30 Aug 0000 UTC 2 Sep 0600 UTC 3 Sep Cold core 964 hPa, 80 kt 985 hPa, 55 kt

Erin (2001) 0600 UTC 11 Sep 1800 UTC 13 Sep 0600 UTC 15 Sep Cold core 982 hPa, 70 kt 981 hPa, 60 kt

Noel (2007) 0000 UTC 31 Oct 0600 UTC 2 Nov 0000 UTC 3 Nov Warm seclusion 981 hPa, 70 kt 980 hPa, 70 kt

Ophelia (2011) 1200 UTC 29 Sep 0600 UTC 2 Oct 1000 UTC 3 Oct Cold core 945 hPa, 110 kt 990 hPa, 60 kt

Leslie (2012) 0600 UTC 7 Sep 1200 UTC 10 Sep 0900 UTC 11 Sep Cold core 980 hPa, 65 kt 968 hPa, 65 kt
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over a 61-h interval centered on the ET milestones for

each simulation. The results are insensitive to the spe-

cific interval (61 vs 63 h or no averaging) over which

these values are averaged (not shown).

Note that the evaluation conducted herein is between

two model-derived quantities and not between model-

derived and observed quantities. While the model sim-

ulations faithfully replicate the observed track and the

transition from a tropical to an extratropical cyclone for

most cases, it is impossible to assess whether each sim-

ulation faithfully replicates the actual intensity for each

TC in the absence of direct intensity observations during

ET. Model deviations from the best-track and/or actual

intensity for each TC do exist for both pmin (Fig. 2) and

ymax (Fig. 3). Potential causes of such departures include

sensitivity to microphysical parameterization (e.g., Zhu

and Zhang 2006; Jin et al. 2014), particularly for the

Thompson- and Morrison-based simulations of Ophelia

(2011); the initialization of each simulation with a coarse

reanalysis TC vortex, particularly for Edouard (1996)

and Erin (2001), the two strongest TCs at simulation

start time; and insufficient treatment of TC-induced

upwelling within the reanalysis-derived representation

of the oceanic state for Leslie (2012; see also Stewart

2013).

These factors motivate the choice of the internally

consistent, model-focused approach utilized herein.

Consequently, our selection of five observed North At-

lantic ET events to simulate rather than, for instance,

idealized ET cases, is motivated primarily by a desire to

examine the ADT’s performance with physically re-

alistic events reflecting a variety of TC evolutions during

ET. It should be noted, however, that this methodology

implicitly requires that the numerical model is capable

of accurately simulating the relationship between the

mass (e.g., pressure) and kinematic (e.g., wind) fields

before, during, and after ET.

3. Results

a. Overall ADT error and bias during ET

The composite mean RMSEs for ymax and pmin during

ET, each comprised of data from 23 numerical simula-

tions, are depicted by the solid gray lines in Figs. 4a and

4c, respectively. Note that the composite mean does not

include the Thompson- andMorrison-based simulations

of Ophelia (2011) as the simulated TC was unable to

complete ET in the strongly sheared environment in

which it was embedded. The composite mean RMSE for

ymax (Fig. 4a) increases between TB 2 24h and TB and

decreases thereafter, whereas the composite mean

RMSE for pmin decreases throughout ET. Utilizing a

two-tailed Student’s t test applied to the approximately

normally distributed data, all changes in composite

mean RMSE for ymax between successive milestones are

statistically significant to $90% confidence. However,

none of the changes in composite mean RMSE between

successive milestones for pmin are statistically significant

to $90% confidence.

The composite mean bias for ymax and pmin during ET,

each again composed of data from 23 numerical simu-

lations, are depicted by the solid gray lines in Figs. 5a

and 5c, respectively. For ymax, composite mean synthetic

ADT-derived intensity estimates exhibit a large weak

bias of approximately 20 kt at all times. As with RMSE,

the composite mean bias for ymax increases between

TB 2 24h and TB and decreases thereafter. However,

the decrease in composite mean bias for ymax after TB is

not statistically significant to $90% confidence. For

pmin, composite mean synthetic ADT-derived intensity

estimates are slightly strong biased at TB 2 24h and

slightly weak biased thereafter. The change in the sign of

the bias that occurs between TB 2 24h and TB is sta-

tistically significant to $99% confidence; however,

changes in the magnitude of the weak bias that occur

after TB are not statistically significant to $90% confi-

dence. As before, all statistical significance testing is

done utilizing a two-tailed Student’s t test applied to the

approximately normally distributed data.

During ET, synthetic ADT-derived intensity esti-

mates for ymax (Fig. 6) become weaker or, in some cases,

remain weak (e.g., ymax # 35 kt). This occurs as strong

vertical wind shear causes deep, moist convection to

gradually become less well organized, as inferred by the

evolution of the ADT-derived scene type (Fig. 7), and

displaced increasingly farther from the center of the

transitioning TC (e.g., Figs. 8b,d,f,h,j). This results in

synthetic ADT-derived intensity estimates for ymax

rapidly decaying to or remaining near their minimum-

possible values early during ET. While ymax typically

weakens during ET in both the model simulations

(Fig. 3) and their observed counterparts (Table 1), it

does not do so as rapidly as do synthetic ADT-derived

values of ymax (Fig. 6). Consequently, the ADT-derived

intensity RMSE and bias (Figs. 4a and 5a) peak in

magnitude at TB, when the discrepancy between the

model-simulated and synthetic ADT-derived values of

ymax is largest, and decline slightly thereafter as the

model-simulated ymax becomes weaker.

As deep, moist convection weakens and is displaced

to increasingly large radii during ET (Figs. 8 and

10–13), synthetic ADT-derived estimates of pmin (Fig. 9)

converge toward a common value for each set of simu-

lations of a given TC. This results from the use of the

current ADT pressure–wind relationship, which utilizes
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FIG. 2.Minimum sea level pressure pmin (hPa) from theNationalHurricaneCenter best-track (solid gray) and the

WSM6- (solid black), Thompson- (dash–dot), Morrison- (long dash), Milbrandt–Yau- (dot), and WDM6- (dash–

dot–dot) based simulations for (a) Edouard (1996), (b) Erin (2001), (c) Noel (2007), (d) Ophelia (2011), and

(e) Leslie (2012). The temporal axis in each panel begins 12 h into eachmodel simulation. The left and right vertical

gray dashed lines in each panel reflect the model consensus TB and TE, while the vertical gray solid line in each

panel reflects the National Hurricane Center–designated TE.
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information related to the simulated TC’s structure,

latitude, and forward motion in addition to synthetic

ADT-derived estimates of ymax to obtain estimates of

pmin. Specifically, the pressure–wind relationship adjusts

synthetic ADT-derived estimates of pmin away from

those derived exclusively from synthetic satellite imag-

ery [derived utilizing DT’s tropical pressure–wind re-

lationship for the Atlantic basin, including the latitude

bias adjustment of Kossin and Velden (2004)] and to-

ward their corresponding model-simulated values.

FIG. 3. As in Fig. 2, but for maximum 10-m wind speed ymax (kt; where 1m s21 5 1.94 kt).

AUGUST 2015 MAN ION ET AL . 991



Consequently, RMSE in pmin only decreases slightly as

synthetic ADT-derived pmin estimates and model-

simulated pmin values evolve in a similar fashion dur-

ing ET. The bias in synthetic ADT-derived pmin

estimates is small owing to nearly canceling strong and

weak biases stratified by microphysical parameteriza-

tion, discussed in more detail in section 3b.

b. Error and bias stratified by case and microphysical
parameterization

The RMSE of ymax as stratified by case is depicted in

Fig. 4b. To first order, the composite mean RMSE for

each of the five cases considered follows a similar evo-

lution to that of the overall composite mean RMSE,

generally increasing between TB 2 24h and TB and

decreasing thereafter. The small sample sizes [five sim-

ulations for all but Ophelia (2011), for which data from

only three simulations are considered] do not permit

statistical significance testing for each case, however. At

all milestones, particularly at and after TB, RMSE is

directly proportional to the simulated intensity of each

case. The case that is, in the composite mean, the most

intense during ET, Leslie (2012; Fig. 3e), is associated

with the largest RMSE. Conversely, the case that is, in

the composite mean, the least intense during ET,

Edouard (1996; Fig. 3a), is associated with the smallest

RMSE. This is not an unexpected finding: during ET,

because the synthetic ADT-derived ymax for each case

either remains near or rapidly declines toward its

minimum-possible value (Fig. 6), cases with higher

(lower) model truth ymax are associated with larger

(smaller) RMSEs. Other distinguishing characteristics,

namely time to complete ET and posttransition thermal

structure, appear to not be related to RMSEmagnitude.

The bias of ymax as stratified by case is depicted in

Fig. 5b. In most cases, synthetic ADT-derived ymax es-

timates are weak biased. The case that is, in the com-

posite mean, the most intense during ET [Leslie (2012)]

is associated with the largest weak bias. However, there

is greater case-to-case variability about the overall

FIG. 4. RMSEs, with respect to the ET timeline of Hart et al. (2006), of (a) ymax (kt), as stratified bymicrophysical

parameterization; (b) ymax (kt), as stratified by case; (c) pmin (hPa), as stratified by microphysical parameterization;

and (d) pmin (hPa), as stratified by case. The solid gray line in each panel denotes the 23-member composite mean

for the variable under consideration. In (a) and (c), theWSM6, Thompson, Morrison, Milbrandt–Yau, andWDM6

composites are represented by solid, dot–dash, dash, dot, and dot–dot–dash lines, respectively. In (b) and (d), the

Noel (2007), Leslie (2012), Edouard (1996), Erin (2001), and Ophelia (2011) composites are represented by solid,

dot–dash, dash, dot, and dot–dot–dash lines, respectively.
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composite mean for bias than for RMSE, particularly

with respect to Noel (2007) and Ophelia (2011). For

each of these cases, small mean biases result from the

near cancellation of strong- and weak-biased simula-

tions that stratify by microphysical parameterization. As

is discussed in more detail in section 3c, strong-biased

simulations generally conducted using the Milbrandt–

Yaumicrophysical parameterization are associated with

deeper, more persistent convection during ET com-

pared to their weak-biased counterparts, which are

generally conducted using the WSM6 and WDM6 mi-

crophysical parameterizations (Figs. 8, 10–13). As

ADT-derived intensity estimates heavily rely upon the

intensity and organizational extent of deep, moist

convection [section 5.H.1 of Olander and Velden

(2013)], this results in more intense synthetic ADT-

derived ymax and, here, strong biases.

The RMSE of pmin as stratified by case is depicted in

Fig. 4d. To first order, the composite mean RMSE for all

cases except Ophelia (2011) becomes smaller throughout

ET, similar to the corresponding overall composite mean

RMSE. The RMSE of pmin is directly proportional to the

composite mean simulated intensity of each of the non-

Ophelia (2011) cases, particularly at and afterTB (cf. Figs. 2

and 4d).Towit, the compositemeanRMSEof pmin is larger

for Leslie (2012) and Noel (2007) and smaller for Edouard

(1996) and Erin (2001). Conversely, the composite mean

RMSE for Ophelia (2011) is small at TB 2 24h and grows

increasingly large through TMID before decreasing slightly

by TE. This occurs as synthetic ADT-derived estimates of

pmin increasingly depart from their model-simulated coun-

terparts in the WSM6- and Milbrandt–Yau-based simula-

tions of this case (cf. Figs. 2d and 9d).

The bias of pmin as stratified by case is depicted in

Fig. 5d. To large extent, the cases that are, in the com-

posite mean, the weakest during ET [Edouard (1996)

and Erin (2001)] are associated with the smallest bias

magnitudes. An exception occurs with Edouard (1996)

at TB 2 24h, in which the case composite mean exhibits

a large strong bias. This occurs because the synthetic

ADT-derived estimates of pmin at this time remain

influenced by the National Hurricane Center best-track

intensity used to initialize ADT at 1200 UTC 31 August

1996 (Fig. 9a). For Leslie (2012) and Noel (2007),

composite mean weak bias grows increasingly large

during ET as initially strong-biased simulations—

Milbrandt–Yau for Leslie (2012), Milbrandt–Yau

and Morrison for Noel (2007)—become weak biased

during ET (cf. Figs. 2c,e and 9c,e) as deep, moist con-

vection weakens and is displaced away from the center of

FIG. 5. As in Fig. 4, but for the bias of each field.
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FIG. 6. Synthetic ADT estimates of maximum 10-m wind speed ymax (kt) from the WSM6- (solid black),

Thompson- (dash–dot), Morrison- (long dash), Milbrandt–Yau- (dot), and WDM6- (dash–dot–dot) based simu-

lations for (a) Edouard (1996), (b) Erin (2001), (c) Noel (2007), (d) Ophelia (2011), and (e) Leslie (2012). The left

and right vertical gray dashed lines in each panel reflect themodel consensusTB andTE, while the vertical gray solid

line in each panel reflects the National Hurricane Center–designatedTE. Missing data indicate times at whichADT

analyzed the TC to be over land.
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the simulated cyclone (Figs. 8 and 10). For Ophelia

(2011), the composite mean strong bias grows increas-

ingly large by TE as the Milbrandt–Yau-based simulation

remains strong biased while the bias in the initially weak-

biased WSM6- and WDM6-based simulations decreases

as the simulated TC rapidly weakens (cf. Figs. 2d and 9d).

The RMSE of ymax as stratified by microphysical

parameterization is depicted in Fig. 4a. To first order,

the composite mean RMSE for each of the five param-

eterizations considered follows a similar evolution to

that of the overall composite mean RMSE, increasing

between TB 2 24h and TB and declining or remaining

approximately constant thereafter. As with the stratifi-

cation by case, however, the small sample sizes (five

simulations for all but Thompson and Morrison, for

data from only four simulations are considered) do not

permit statistical significance testing on these results.

Before TMID, the WSM6- and WDM6-based simula-

tions have the largest composite mean RMSE while the

Thompson-based simulations have the smallest com-

posite mean RMSE. By TE, however, the Morrison-

based simulations have the largest composite mean

RMSE while the Milbrandt–Yau-based simulations

have the smallest composite mean RMSE. With the

FIG. 7. ADT scene type, stratified by microphysical parame-

terization and with respect to the ET timeline of Hart et al.

(2006), for (a) Edouard (1996), (b) Erin (2001), (c) Noel (2007),

(d) Ophelia (2011), and (e) Leslie (2012). Note that scene types

typically associated with stronger (weaker) intensity estimates

appear higher (lower) along the vertical axis.
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FIG. 8. Hovmöller diagrams of the number of model grid points within 6200 km of the objectively defined cyclone

center that contains a given simulated longwave infrared brightness temperature (K; shaded per the topmost color bar),

as stratified within 1-K bins between 170 and 310K, for the (a) WSM6-, (c) Thompson-, (e) Morrison-, (g) Milbrandt–

Yau-, and (i) WDM6-based numerical simulations of Leslie (2012). (k) As in (a),(c),(e),(g),(i), but as derived from

GOES-East imager channel 4 (10.7mm) data bilinearly interpolated onto a horizontal grid with Dx 5 Dy 5 4 km. Also

displayed are Hovmöller diagrams of the percentage of pixels within 5-km radial bins (%; shaded per the bottommost

color bar), out to 200-km radius from the objectively defined cyclone center, with simulated longwave infrared

brightness temperature,223K for the (b)WSM6-, (d) Thompson-, (f) Morrison-, (h) Milbrandt–Yau-, and (j) WDM6-

based numerical simulations of Leslie (2012).
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exception of the Milbrandt–Yau-based simulations, all

are weak biased and evolve in a similar fashion toRMSE

(Fig. 5a). By contrast, the Milbrandt–Yau-based com-

posite mean is strong biased prior to TE and has a near-

zero mean bias at TE.

The RMSE of pmin as stratified by microphysical pa-

rameterization is depicted in Fig. 4c. The composite mean

RMSE for each of the five parameterizations considered

resembles that of the overall composite mean. The

Thompson-based simulations exhibit the smallest mean

FIG. 9. As in Fig. 6, but for minimum sea level pressure pmin (hPa).
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FIG. 10. As in Fig. 8, but for Noel (2007).
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FIG. 11. As in Fig. 8, but for Ophelia (2011).
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FIG. 12. As in Fig. 8, but for Edouard (1996).
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FIG. 13. As in Fig. 8, but for Erin (2001).
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RMSEs at all milestones whereas the Milbrandt–Yau-

based simulations exhibit the largest mean RMSEs at all

milestones except forTMID. The bias of pmin as stratified by

microphysical parameterization is depicted in Fig. 5c.

Overall, the compositemeanbias for each parameterization

considered resembles that of the overall composite mean.

TheMilbrandt–Yau-based simulations exhibit a strong bias

that decreases in magnitude through ET. The WSM6- and

WDM6-based simulations exhibit a comparatively large

weak bias at all milestones. The Thompson-based simula-

tions exhibit the smallest bias magnitude at and after TB.

c. Interpretation of results

The Milbrandt–Yau-based simulations are associated

with relatively lowRMSE for ymax, relatively large RMSE

for pmin, and strong biases for both ymax and pmin.

Brightness temperatures derived from these simulations

are colder, and the spatial extent of deep,moist convection

is greater, than those both from other simulations and

fromobservations (Figs. 8 and 10–13). This is illustrated by

one selected example, fromNoel (2007) atTB, as depicted

in Fig. 14, noting that the intensity of each simulated cy-

clone is approximately equal between simulations (Figs. 2c

and 3c). Analysis of area-averaged (within 200km of the

objectively identified TC center) mass mixing ratio fields

from each simulation indicates that the Milbrandt–Yau-

based simulations of this (Fig. 15) and other cases have

greater cloud ice concentrations at greater altitudes. Both

factors lead to colder simulated brightness temperatures

over a greater area in the Milbrandt–Yau-based simula-

tions, consistent with Cintineo et al. (2014). Consequently,

ADT often inferred scene types associated with stronger

intensity estimates in the Milbrandt–Yau-based simula-

tions (Fig. 7), resulting in stronger synthetic intensity es-

timates for these simulations (Figs. 6 and 9, dotted lines).

The degree to which these intensity estimates are strong

biased is greater for pmin than for ymax, thus resulting in a

comparatively large (small) RMSE for pmin (ymax).

Conversely, the WSM6- and WDM6-based simulations

are generally associated with the greatest RMSE in ymax

and the largest weak biases for both ymax and pmin.

Brightness temperatures derived from these simulations

are warmer, and the spatial extents of the coldest bright-

ness temperatures are smaller, than those from other sim-

ulations and from observations (Figs. 8 and 10–13). This is

consistent with previous studies that demonstrated a warm

bias in brightness temperature and a low bias in convective

cloud extent in simulations conducted with the WSM6

microphysical parameterization as compared to observa-

tions, whether for tropical (Van Weverberg et al. 2013) or

continental (Grasso et al. 2014) mesoscale convective sys-

tems. Similar findings are noted for WDM6 in continental

convective environments by Cintineo et al. (2014). Both

studies attribute this to a deficiency in the amount of sim-

ulated upper-tropospheric cloud ice, particularly as com-

pared to other microphysical parameterizations, and the

same is true in the simulations presented herein (e.g.,

Fig. 15). Because synthetic ADT-derived scene type [sec-

tion 5.B of Olander and Velden (2013)] and intensity es-

timates [section 5.H.1 of Olander and Velden (2013)] are

directly proportional to convective cloud intensity, warmer

brightness temperatures result in weaker synthetic ADT-

derived intensity estimates for the WSM6- and WDM6-

based simulations (Figs. 6 and 9). This can, for instance,

result in ADT inferring a noneye scene with weaker in-

ferred intensity when, subjectively, an eye appears to be

present. A representative example of this is presented

in Fig. 16 for Leslie (2012) at TB, when ADT inferred a

‘‘large eye’’ scene type for the Thompson- andMilbrandt–

Yau-based simulations but a curved-band scene type

for the remaining simulations (Fig. 7e). This occurs

despite the actual simulated intensity of each cyclone

varying minimally between simulations at this time

(Figs. 2e and 3e).

It is worth noting that most eye-type scenes inferred

by ADT when applied to synthetic satellite imagery are

of large-eye type rather than ‘‘eye’’ or ‘‘pinhole eye’’

(Fig. 7). Figure 16 provides a representative example of

this for Leslie (2012). This is attributed primarily to the

relatively coarse effective resolution of the ARW nu-

merical simulations [;7 Dx, or ;28km; Skamarock

(2004)] rather than to any specific attributes of the se-

lected cases. Further investigation is necessary, how-

ever, to conclusively determine the extent to which this

may influence the analysis. It should also be noted that

most microphysical parameterization–related differ-

ences in brightness temperature, and thus simulated

cloud properties, for each case occur prior to TMID, with

little differences seen as ET completes (as can be in-

ferred from Figs. 8 and 10–13). However, both synthetic

ADT-derived scene types and intensity estimates, par-

ticularly the current intensity value, rely in part upon

their values up to 12h previous, as constrained by rule 9

(the weakening flag) of Dvorak (1984). Consequently,

the influence of differences in simulated cloud proper-

ties through TMID upon both RMSE and bias is felt,

albeit to progressively smaller extent, through TE.

4. Summary and discussion

In this study, the utility of synthetic satellite imagery

derived from numerical simulations of five ET events

that occurred over the open waters of the northern At-

lantic Ocean is evaluated to provide insight regarding

ADT-derived intensity estimates during ET. Key find-

ings include the following points:
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d On average, synthetic ADT-derived estimates of

ymax asymptote toward or remain near their

weakest-possible values after ET begins. However,

both observed and model ‘‘truth’’ ymax do not

weaken as rapidly. Thus, in most cases, RMSE and

bias in ymax both increase between TB 2 24 h and TB

but decrease or remain approximately constant

thereafter.

FIG. 14. Simulated longwave infrared brightness temperature (K; shaded; scale is the ‘‘BD’’ enhancement scale)

at TB for the (a) WSM6- (1300 UTC 2 Nov), (b) Thompson- (1300 UTC 2 Nov), (c) Morrison- (1900 UTC 2 Nov),

(d) Milbrandt–Yau- (1400 UTC 2 Nov), and (e) WDM6- (1800 UTC 2 Nov) based simulations of Noel (2007). The

objectively determined TC center is located at the center of each panel.
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d Owing to its incorporation of model-simulated infor-

mation relating to a simulated TC’s structure, latitude,

and forward motion, the ADT pressure–wind relation-

ship adjusts synthetic pmin estimates away from those

derived exclusively from synthetic satellite imagery to-

ward their corresponding model-simulated values.
d More intense TCs during ET are associated with

greater ADTRMSE and bias magnitudes in both ymax

FIG. 15. Area-averaged (within 136 km of the objectively tracked cyclone center) cloud ice mixing ratio qc
(g kg21; shaded per the color bar at right), snowmixing ratio qs (g kg

21; black contours every 0.25 g kg21 starting at

0.25 g kg21), and graupel mixing ratio qg (g kg
21; gray contours every 0.25 g kg21 starting at 0.25 g kg21) for nu-

merical simulations of Noel (2007) conducted utilizing the (a) WSM6, (b) Thompson, (c) Morrison, (d) Milbrandt–

Yau, and (e) WDM6 microphysical parameterizations between 1200 UTC 31 Oct and 0000 UTC 5 Nov 2007.
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and pmin, although this result does not hold for all

cases. Weaker TCs during ET are conversely associ-

ated with smaller RMSE and bias magnitudes in both

ymax and pmin.

d Microphysical parameterizations (viz., WSM6 and

WDM6) that produce warmer, less expansive upper-

tropospheric clouds are associatedwithweaker synthetic

ADT-derived intensity estimates and, consequently,

FIG. 16. Simulated longwave infrared brightness temperature (K; shaded, scale is the BD enhancement scale) atTB

for the (a) WSM6- (2200 UTC 10 Sep), (b) Thompson- (2200 UTC 10 Sep), (c) Morrison- (2300 UTC 10 Sep),

(d) Milbrandt–Yau- (2300 UTC 10 Sep), and (e)WDM6- (2000 UTC 10 Sep) based simulations of Leslie (2012). The

objectively determined TC center is located at the center of each panel.
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large RMSE and weak bias for both ymax and pmin.

Conversely, microphysical parameterizations (viz.,

Milbrandt–Yau) that produce often-unrealistically

colder, more expansive upper-tropospheric clouds

are associated with stronger synthetic ADT-derived

intensity estimates and, as a result, comparatively small

RMSE for ymax, large RMSE for pmin, and strong biases

for both ymax and pmin.

One of the two fundamental questions that this re-

search sought to answer is that of whether reliableADT-

derived intensity estimates for numerically simulated

TCs can be obtained by utilizing synthetic satellite im-

agery derived from numerical simulation output. To that

end, the results are decidedly mixed. As the results

presented in section 3 demonstrate, RMSE in ymax is

larger than that of the 18-member observational sample

of real (validated) cases motivating our investigation.

The bias in ymax is larger than that of the observational

sample at and after TB. There are multiple plausible

contributors to the discrepancy in both RMSE and bias

between the observational and simulated samples. The

observational and simulated samples are small and of

unequal composition with respect to the cases consid-

ered. Because RMSE and bias in ymax are functions of

the intensity of the transitioning TC for the cases con-

sidered herein, samples containing greater numbers of

weaker (stronger) TCs will be associated with smaller

(larger) RMSE and bias. Furthermore, because RMSE

and bias in ymax are functions of time during ET, with the

smallest values for each found prior to TB, it is plausible

to expect the observational sample, which includes ob-

servations up to 48h prior to TE, approximately equiv-

alent to TB 2 24h for the five simulated cases, to have

smaller RMSE and bias. However, it is not clear that

these considerations should result in as large of a dis-

crepancy between the observational and simulated

samples as seen herein.

A potentially more problematic contributor lies with

the modeling system itself, namely with respect to its

ability to accurately simulate cloud radiative properties,

as elucidated by synthetic satellite imagery. There is

considerable sensitivity in the simulated longwave in-

frared brightness temperatures to microphysical pa-

rameterization that results in considerable variability in

the synthetic ADT-derived intensity estimates for both

ymax (Fig. 6) and pmin (Fig. 9). The sensitivity in simu-

lated longwave infrared brightness temperatures to mi-

crophysical parameterization results primarily from how

cloud ice is treated within each parameterization (e.g.,

Fig. 15). It should be noted that none of the five mi-

crophysical parameterizations utilized herein was de-

veloped specifically for tropical applications but rather

they were developed for midlatitude and/or continental

applications. Given this and the approximate nature of

any model parameterization, it is expected that all sim-

ulated brightness temperatures are to some extent

biased.

Overall, the Thompson and Morrison microphysical

parameterization–based numerical simulations produce

simulated brightness temperatures that most closely

resemble the observations (Figs. 8 and 10–13, cf. panels c

and e to k). This is consistent with studies in which the

microphysical parameterization’s influence upon simu-

lated longwave infrared brightness temperatures was

evaluated for both tropical and midlatitude convective

phenomena (e.g., Jankov et al. 2011; Van Weverberg

et al. 2013; Cintineo et al. 2014; Jin et al. 2014). However,

we note that in the composite means for the Thompson-

and Morrison-based numerical simulations conducted

herein, the RMSE and weak bias in ymax remain larger

than those for the observational sample. This may be

due to differences in sample composition and/or to other

factors (e.g., the relatively coarse effective resolution of

the numerical model in both the horizontal and vertical

directions and its possible impacts upon model output).

However, it should be noted that the sign of the biases

in ymax is consistent between the observational sample

and the numerical simulations. Furthermore, the im-

provement in synthetic ADT-derived pmin estimates

fostered by the use of the Knaff and Zehr (rather than

Dvorak) pressure–wind relationship is physically well

grounded, as described earlier in themanuscript. In light

of these considerations, the results suggest that though

the application of ADT to synthetic satellite imagery

may provide general insight into the evolution of RMSE

and bias during ET, it is unable to precisely quantify

RMSE or bias for either ymax or pmin during ET. Con-

sequently, we argue that applying ADT to synthetic

satellite imagery obtained from numerical simulations

of TCs undergoing ET can be used to gain qualitative,

but not quantitative, insight into the nature of the ADT-

derived intensity estimate error and bias during ET.

Despite this limitation, the research findings pre-

sented herein provide meaningful insight toward how

ADT-derived intensity estimates during ET may be

improved. Barring substantial improvements in micro-

physical parameterizations, numerical model simula-

tions are unable to provide accurate quantitative error

and bias statistics that may be used to develop a bias

correction for ADT applicable during ET. However, if a

sufficiently large sample of in situ observations of ymax

and pmin can be obtained, a bias correction method

based upon observational data might allow for margin-

ally improved intensity estimates during ET. For such a

bias correction method to be feasible, given the results
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presented herein, it must be a function of TC intensity,

ET milestone, and intensity metric. Of these elements,

the first is available a priori whereas the second is not

without also incorporating external sources of in-

formation (e.g., satellite- or model-derived cyclone-

phase information). Furthermore, this bias correction

must include a trigger informing ADTwhether it should

be activated. The erosion of inner-core convection that

occurs during ET, as seen in Figs. 8 and 10–13 and as

described by Klein et al. (2000), plus information re-

garding the transitioning TC’s position, motion, and

current thermal structure (as determined externally),

may be utilized to formulate such a trigger. Further re-

search is planned to determine whether sufficient ob-

servations exist to develop such a bias correction and to

evaluate its performance over an independent sample

of events.

Furthermore, it may be possible to develop and sub-

sequently evaluate the performance of an ADT scene

type that is specific to ET. As the ‘‘shear’’ ADT scene

type becomes predominant by the completion of ET, it

could be utilized as a starting point for the development

of an ET-specific ADT scene type. Incorporating addi-

tional information, such as scatterometer estimates of

ymax when available, reflects one possible modification

to this scene type. Alternatively, given that the Miller

and Lander (1997) XT and Hebert and Poteat (1975)

subtropical cyclone classification and intensity estima-

tion methods closely resemble an empirically modified

‘‘curved band’’ ADT scene type, elements of one or both

methods could be utilized as a starting point for the

development of an ET-specific ADT scene type. Veri-

fication of Miller and Lander (1997) and/or Hebert and

Poteat (1975) method derived intensity estimates for

subtropical and transitioning tropical cyclones may

prove insightful with regard to how each might be

modified so as to promote improved performance if

implemented within an ET-specific ADT scene type.

Further research is planned to extend the ADT’s capa-

bilities so as to permit subtropical cyclone intensity

estimation.
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