Shootout—-89, A Comparative
Evaluation of Knowledge-based
Systems That Forecast

Severe Weather

W.R. Moninger’,

J. Bullas™,

B. de Lorenzis™,

E. Ellison*, J. Flueck**,
J.C. McLeod™, C. Lusk/,
P.D. Lampru’, R.S. Phillips™,

W.F. Roberts’, R. Shaw*, T.R. Stewart*,
J. Weaver”, K.C.Young’,S.M. Zubrick®

Abstract

During the summer of 1989, the Forecast Systems Laboratory of the
National Oceanic and Atmospheric Administration sponsored an
evaluation of artificial-intelligence-based systems that forecast se-
vere convective storms. The evaluation experiment, called Shootout-
89, took place in Boulder, Colorado, and focused on storms over the
northeastern Colorado foothills and plains.

Six systems participated in Shootout-89: three traditional expert
systems, a hybrid system including a linear model augmented by a
small expert system, an analogue-based system, and a system
developed using methods from the cognitive science/judgment
analysis tradition.

Each day of the exercise, the systems generated 2-9-h fore-
casts of the probabilities of occurrence of nonsignificant weather,
significant weather, and severe weather in each of four regions in
northeastern Colorado. A verification coordinator working at the
Denver Weather Service Forecast Office gathered ground-truth
data from a network of observers.

The systems were evaluated on several measures of forecast
skill, on timeliness, on ease of learning, and on ease of use. They
were generally easy to operate; however, they required substan-
tially different levels of meteorological expertise on the part of their
users, reflecting the various operational environments for which
they had been designed. The systems varied in their statistical
behavior, but on this difficult forecast problem, they generally
showed a skill approximately equal to that of persistence forecasts
and climatological forecasts.
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1. Introduction

A comparative study of artificial intelligence (Al) sys-
tems that forecast severe weather was first proposed
at the second workshop on Artificial Inteliigence Re-
search in Environmental Science (AIRIES) in 1987
(Moninger et al. 1987). At that time, it was noted that
several prototype Al systems had been developed to
produce these forecasts. Although the systems varied
in the methodologies they employed and in opera-
tional environments they targeted, it was thought
appropriate to bring them together for a comparative
evaluation.

Ultimately, the developers of six different forecast-
ing systems (not all of them Al) planned and executed
an experiment called Shootout-89. In spite of the
competitive-sounding name, the goals of the experi-
ment were not to declare winners and losers; the
systems are too immature for that to be useful. Rather,
our goals were the following:

e To determine how best to compare diverse auto-
mated and semi-automated forecast methods.

e To determine the properties of the forecasts made
using the different methods.

e Toexercise the prototype systems and iearn how to
improve them.

Our desire was not to set up a “man versus ma-
chine” test. We believed this would set up such a
competitive environment that it woulid distort the goals
ofthe experiment. Therefore, we chose a forecasttask
for which, currently, no human forecasts are made: 2—
9-h forecasts of severe and significant weather in four
regions in and near the foothills of the Colorado Rocky
Mountains. The task was thought relevant, however,
because the National Weather Service is considering
instituting forecasts of this type in the next several
years.

This forecast task turned out to be more difficult
than we anticipated; none of the systems produced
particularly skillful forecasts. We believe we under-
stand some of the particular reasons for the difficulties
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we encountered, and describe below what these rea-
sons are and how we intend to address them in
planned future exercises.

The small size of our sample (20 severe and 59
significant weather events) limits the statistical strength
of the conclusions we can draw. Nonetheless, we
believe a discussion of the issues we have addressed,
and of the limited conclusions we can make, will be of
use to others who may wish to plan comparative
experiments of various human and automated fore-
casting methods.

2. Artificial intelligence

Alis atermcoinedinthe late 1950s by John McCarthy,
a computer science professor at Carnegie—Mellon
University. A useful definition of Al is that by Raj
Reddy, past president of the American Association for
Artificial Intelligence. By his reckoning, Al is what you
get when you combine problem-solving, computers,
and heuristic knowledge. Heuristic knowledge is un-
certain knowledge; it can vary from simple rules of
thumb to sophisticated mathematical algorithms that
are thought but not proven to converge. More tradi-
tional computer science generally studies the proper-
ties of well-defined algorithms; Al seeks to use ill-
defined, uncertain, and approximate knowledge to
solve problems. This might seem to be a step back-
ward, but heuristic knowledge is what humans often
use effectively to solve a great range of problems.

In Shootout-89, the particular Al technology that
concerns us is that of expert systems. These are
computer programs that consist of three distinct parts:
aknowledge base, workingmemory, and an inference
engine.

The knowledge base is a representation of the
knowledge of one or more human experts about how
to perform a task. The process of building the knowl-
edge base, called knowledge engineering, involves
acquiring the knowledge from the expert or experts,
and developing a representation scheme that is com-
plex enough to embody the salient aspects of the
knowledge, but simple enough for the computer to
generate solutions in a reasonable time. Representa-
tion schemes often consist of heuristic “if-then” rules,
such as: “IF a strong capping inversion is present,
THEN decrease the probability of significant weather.”
Knowledge representation may be a particularly diffi-
cult task when the knowledge is highly spatial in
nature, as it is for weather forecasting.

Working memory is a database of current facts:
those provided from the outside world via users,
instruments, and other computer systems, and those
inferred by the expert system. For example, a current
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fact might be “the observed dewpoint in Boulder is
63°F.”

The inference engine is generally the only part of
the expert system that actually does any computing. It
compares the knowledge base to the facts in working
memory, infers new facts, and draws conclusions.
Often, the inference engine is designed to keep a
record of what rules it used to draw conclusions, and
it can report this information on demand, thereby
“explaining” its conclusion to the human user.

Although some Al systems are designed to be
totally objective and automated, some are designedto
augment human skill. In these systems, the operator
may provide subjective judgments as a part of the
input. The final output depends on both the skill of the
operator and the skill stored in the knowledge base.

To evaluate the performance of an expert system,
one should consider the following issues.

o If subjective input is required, how sensitive is the
system to that input? That is, how much of the
resulting forecast depends on the skill of the opera-
tor and how much on the skill of the expert system?

o Isthe mere use of the expert system (gathering the
relevant data, making the requested decisions, if
any) helpful for the operator in clarifying his or her
decisions?

e If an explanation is provided by the system, is the
explanation useful as a training or clarification tool
for the user?

e How skillful is the ultimate forecast? If the forecast
is less than perfect, is it because inappropriate
subjective data were provided, incorrect objective
data were provided, or the forecast model repre-
sented in the knowledge base is incorrect or insuf-
ficient?

3. Participating programs

Six systems participated in Shootout-89. Three were
traditional expert systems, one was a hybrid system
including a linear model augmented by a small expert
system, and two were based on linear models. Three
of the systems required varying amounts of subjec-
tive, user input, and the other three were (or could
have been, if we had chosento doit) totally automated.
Table 1 describes the properties of the six systems.

The systems used data that are commonly avail-
able in operational weather service offices: numerical
weather prediction (NWP) forecasts and analyses,
soundings, and old surface observations. In addition,
several systems used data from the PROFS mesonet,
a network of 22 automated surface weather stations
covering the experimental area.
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TasLe 1. Summary of system properties

System Architecture Data Required User Provides... Platform
KASSPr' Expert system NWP analysis Subjective judgments of locations of Linked DEC and
and forecasts meteorological features, drawn graphically ~ Hewlett Packard
workstations
Convex? Expert system Denver 1200 UTC Subjective forecast judgments (expected PC
sounding; afternoon high temperature and mixed
mesonet data dewpoint, stability, moisture trends),
provided via keyboard
Willard?® Expert system Denver 0000, Subjective judgments of current PC
1200 UTC soundings;  meteorological conditions and trends,
NWP analysis and provided via keyboard
forecasts
GOPAD* Multiple linear models 1200 UTC soundings;  Nothing—system is automated (previous Vaxstation
produced from non- NWP analysis and day's verification is required for learning
linear multiple- forecasts version)
discriminant analysis
of historical cases
ocPp Linear mode! Denver 1200 UTC Objective answers to up to 30 questions PC
augmented by a sounding; NWP provided via keyboard
small expert system forecasts mesonet (could be automated)
data
ALPS® Linear model Denver 1200 UTC Obijective answers to 6 questions in each PC
of 6 variables sounding; region provided via keyboard
developed using mesonet data (could be automated)

"judgment analysis"
methods

'Developed by Carr McLeod, Bruno de Lorenzis, and John Bullas, at the Atmospheric Environment Service of Environment Canada, in

cooperation with Digital Equipment Corporation.

2Developed by John Weaver and Roger Phillips at the NOAA/National Environmental Satellite, Data, and Information Service/RAMM

branch.

3Developed by Steve Zubrick at Radian Corporation and at the NOAA/National Weather Service.
‘Developed by Kenneth Young at the University of Arizona, in cooperation with Consultant’s Choice, Inc.
Developed by Robert Shaw, Thomas Corona, Denice Walker, and others at NOAA/Program for Regional Observing and Forecasting

Services.

5Developed by Tom Stewart at the University Center for Policy Research, State University of New York at Albany, and Cynthia Lusk of
the Center for Research on Judgment and Policy, University of Colorado.

a. KASSPr
In KASSPr, knowledge was elicited in a series of
interviews and exchanges of documentation between
the developer (de Lorenzis) and an expert in severe
weather forecasting (Bullas). Demonstrations of the
system were combined with additional knowledge
acquisition sessions. At a fairly early stage, a proto-
type of the system was delivered to the expert for the
running of historical test cases.

KASSPr was designed to be used in the environ-
ment typically found in an operational weather service
office. KASSPr requires the meterologist operating
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the system to identify and analyze (draw) on the
computer screen the forecasted positions of numer-
ous meteorological features such as fronts and pres-
sure, thermal, and vorticity troughs and ridges (de
Lorenzis 1988). After this interaction, the system gen-
erates severe weather forecasts without further inter-
vention.

KASSPr first evaluates the meteorological situation
for necessary conditions. These are relatively few, but
they must all be met for a given area or point to warrant
further consideration. Next the situation is evaluated
for sufficient conditions. Finally, a set of modifying
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conditions is applied to the probabilities and the sever-
ity factors.

b. Convex

For Convex (Weaver and Phillips 1987), Weaver, who
has considerable severe-storm forecasting experi-
ence, provided the knowledge. Phillips, acting as the
knowledge engineer, developed the rules using an
expert-system building tool called EXSYS and pro-
vided the necessary linkages between the rules and
the external processing model and database. Convex
is designed to be used by moderately experienced
meteorologists.

Convex first uses an automated analysis of the
Denver morning sounding, combined with estimates
of the expected afternoon temperature and dewpoint,
to determine the relative instability of the host air mass
andits likelihood of initiating convection later in the day
over the region of interest. Later, it uses the most
recent surface mesonet temperature and dewpoint
measurements and a linear, time-dependent, bound-
ary-layer mixing function to derive updated values for
these same two parameters for each of the subregions
of interest.

The meteorologist operating Convex may override
Convex's estimates of the low-level, mixed afternoon
dewpoint to provide his or her own. The operator must
also provide reasonably knowledgeable information
about synoptic-scale conditions.

On request, Convex will display a backward se-
quence of the rules that were evaluated to be true, and
thereby explain its reasoning.

c. Willard

The knowledge base for Willard is a structured hierar-
chy of 30 rules. Most of the rules were developed using
the inductive generalization feature of RuleMaster, an
expert system shell. Examples of forecaster decision-
making were fed into RuleMaster, and the decision
rules induced were examined by the developer (me-
teorologist) for suitability and correctness. The rules
were subsequently modified by hand. For Shootout-
89, additional rules were added that pertain to shorter-
range, severe-thunderstorm forecasting as practiced
by forecasters at the Denver NWS Forecast Office. Like
Convex, Willard can provide explanations of its rea-
soning.

Willard was designed for use by novice meteorolo-
gists. The user must provide subjective information
about current synoptic and mesoscale features and
interpretation of numerical forecast guidance.

d. GOPAD

GOPAD refers to the software used to extract patterns
from historical data to create a forecast model from
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these patterns. The pattern extraction is based on
multiple discriminant analysis (MDA) techniques de-
veloped by Miller (1962) and is extended to provide
nonlinear discrimination. In addition, the GOPAD soft-
ware creates combinations of simple predictor vari-
ables which are termed indices; the indices are used
in the nonlinear MDA analysis.

Forecasts are produced by finding a set of days in
the historical dataset that are analogous to the fore-
cast day. Probability forecasts for a region are based
on the historical frequency of occurrence of each
forecasted weather category in the set of analogues
for each region. Six subforecast models were used to
produce three subforecasts for each region. The is-
sued forecast is the median of the three subforecasts.

More than 1000 potential predictor variables drawn
from observed rawinsonde and mesonet parameters
were analyzed with the GOPAD software. A total of
268 days from the summers of 1983, 1985, and 1987
were used to create the forecast models used in
Shootout-89.

Two versions of GOPAD were run in Shootout-89.
The “learning” version received verification informa-
tion for each previous forecast day and added that to
the historical database along with the previous set of
predictor variables. The “static” version maintained
the original historical database during the course of
the experiment. Both versions were designed to be
operated by nonmeteorologists.

e. OCl
Many Boulder meteorologists provided the knowledge
used by OCI. First, a list of potential predictors was
compiled; however, the archived data were insuffi-
cient and the number of potential predictors too large
for effective regression equations to be generated.
Instead, predictors were subjectively weighted and a
linear model was built. A small expert system was
added to identify and account for relationships among
variables that might inhibit convection. OCl was not
designed to generate forecasts for the mountain region.
OCl was designed to provide automated forecasts.
No meteorological expertise is required of the opera-
tor. Because the version used in Shootout-89 did not
have automatic data ingest, a small amount of knowl-
edge about the meteorological infrastructure was re-
quired in order to identify the needed products.

f. ALPS

ALPS is based on psychological research on judg-

ment and decision making that has repeatedly shown

that, under certain conditions, simple algebraic mod-

els can capture the skill of expert judgment, and often

outperform the expert. (See, e.g., Dawes et al. 1989.)
The development of ALPS began with the identifi-
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cation of a set of precursors, or “cues,” thought to be
important predictors of convection. Potential cues
were gathered using the traditional cognitive science
techniques of structured interviews and a structured
meeting of several meteorologists, facilitated by a
cognitive scientist. The cues selected were positive
buoyancy, wind shear, dewpoint, surface wind direc-
tion, and surface temperature. Measures for each cue
were then developed, and weights assigned so that
each cue would have a roughly equal impact on the
forecast. The forecastsissued by ALPS were weighted
sums of the cues, calibrated by region using the data
from the summers of 1983, 1985, and 1987 (see Table 6).

ALPS was designed to be operated by nonmeteo-
rologists. However, in use, it was noted that some
meteorological skillwas necessary to interpolate when
required data were missing.

4. Experiment design and operations

The location for Shootout-89 was the high plains and
foothills of northeastern Colorado. This region was
chosen because the Forecast Systems Laboratory
(FSL) Program for Regional Observing and Forecast-
ing Services (PROFS) has been conducting forecast
exercises there for several years, and therefore an
extensive mesoscale retrospective dataset exists, as
do extensive verification data. In addition, PROFS
maintains a network of automated surface observing
platforms (the PROFS mesonet), which provides valu-
able data for regional weather forecasting.

Shootout-89 ran from 15 May until 17 August 1989.
Each weekday of the exercise, each system (with the
exception noted below) generated mutually exclusive
and exhaustive probabilities that the most severe
weatherin each of four regions would be in one of three
categories:

Category 0: Nonsignificant weather (nil), defined
as the absence of category 1 or 2 weather.

Category 1: Significant weather (sig), defined as a
storm that has any of the following: hail with a
diameter between 0.25 and 0.74 inches, surface
winds between 35 and 49 kt, 2 inches per h or
greater rainfall rate, or a funnel cloud aloft.

Category 2: Severe weather (svr), defined as a
storm observed to have atleast one of the following:
hail with diameter equal to or greater than 0.75
inches, surface winds of 50 kt or greater, or a tomado.

As shown in Fig. 1, the forecast area was divided
into four climatologically distinct forecast regions based
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on work by Weaver and his colleagues (Weaver and
Phillips 1987; Weaver et al. 1987; Klitch et al. 1985).
The systems produced forecasts for each region. The
exception was OCI, which did not generate forecasts
for region 1. Willard generated the same forecast for
each of the four regions.

Forecasts from all systems except OC| were fin-
ished by approximately 1115 MDT (1715 UTC). Be-
cause of the amount of manual input required, OCI
was run in the early afternoon using morning data. The
valid time for the forecasts was 1300-2000 MDT
(1900-0200 UTC).

The systems were operated by either the chief
meteorologist (CM) or the backup meteorologist (M2).
On afew days (discussed below), both the CM and M2
operated the systems independently. Both the CM
and M2 are moderately experienced research meteo-
rologists. The CM operated the systems on approxi-
mately 60 days; M2 operated the systems on approxi-
mately 9 days. M2 never ran OClI, because it was run
in the afternoon when the CM was always on duty.

The activities of the CM were monitored on six
randomly chosen days of Shootout-89. He was aware
of being monitored; we cannot assess the extent to
which this awareness might have affected his behav-
ior. He was well-acquainted with the observer, how-
ever, and visitors and informal observers were oftenin
the Shootout forecast room. These facts suggest that
the effect of the observer on the CM’s behavior would
be slight.

The CM started work at about 0900 MDT (1500
UTC) wheninitial data to be used by the programs first
became available. The CM spent the first hour on
system startup and data acquisition, including logging
on to the computers, setting up data links, obtaining
sounding, mesonet, and the previous day’s verifica-
tion data, and looking at these data as well as maps
and satellite images. Between 1005 and 1030 MDT
(1605 and 1630 UTC), the NWP and final mesonet
data necessary to run the programs became avail-
able, and the CM began providing the necessary
objective and subjective input to the programs.

The CM was free to run the programs in any order,
and in fact the order in which the programs were run
was different for each of the six days monitored. The
mean times spent for different types of activities during
the six days are presented in Table 2. ltis important to
note that the time shown for examining the data may
be inflated from what is actually necessary to run the
programs because on some days the CM had to wait
for data and may have spent time looking at other data
while waiting. Table 2 does not include time spent
logging on and transferring data between machines,
dealing with problems, completing paperwork, and
performing other organizational activities.
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Fic. 1. Four regions of Shootout-89.

At approximately 1125 MDT (1725 UTC), M2
presented forecast results from the Al systems at the
FSL daily weather briefing. At this time, verification
data from the previous forecast day were also pre-
sented.

The backup meteorologist (M2) reported that her
activities did not differ materially from those of the CM.
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5. Evaluation of utility

In this section, we discuss several kinds of
nonmeteorological evaluation, of both system behav-
iorand our operational procedures, that do not depend
on verification data; evaluations that do depend on
verification data are discussed in the following section.
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TasLE 2. Operator time (in minutes) spent on Shootout activities

Activity Mean SD
Obtaining sounding, mesonet,

and verification data 16.42 6.80
Looking at data 17.33 5.58
Running programs

(not including OCI) 29.79 3.21

a. Sensitivity to operator input

To what extent do different operators of the same
system, using the same data, produce similar fore-
casts? GOPAD, ALPS, and OCI require purely objec-
tive input data, and therefore have no sensitivity to
operator input. KASSPr, Convex, and Willard, on the
other hand, require subjective interpretation of data
and/or subjective determination of input values; for
these three systems, differences in the subjective
processing of information may resultin different output
forecasts.

Two strategies were used to assess the sensitivity
of systems to operator input. The first was to compare
the forecasts generated when the three systems were
run by the CM to those generated when the systems
were run by M2. The second strategy was to have M2
run the three systems retrospectively, using data from
selected days. These days were selected because
some significant or severe weather had occurred and
they had been ones on which the systems had pro-
duced differing forecasts. When running the systems
retrospectively, M2 had all the necessary objective
data on computer files as well as hard copies of other
data available to the CM when he ran the systems
(including PROFS mesonet data, sounding analysis
package output, satellite images, and traditional
weather maps). The forecasts analyzed include those
fromthe two days when M2 ran the three systems after
the CM had completed his day’s activities, and the two
days for which M2 ran the systems retrospectively.
Across the four regions, this yielded 16 forecasts for
each forecast type (nil, significant, severe) for each of
the three systems.

We first computed the number of forecasts for
which pairs of forecasters “agreed.” Two levels of
agreement were considered: within a probability of
0.05 and within a probability of 0.20. The stringent
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criterion was chosen to represent a level of disagree-
ment that we considered would not be meaningfuf to
users. The lenient criterion was intended to represent
a level of disagreement that was more meaningful.
The number of times (out of the 16 possible) the CM
and M2 were within the two agreement levels are
reported in the first two columns of Table 3. We next
calculated the mean difference in forecasts, the mean
absolute difference in forecasts, and the maximum
absolute difference in forecasts. These are reported in
the third, fourth, and fifth columns of Table 3, respec-
tively.

Table 3 indicates the extent to which, for the days
in our sample, the systems were sensitive to operator
input. It must be noted, first, that the amount of data we
have limits the ability to generalize our results, and
second, that the selection criteria for the days in this
sample are likely to maximize the sensitivity to opera-
tor input. Our limited data suggest that all three sys-
tems can be quite sensitive to operator input. Our
primary goals in presenting these data are to suggest
that sensitivity to operator input may be a concern in
some operational settings, that systems vary in their
sensitivity to operator input, and that if this is a concern
then the degree of sensitivity should be addressed.
Ourresearch provides an example of how such effects
could be addressed, but our sample does not aliow
any strong conclusions.

b. Participant evaluation of systems

Near the end of the field season, the two operators
were asked the extentto which they were satisfied with
various aspects of each system, how well they under-
stood the system, how useful they felt the system was
in helping them understand the weather, and if they felt
the system was best suited for operational or training
environments.

Each operator filled out a detailed questionnaire,
the results of which are summarized in Table 4. A
weighted average of the responses of both operators
was used to generate the results shown. ltems for
whichtheir responses diverged substantially are noted
below. The operators were instructed to “try to answer
each question without regard to skill of the system.”

The difference between the systems requiring sub-
jective input (KASSPr, Convex, and Willard) and the
others is evident in the first entry of Table 4. Of the
objective systems, only ALPS required any meteoro-
logical skill to operate, and this was only to interpolate
when data were missing.

Both operators found all systems to be quick and
easy to use. KASSPr was thought to be somewhat
more difficult to use than the other systems because of
the need to provide extensive graphical input.
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TABLE 3. Sensiti\/ity to operator input as analyzed by comparing forecasts of CM and M2 (n=16)

Forecast Within a probability of

by system 0.05' 0.20? Mean diff? Mean adiff* Max adiff®
Nil

KASSPr 9 10 2 20 68
Willard 12 12 -10 10 40
Convex 4 12 0 16 60
Sig

KASSPr 9 10 8 18 64
Willard 12 12 8 8 30
Convex 4 11 4 17 50
Svr

KASSPr 10 ] 12 -10 12 75
Willard 12 16 3 3 10
Convex 13 15 -4 6 60

'"Number of differences less than or equal to 0.05.
2Number of differences less than or equal to 0.20.

3The mean of the differences in forecasts.

“The mean of the absolute differences in forecasts.
5The maximum of the absolute differences in forecasts.

Question 4 was asked to assess the extent to which
the operators understood the knowledge underlying
each system’s forecasts. It should be noted that there
was no attempt to formally train the operators about
the knowledge within each system, so their responses
represent insights they picked up while running each
system and talking informally with system developers.
On this question, operator opinions diverged. The
chief meteorologist indicated best understanding of
KASSPr and Willard, followed by Convex, with less
understanding of the other systems. The backup me-
teorologistindicated moderate understanding of ALPS,
Convex, and KASSPr, and low understanding of
GOPAD and Willard.

Question 5 addresses how well the systems aid an
operator in understanding synoptic weather. KASSPr
was thought very useful, indicating that the time neces-
sary to enter the required graphical input data pro-
vided a payoff in understanding. Willard was also
considered useful, Convex less so, and the three
objective systems were not considered useful in pro-
viding synoptic understanding. o

Question 6 addresses how well the systems aid an
operator in understanding mesoscale weather. Con-
vex and Willard were thought most useful, followed by
KASSPr, OCI, and ALPS. Although OCI and ALPS
required only objective input, the operators apparently
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believed that simply assembling the needed input data
provided some mesoscale understanding. GOPAD,
being entirely automated, was, of course, not consid-
ered useful in providing mesoscale understanding.

Questions 7 and 8 address how useful the systems
might be in an operational weather setvice environ-
ment. As forecast aids, all systems were thought at
least moderately useful, with KASSPr, Convex, and
OCI considered more potentially useful than the oth-
ers. As training aids, not surprisingly, the systems
requiring subjective input were considered useful, and
the other systems were considered only marginally
useful. ‘ '

Finally, question 9 assesses overall satisfaction.
The operators were most satisfied with KASSPr and
Convex, were dissatisfied with ALPS, and were neu-
tral about the others. ‘

6. Evaluation of statistical skill

a. Verification data

The collection of verification data was a crucial aspect
of Shootout-89. A full-time verification coordinator
(VC) gathered and documented verification data for
the exercise. During times of expected significant or
severe weather, the VC was stationed at the Denver
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TasLE 4. Operator feedback

Questions KASSPr Convex Willard GOPAD OClI ALPS

1. “Check the operator skills necessary
to run the system.”
Interpret sounding data X X X
Identify current mesoscale features X X X (X)
Identify current synoptic features X X X
Forecast mesoscale features X X X
Forecast synoptic features X X X

2. “Rate the overall ease of use Moderately Quite easy | Quite easy Quite easy Very easy Very easy
of the system.” easy

3. “Rate the general timeliness/ Moderately Quite fast Quite fast Quite fast Quite fast Quite fast
fastspeed of running the system.” fast

4. “Assume that you and the system each
generated a forecast independently and
that the forecasts were discrepant. How Well Well Well Poorly Poorly Poorly
readily could you explain the basis
of the discrepancy?”

“To what extent is the system useful as

an aid in understanding a given day’s:

5. Synoptic weather? Very useful Marginally Quite useful Not useful Not useful Not useful

useful
6. Mesoscale weather?” Moderately Quite useful | Moderately Not useful Moderately | Moderately
useful useful useful useful

“Assume you had the option of installing

the system in the local WSFO:

7. How useful would the system be to
operational meteorologists Quite useful | Quite useful | Moderately | Less useful | Moderately { Less useful
generating forecasts? useful useful

8. How useful would the system be in
training new operational Quite useful |Quite useful | Moderately | Less useful |Less useful | Less useful
meteorologists? useful

9. Rate your overall satisfaction Quite Quite Neutral Neutral Neutral Somewhat
with the system.” satisfied satisfied dissatisfied

WSFO, where there was access to real-time radar
data. When radar or other data suggested possible
significant or severe weather, the VC called cooperat-
ing observers in potentially affected regions. The VC
also received reports phoned in to the WSFO and, on
days following possible weather events, made follow-
up phone calls.

Bulletin American Meteorological Society

The following sources provided verification data: 1)
a volunteer spotter network and a paid cooperative
observer network sponsored by the NWS; 2) police
and fire stations, county emergency preparedness
staffs, and highway road crews; 3) a network of
amateur radio operators; 4) weather service offices in
Colorado Springs and Cheyenne, Wyoming; 5) 22
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TasLE 5. Operational days

System Starting date Operational days
KASSPr 15 May 60

Convex 15 May 57

Willard 30 May 54

ocCl 30 May 50

GOPAD (learning) 15 May 53 (+10)*
GOPAD (static) 22 May 50 (+11)*
ALPS 7 June 49 (+7)*

*Additional days rerun after the completion of the field season are
indicated parenthetically.

automated mesonet stations operated by PROFS that
provided data on maximum wind gusts and rainfall
rate; 6) daily weather observations recorded by ap-
proximately 30 specially recruited weather observers
who mailed in observations monthly; and 7) occa-
sional volunteer chase teams of research meteorolo-
gists.

We define a case as a weather classification for a
single region or a given day, e.g., severe for region 1
on 20 June. The severity ofacase is determined by the
most severe weather that is reported in the region on
eachday. The distinction between an individual weather
event (i.e., a report) and a case should be kept in mind
in the discussions to follow.

At the end of the field season, another meteorolo-
gist analyzed all the event documentation and radar
data that had been gathered and used by the VC. As
a result of this analysis, the initial verification determi-
nations of the VC were changed in only 7 cases out of
all 276 cases (4 regions multiplied by 69 days). This
gives us considerable confidence in the coding and
evaluation of spotter reports. Nevertheless, significant
and severe weather are rare events; it is likely that
several storms were missed because there were no
spotters in the area. Similarly, the distinction between
significant and severe should be viewed with caution,
because spotters may not have been in a position to
observe the most severe portion of a storm. For this
reason we grouped significant and severe weather
together and called such cases “non-nil.”

Several cases were verified as non-nil because of
strong winds that did not appear to be associated with
convective events. Although such events passed our
criteria for significant or severe weather, we were
concerned that the inclusion of such cases might
decrease the statistical skill of systems designed to
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predict convective weather. To assess the extent of
this possible effect, a specialist in Colorado wind-
storms (J. Brown of FSL) evaluated sounding, radar,
mesonet, and satellite data associated with all wind
events that affected the classification of a case, and
declared eachto be either convective or nonconvective.
Removing nonconvective events would have changed
the verification classification in 14 cases out of the 276
cases. Skill scores with the nonconvective cases
removed were not significantly different than the re-
sults we present here, which include the nonconvective
cases.

b. Sample size and climatology

Table 5 shows starting dates and the number of days
that each system successfully generated forecasts
during Shootout-89. Forecasts were not made when a
program failed to run because of software problems or
when required input data were not available. Two of
the objective systems (GOPAD and ALPS) were rerun
after the field season for some of the days for which
they had been unable to generate forecasts. These
additional days are included in the final sample.

Common days are those for which all systems
generated forecasts. For region 1, in which OCl did not
participate, there were 48 common days. For regions
2—4, there were 45 common days each. This yields a
total sample of 183 cases. Most of the evaluation to
follow applies to this sample of common days. Be-
cause results from the two versions of GOPAD were
very similar, we present results from only the learning
version.

Table 6 shows climatology for the Shootout-89
common days, and for the summers of 1983, 1985,
and 1987. On those three summers, PROFS con-
ducted extensive forecast-verification exercises using
an extensive network of radio-directed chase teams.

The frequency of severe cases for Shootout-89 is
similar to the frequencies observed in the three previ-
ous exercises. However, there is a substantial differ-
ence in the frequencies of significant cases. Differ-
ences between verification procedures in Shootout-
89 and in the three PROFS exercises can explain
some, but not all, of this difference. The PROFS
exercises did not send chase teams into the mountain-
ous portions of region 1; this could account for some
of the frequency differences in that region. However,
it cannot explain the substantial differences in the
other regions. Nonconvective cases cannot account
forthe difference; their removal changes the base rate
for significant cases in the common days sample only
slightly—to 0.35, 0.33, 0.13, and 0.38 for the four
regions, respectively.

We conclude that either significant weather was
underreported in the PROFS exercises or we
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TasLE 6. Observed frequencies (climatology) of each weather
category for Shootout-89 common days and for summers of 1983,
1985, and 1987

Region
Weather
Category 1 2 3 4
Nil
Shootout-89 0.54 0.62 0.67 0.44
3 summers 0.90 0.88 0.85 0.72
Sig
Shootout-89 0.38 0.33 0.20 0.38
3 summers 0.06 0.07 0.06 0.09
Svr
Shootout-89 0.08 0.04 0.13 0.18
3 summers 0.04 0.05 0.09 0.19

overreported significant weather (possibly by asking
leading questions). It is also possible that 1989 was a
more active summer than the earlier years, and that
severe events were underreported in 1989, but signifi-
cant events were not. We believe that it is most likely
that significant weather was underreported during the
PROFS exercises; interviews with some of the princi-
pals of those exercises suggest that there was far
more emphasis on reporting severe events than on
reporting significant events.

It should be noted that if significant weather events
were missed during the RT exercises, this would
primarily effectthe GOPAD system, which depends on
the properties of known past weather events to make
its predictions. To a lesser extent, ALPS, which was
calibrated using past statistical data, would be af-
fected. None of the other systems depend on the
historical data from the RT exercises.

In some of the analyses reported here, we refer to
climatology forecasts. These are forecasts in which
the predicted probability of occurrence of each weather
category in each region is taken as the observed past
frequency of that category for that region. For our
climatology forecasts, we used the 3-summer fre-
gquencies shown in Table 6.

Considerable regional variability is evident in the
data shown in Table 6. There are several reasons for
this variability: the regions are climatologically distinct
(Weaver et al. 1987); the regions have different popu-
lation densities, and hence different densities of po-
tential weather reporters; and the limited sample size
in each region results in relatively large statistical
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fluctuations. Because of the last reason, we aggre-
gated the skill scores over regions.

¢. Persistence forecasts

Persistence forecasts were generated by forecasting
that, in each region, each day’s weather would be the
same as the previous day’s weather. We were able to
generate persistence forecasts for 45 days of the
experiment for which we have verification information
from the previous day. These days are not entirely the
same as the common days.

Although the persistence forecasts are for a differ-
ent sample of days than the common days, we include
them in our analyses because the frequency of occur-
rence of non-nil cases is very similar in the two
samples, as Table 7 shows.

d. Forecast skill

We divide forecast skill into two components: resolu-
tion andbias. Resolution measures the extentto which
forecasted probabilities for weather categories are
consistently higher (or at least different) when weather
in that category occurs than when it does not. Bias
measures the extent to which the average forecast for
a weather category matches the observed reiative
frequency of that category.

1) RESOLUTION

To assess the ability of the systems to resolve nil,
significant, and severe weather, we use correlation
measurements and signal detection theory (SDT).
Table 8 shows the correlations between the forecasts
and the observed weather. The two correlations by
region shown were calculated using the entire com-
mon-days sample of 183 cases (135 for OCI).

The correlations by region are small and positive,
but not generally statistically significant. If we consider
reduction of variance, which is the square of the
correlation, no system reduces the variance by more
than 7%, telling us that the systems have ample room
for improvement. Not ali 183 cases are independent,
because some of the relevant weather patterns ex-
tended over several regions. If we assume a smaller
number of degrees of freedom, for example 100, only

TasLe 7. Frequency of non-nil cases

Dataset Region

1 2 3 4
Common days 0.44 0.37 0.33 0.56
Persistence days 0.44 0.40 0.36 0.53
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TasLE 8. Correlations between forecasts and observed cases

Correlations

System By region’ Entire area?
Non-nil Severe Severe

KASSPr 0.24 0.11 0.28
Convex 0.26 0.17 0.50
Willard 0.02 0.00 0.00
ocHr 0.08 0.12 0.23
GOPAD 0.15 0.21 0.18
ALPS 0.07 0.16 -0.04
Climatology 0 0 0
Persistence** 0.17 0.22 0.12

*OCI did not forecast for region 1

**Different set of days; see section 5.3

'Correlations for the common days sample (n=183 generally;
n=135 for OCI).

2Correlations between each system’s most severe forecast for
each of the 45 common days and the most severe weather
observed in any of the four regions (three regions for OCI).

correlations greater than 0.20 are significant at the
p<0.05 level, two-tailed.

The first two columns of Table 8 suggest that, in our
weather sample, KASSPr and Convex resolved non-
nil weather, while GOPAD and Persistence resolved
severe weather. However, our data are too limited to
be more than suggestive.

We investigated the possibility that the poor show-
ing of the systems at resolving severe weather might
be due to the small size of the regions. To estimate
how well the systems would have done had they
generated forecasts for a larger region, we compared
each system’s highest probability severe forecast for
each day with the most severe weather that occurred
in any of the four regions. Those results, given in the
third column of Table 8, are encouraging. Both Convex
and KASSPrshow modestly significant (n=45, p<0.07,
two-tailed) abilities to resolve severe weather in the
larger area. This suggests that the systems embody
some understanding of the overall synoptic situation,
but they do not yet have sufficient spatial precision to
focus their forecasts well on the appropriate region.

Another way to study resolution is to use signal
detection theory (Swets 1988; Mason 1982). In this
approach, plots are made of each system’s probability
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of detection versus probability of false detection. Us-
ing general assumptions about the statistical proper-
ties of the forecasts, a curve called the receiver (or
relative) operating characteristic (ROC) can be fit to
the data. Without going into further detail, it will suffice
for our purposes to note that, if an ROC curve can be
fit to the data, the general statistical assumptions of
signal detection theory are satisfied, and the area
under the best-fitting ROC curve is a measure of
resolving power (Dorfman and Alf 1969). An area of
1.0 indicates perfect resolving power; an area of 0.5
indicates forecasts that are no better than chance.

Table 9 presents the area under each system’s
ROC curve. The areas were calculated using a pro-
gram written by L. Harvey of the University of Colorado
that applies the maximum likelihood fitting method of
Dorfman and Alf (1969). Standard errors based on the
fitting method are indicated.

The ROC resuits corroborate the correlation analy-
sis. Within each forecast region, the systems show a
slight (but probably not statistically significant) ability
to resolve nil weather events. But when we compare
weather over the entire experimental area, two of the
systems, KASSPr and Convex, do show encouraging
resolving power. Note that the rank order of the
systems is different between the ROC analysis and
the correlation analysis, even though the two analyses
measure similar properties of the forecasts. This is a
reflection of our limited statistical sample, emphasiz-
ing the need to consider muitiple measures and to
avoid statistically unwarranted conclusions. We do not
show an analysis of nonsevere versus severe fore-
casts by region because the SDT results were too
unstable to be useful.

2) Bias

The overall skill of a forecast model will be ad-
versely affected if the model is biased; i.e., it produces
forecasts that are too low (underforecasting) or too
high (overforecasting). The bias is defined as the
average forecasted probability for a given weather
category divided by the observed frequency of that
category. A bias less than (greater than) unity repre-
sents underforecasting (overforecasting). Table 10
shows the bias for each system for both non-nil and
severe-weather forecasts. With one exception, all the
models underforecast. The least-biasedforecasts were
produced by GOPAD for severe weather; the most-
biased forecasts were produced by ALPS for non-nil
weather. Some of the apparent underforecasting of
non-nil weather may be because the observed fre-
quency of significant weather was much higher in
1989 than in the three earlier summers used to
calibrate GOPAD and ALPS (see section 5b). If
significant weather were overreported in 1989, this
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TasLe 9. Signal detection theory analysis summary

Area under ROC curve

System By region’ Entire area?
Nil vs. non-nil Non-svr vs. svr

KASSPr 0.74+/-0.15 0.81+/-0.24
Convex 0.65+/-0.05 0.74+/-0.12
Willard 0.53+/-0.05 >

ocCi* 0.58+/-0.05 0.63+/-0.10
GOPAD 0.56+4/-0.05 0.61+/-0.10
ALPS 0.55+/-0.05 0.55+4/-0.17

*OC! did not forecast for Region 1.

**Fitting algorithm did not converge.

'For common days sample (n=183 generally; n=139 for OCI).

2For each system’s most severe forecast for each of the 45
common days verified against the most severe weather
observed in any region.

would decrease the bias of all systems for non-nil
weather.

7. Overall measures of system
performance

Table 11 presents a synthesis of the foregoing results.
Column 1 indicates that KASSPr and Convex gener-

TasLe 10. System bias for non-nil and severe-weather forecasts

System Non-nil Severe
KASSPr 0.28 0.34
Convex 0.67 0.57
Willard 0.30 0.27
ocI* 0.71 1.51
GOPAD 0.38 0.81
ALPS 0.23 0.54
Climatology 0.38 0.85
Persistence 0.65 0.72

*OCI did not forecast for Region 1.
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ally have the best resolving power, consistent with that
of persistence. No system unequivocably beats per-
sistence. The other systems do not exhibit statistically
significant resolving power in our data sample; how-
ever, there is a suggestion that GOPAD and OCI do
somewhat better than do Willard and ALPS.

Column 2 indicates that all the systems, with the
exception of GOPAD and Convex, are substantially
biased (they generally underforecast). Also, both per-
sistence and 3-year climatology underforecast with
respect to our sample climatology.

Combining the effects of resolution and bias leads
to traditional skill scores that are generally low with
respect to persistence. For instance, critical success
indices (CSI') (Donaldson et al. 1975) for forecasting
non-nil weather range from 0.31 (Convex) to 0.09
(ALPS), with persistence scoring 0.33. For discrimi-
nating severe weather, CSls range from 0.11 (OCl) to
0.02 (Willard), with persistence scoring 0.17."

Column 3 of Table 11 indicates that, regardless of
the skill of resulting system forecasts, running the
three systems that require subjective input can be a
useful exercise; those systems tend to lead the meteo-
rologist/operators through an organized briefing on
the meteorological situation (see section 4). Column 4
generally indicates the converse; OCIl, GOPAD, and
ALPS could be far more easily automated than the
systems for which subjective input is critical. Convex
and Willard have a partially automated mode, but were
not specifically designed to be automated tools.

8. Discussion

The generally low skill of the systems can be attributed
to two factors: the difficulty of the forecast task, and
limitations in the systems themselves.

a. Difficulty of the forecast task
Forecasting severe-weather events with a 2—9-h lead
time for predefined regions as small as those used by
Shootout-89 substantially stretches the state of the
art. No human forecaster has attempted this task
operationally for the topographically diverse north-
eastern Colorado region. In retrospect, it is quite clear
that, in our enthusiasm, we violated a cardinal rule of
system development: start simple.

Afternoon forecasts have been made for similar

'CSlis generated from a contingency table. Traditionally, a series of
thresholds is needed to convert probabilistic forecasts to the catego-
ries (nil, sig, svr) in the table. An alternate formulation that we have
employed is to enter into each cell of the contingency table the sum
of the forecasted probabilities for each of the observed cases. Using
this formulation, no thresholds are required.
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TasLe 11. Overall measures of system performance

System Resolving | Bias | Suitability | Suitability as
Power as a Briefing |a Stand-Alone
Tool Tool
KASSPr 1 :— 1 3
Convex 1 2 1 2
Willard 3 3 1 2
ocCl 2 3 3 1
GOPAD 2 2 3 1
ALPS 3 3 3 1
Persistence 1 2 —_ —
Climatology 3 2 — —

1=Relatively good
3=Relatively poor

spatial regions in northeastern Colorado (Heideman
1989). The skill scores reported forthese forecasts are
better than those of the Shootout-89 systems; how-
ever, we believe that this is due to a difference in
forecastissue times. The human forecasts were made
at 12:30 r.m. local time; Shootout-89 forecasts were
based on data from 10:30 A.m. and earlier. McGinley et
al. (1991) suggest that the boundary layer, which
determines the surface data used by all of our sys-
tems, is much better coupled with the overall air mass
after noon local time. Thus, the forecasts issued at
12:30 reported by Heideman may have had the advan-
tage of being based on more relevant meteorological
data.

An additional problem with the forecast task is that
the quality of the verification data for significant events
varied between the training sample used by several of
the systems and the Shootout-89 verification data.
Thus, the Shootout-89 forecast task was, in effect,
different from what these systems had been trained
for, at least for significant weather. '

b. Limitations in the systems

KASSPr. After the end of the experiment, errors were
found in the algorithms that converted spatial graphi-
cal input to symbolic data for use in the rules that
established necessary conditions. The effect of these
errors, and of the relatively poor temporal resolution
(one NWP input at 0000 UTC only) was to cause
KASSPr to forecast severe probabilities of 0.0 for
several of the cases that verified as severe. Post-facto
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analysis of the behavior of individual rules corrobo-
rates this. The algorithms are being corrected, and the
temporal resolution is being improved.

Also, KASSPr's dependence on NWP models that
do not yet resolve mesoscale conditions well limited
KASSPr’s ability to forecast on the mesoscale. In-
deed, KASSPr performs substantially better (Bullas et
al. 1990) when forecasting for larger regions. Addi-
tional mesoscale rules are being developed.

Convex. The primary variable Convex was de-
signed to forecast is buoyant potential energy. For
Shootout-89, this variable was converted to significant
and severe-weather probabilities discontinuously. This
greatly amplified Convex’s sensitivity to input data. For
example, in several cases a change of 0.5°C in the
inputdewpointforecast would have changed Convex’s
forecasted probabilities by 60%.

The effect of this artificial sensitivity was to depress
Convex’s measured accuracy, particularly for severe
weather of which there were only a few cases. For
example, in forecasts of severe, CSl values of approxi-
mately 0.1 seem to indicate poor accuracy. However,
when significant and severe are taken together, CSI
values climb to 0.31, which is more typical of similar
forecasts in eastern Colorado (McGinley et al. 1991).

Post-facto tests of probability forecasts using de-
sensitized thresholds suggest much-improved accu-
racy. More important, these new, graduated probabili-
ties, based on several graduated thresholds, are prob-
ably a much more realistic representation of what can
be known in advance concerning thunderstorm sever-
ity.

Sensitivity to input dewpoint forecasts still remains
a factor, however,; this is an important variable that is
often estimated unreliably by the human operator. The
new version of Convex will require the operator to use
a decision-tree approach to assist in determining an
afternoon mixed-dewpoint value.

Willard. Willard's performance was due, we be-
lieve, to the system being asked to forecast on the
mesoscale using a synoptic-scale knowledge base.
Willard was designed for 0—24-h forecasts of severe
weatherinlargerregions thanthose used by Shootout-
89. Indeed, Willard exhibited better performance
(Zubrick and Riese 1985) on these larger temporal
and spatial scales than it did in Shootout-89. Although
some Colorado mesoscale knowledge was added to
Willard, it was clear to the developer at the outset that
limited resources would not allow the level of effort
required to develop a sufficient mesoscale knowledge
base. Willard’s performance in Shootout-89 strongly
suggests that its synoptic-scale knowledge was insuf-
ficient for adequate mesoscale forecasting.

OCI. No detailed study has been done of OCl’s
performance. However, we believe that it may have
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suffered from the same problem experienced by ALPS:
its input data were inadequate to describe the meteo-
rological situation in enough detail to permit skilled
forecasts to be generated.

GOPAD. GOPAD was hurt by the limitations in the
training dataset. This was particularly acute for signifi-
cant weather. The effects of the presumed
underreporting of significant weather in the training
data are twofold. First, the climatology calculated from
the training data is incorrect, thus leading to the bias
shown by GOPAD. Second, and more serious, the set
of potentially analogous cases that GOPAD used to
develop its set of forecast models was incomplete.
This had the effect of limiting the resolving power of the
model. Both these effects are evident in the Shootout-
89 results: for both correlation (resolving power) and
bias, GOPAD performs better for severe weather than
for significant.

ALPS. ALPS’s poor performance was surprising to
the psychologists who developed itbecause a number
of studies have shown that simple linear models of the
type used by ALPS perform as well or better than
human experts. We hypothesize that the failure of
ALPS lies in the selection of cues, not in the way they
were aggregated to produce a forecast. Our hypoth-
esis is supported by the better performance of GOPAD
and OCI, which relied heavily on linear models but
used different cues. Our hypothesis could be tested by
using the input variables to other models as cues in a
linear prediction model.

A post-facto attempt to fit a linear model using only
ALPS’s cues to the data was unsuccessful. Although
the variables used by ALPS are generally recognized
tobeimportantfactorsin severe and significant weather,
we conclude that the individual pieces of data used to
determine the cue values were insufficiently represen-
tative of the meteorological situation as a whole to
allow adequate forecasting.

9. Lessons learned and plans for
the future

We learned several lessons from Shootout-89 that will
be applied to similar experiments in the future.

e A balance must be struck in choosing the forecast
task, so that skill scores are high enough to allow us
to discriminate among systems, while maintaining
as high a potential utility as possible. Thus, in the
future, we will
1) forecast slightly later in the day, when the bound-

ary layer is more representative of the overlying
air mass, yet early enough that the forecast task
remains challenging and useful.
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2) forecast for larger areas, as well as for regions of
the current size, in order to assess the spatial
sensitivity of the systems.

o Generate compatible forecasts made by humans
not aided by Shootout systems to put the system
forecasts in perspective.

e For systems that require subjective input, test sen-
sitivity to that input by having several meteorolo-
gists run the systems independently for a large
number of cases.

e Take considerably more care in calibrating the
systems and use a better historical training set.

We are currently planning a Shootout-91 experi-
ment. From mid-March through May 1991, systems
operating from Boulder will forecast for the region
around Norman, Oklahoma. From mid-May through
mid-August, the systems will forecast for northeastern
Colorado. In both locations, human forecasters will
also generate compatible forecasts. In addition, a
mesoscale numerical model will also participate for
Colorado. We expect that the real fruits of Shootout-89
will be seen in the improved systems that will partici-
pate in Shootout-91.
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